
Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

AN EPSILON-CONSTRAINT METHOD FOR INTEGER-ORDERED BI-OBJECTIVE
SIMULATION OPTIMIZATION

Kyle Cooper
Susan R. Hunter

School of Industrial Engineering
Purdue University

West Lafayette, IN 47906, USA

Kalyani Nagaraj

School of Industrial Engineering & Management
Oklahoma State University
Stillwater, OK 74078, USA

ABSTRACT

Consider the context of integer-ordered bi-objective simulation optimization, in which the feasible region
is a finite subset of the integer lattice. We propose a retrospective approximation (RA) framework to
identify a local Pareto set that involves solving a sequence of sample-path bi-objective optimization
problems at increasing sample sizes. We apply the epsilon-constraint method to each sample-path bi-
objective optimization problem, thus solving a sequence of constrained single-objective problems in each
RA iteration. We solve each constrained single-objective optimization problem using the SPLINE algorithm,
thus exploiting gradient-based information. In early RA iterations, when sample sizes are small and standard
errors are relatively large, we provide only a rough characterization of the Pareto set by making the number
of epsilon-constraint problems a function of the standard error. As the RA algorithm progresses, the
granularity of the characterization increases until we solve as many epsilon-constraint problems as there are
points in the (finite) image of the local Pareto set. Our algorithm displays promising numerical performance.

1 INTRODUCTION

We consider simulation optimization (SO) problems with two simultaneous objectives, that is, nonlinear
optimization problems in which two objective functions, g1 and g2, may only be observed with error as
the output from a Monte Carlo simulation oracle at each decision point x. Bi-objective SO problems are
a sub-class of the more general multi-objective simulation optimization (MOSO) problems, which are SO
problems having two or more simultaneous objectives. The solution to a MOSO problem is the set of
decision points for which no other decision point has objective values that are at least as good on all
objectives, and strictly better on at least one objective. We call this set the Pareto set P.

Since usually only one decision can be implemented, MOSO solution methods that return a character-
ization of the Pareto set P enable the decision-maker to express solution preferences after the optimization
is conducted, instead of before. Such methods are called a posteriori methods in the corresponding and
relatively well-developed deterministic multi-objective optimization (MOO) literature (see, e.g., Miettinen
1999). Eichfelder (2008) notes that the availability of increased computing power has fueled interest in
developing such a posteriori methods.

Decision-makers also are showing increased interest in obtaining multiple Pareto optimal points as the
solution to MOSO problems. Several reasons may exist for this increased interest. However, we suspect
that as in the MOO context, the primary reason is that it has become increasingly computationally feasible
to do so. In addition to the availability of increased computing power, methods to solve single-objective SO
problems are increasingly mature and efficient (see, e.g., Chen and Lee 2010, Pasupathy and Ghosh 2013, Fu
2015 for overviews and entry points into the single-objective SO literature). As in the MOO context, these
algorithms can be used as single-objective SO “engines” to find multiple Pareto optimal solutions (Marler

2303978-1-5386-3428-8/17/$31.00 ©2017 IEEE

Cooper, Hunter, and Nagaraj

and Arora 2004). Example applications of MOSO problems using solution methods that return multiple
Pareto points include surgical suite planning (Huschka et al. 2007), aircraft maintenance scheduling (Lee
et al. 2007), plant breeding (Hunter and McClosky 2016), and inventory planning (Peirleitner et al. 2016).
For further applications and an overview of existing MOSO literature, see Hunter et al. (2017).

Our focus is on finding a local Pareto set (defined and discussed in §2) as the solution to a bi-objective
SO problem having integer-ordered decision variables x. Not many solution methods currently exist for
these types of problems, however, we believe this class of problems to be important from an applications
perspective. Problems with integer-ordered decision variables arise frequently in applications; close to half
of the problem entries in the SO problem library, simopt.org (Pasupathy and Henderson 2006, 2011),
are defined on integer-ordered spaces. Existing papers containing applications of integer-ordered MOSO
problems include Huschka et al. (2007), Li et al. (2015), and Peirleitner et al. (2016).

We develop a new method for integer-ordered bi-objective SO that combines several existing method-
ologies from the SO and MOO literature. First, we use a Retrospective Approximation (RA) framework to
solve a sequence of bi-objective sample-path problems with increasing sample sizes (see, e.g., Healy and
Schruben 1991, Chen and Schmeiser 2001, and Wang et al. 2013 and references therein). Within an RA
iteration, with common random numbers (CRN) at a fixed sample size m, each bi-objective sample-path
problem is solved using the ε-constraint method. The ε-constraint method is an MOO method that converts
a bi-objective problem into a sequence of single-objective constrained problems parameterized by ε values,
e.g., minimize g1 subject to g2 ≤ ε . The solution to each sample-path ε-constraint problem is a sample-path
weakly locally Pareto optimal point (defined in §2). For different values of ε , we retrieve a collection of
such points. We use the SPLINE algorithm of Wang et al. (2013) to solve the ε-constraint problems,
which performs line search and exploits gradient-based information.

Our main contribution lies in our choice of ε values in each RA iteration. In early RA iterations, when
sample sizes are small and standard errors are relatively large, we ensure that the number of ε-constraint
problems we solve is appropriately small by making the ε values a function of the standard error of the
estimated objective function values of the estimated locally Pareto optimal points (defined in §2). As the
sample sizes increase, these standard errors decrease, and we obtain an increasingly “fine” representation
of the image of a local Pareto set (defined in §2). In the limit, we solve only as many ε-constraint problems
as we have points in the (finite) image of the local Pareto set. Thus our algorithm is consistent with the
philosophy that on early RA iterations, we should not “over-solve” the sample-path problem by locating
every point in the sample-path local Pareto set. Instead, we solve the problem only to an appropriate
tolerance level before moving on to the next RA iteration, using the previous estimated sample-path local
Pareto set as a “warm start” in the next RA iteration.

There are other MOO methods we could have used to solve the deterministic bi-objective sample-path
problem on each RA iteration. The reformulation of an MOO problem as a collection of single-objective
problems, called scalarization, is common in the MOO literature, and many scalarization methods exist
(see, e.g., Miettinen 1999, Ehrgott and Wiecek 2005, Eichfelder 2008 in general, and Ralphs et al. 2006,
Hamacher et al. 2007 for example bi-objective algorithms for integer-ordered spaces). We choose the
ε-constraint method because it has several desirable properties. First, there exists an ε value that can
retrieve each Pareto point, even in “non-convex” portions of the objective function space. Second, unlike
the parameters of some scalarization methods, each ε value has real meaning to the decision-maker as
a constraint on one of the objectives. Although our algorithm does not require the decision-maker to
input ε values, it can easily be adapted to accept the decision-maker’s choice of one or more particularly
interesting or important ε values. Thus we view the development of efficient MOSO algorithms that use
the ε-constraint method as having particular interest.

2304

Cooper, Hunter, and Nagaraj

1.1 Related Literature for MOSO with Discrete Decision Variables

As mentioned previously, few methods exist for solving MOSO problems on integer-ordered spaces. Table 1,
adapted from Hunter et al. (2017), provides a broad classification of current literature on general solutions
methods for MOSO problems that are designed to handle discrete decision variables.

Table 1: Existing MOSO algorithms on discrete feasible sets can be broadly classified by the nature of the
decision variables, the search space, and the type of solutions returned to the decision-maker.

Feasible
set

Decision
variables

Global
/ Local MOSO with d = 2 objectives MOSO with d ≥ 2 objectives

finite possibly
categorical

global SCORE (Feldman and Hunter 2016),
M-MOBA (Branke and Zhang 2015,

Branke et al. 2016)

MOCBA (Lee et al. 2010)

finite integer-ordered local This work. MO-COMPASS (Li et al. 2015)
countable integer-ordered local
bounded mixed global MOPBnB (Huang and Zabinsky 2014)

Note: Parts of this table were adapted from Hunter et al. (2017).

First, we notice a growing body of literature on algorithms that seek global Pareto solutions to MOSO
problems on finite sets with decision variables that may be categorical (Feldman and Hunter 2016, Branke
and Zhang 2015, Branke et al. 2016). Such problems are referred to as Multi-Objective Ranking and
Selection (MORS) problems. MORS algorithms may be applied to a problem instance whose feasible
region is a finite subset of an integer lattice. However, since these solution methods are not designed to
exploit gradient-based information, they are unlikely competitors for the present context.

The multi-objective probabilistic branch and bound (MOPBnB) algorithm (Huang and Zabinsky 2014),
which seeks a global solution to the MOSO problem on a bounded feasible set, handles both continuous and
integer decision variables. MOPBnB proceeds by iteratively pruning the feasible region. The likelihood
of the retained region being close to the true Pareto set increases with each iteration.

Finally, to the best of our knowledge, MO-COMPASS (Li et al. 2015) is the only provably convergent
algorithm created specifically for solving MOSO problems on integer lattices. It employs COMPASS, a local
SO solver, to identify candidate local Pareto points and provides probabilistic guarantees on convergence
to a local Pareto set. While our algorithm is designed for only two objectives, MO-COMPASS is arguably
the most appropriate competitor for our algorithm.

1.2 Notational Conventions

We use Zq to denote the set of all q-dimensional integer-valued vectors, Zq ⊂Rd . Whenever it is reasonable
to do so, capital letters denote random variables (X), script capital letters denote sets (A), vectors appear
in bold (x), and random vectors appear in capital bold (XXX). The notation 000d denotes a d-dimensional
vector of zeros. For vectors a = (a1, . . . ,ad) ∈ Rd and b = (b1, . . . ,bd) ∈ Rd , we write (a) a≤ b if ai ≤ bi
for all i = 1, . . . ,d; (b) a < b if ak < bk for all k = 1, . . . ,d; (c) a � b if ak ≤ bk for all k = 1, . . . ,d and
ak∗ < bk∗ for at least one k∗ ∈ {1, . . . ,d}. We also require the following notions of distance. Let A⊂Rq and
B ⊂ Rq be two nonempty, bounded sets. Then (a) d(x,x′) = ||x−x′|| is the Euclidean distance between
two points x,x′ ∈Rq; (b) d(x,B) = infx′∈B ||x−x′|| is the distance from the point x ∈Rq to the set B; (c)
ID(A,B) = supx∈A d(x,B) is the distance from setA to setB; and (d) dH(A,B) :=max{ID(A,B), ID(B,A)}
is the Hausdorff distance between sets A and B.

2 PROBLEM & SOLUTION CONTEXTS

In this section, we formally define the problems we consider.

2305

Cooper, Hunter, and Nagaraj

2.1 The Bi-Objective SO Problem on a Finite Integer Lattice

We consider problems of the form

Problem M: minimize
x∈D

{g(x) = (g1(x),g2(x)) := (IE[G1(x,ξ)], IE[G2(x,ξ)])},

where the feasible set D⊆ Zq is a finite integer lattice. For each x ∈D, the corresponding objectives g1(x)
and g2(x) are expectations of random outcomes G1(x,ξ) and G2(x,ξ) (each a function of some random
quantity ξ) of a Monte Carlo simulation. In the context of two objectives, there may not exist a single
point that is the “best” on both objectives. However, some points may dominate others, in the sense that
if x1,x2 ∈D, we say x1 dominates x2 if g(x1)� g(x2); see §1.2 for notation. A point x∗ in the decision
space D is non-dominated or globally Pareto optimal if there does not exist x ∈D such that g(x)� g(x∗).
In other words, there does not exist another point that is at least as good in all objectives, and strictly
better in at least one objective. The solution to Problem M is the collection of all such non-dominated
points, which we denote as the global Pareto set P := {x ∈D : @ x′ ∈D 3 g(x′)� g(x)}. We denote the
image of the set P as the global efficient set E := {g(x) : x ∈ P}. (Authors use various terms for the set of
non-dominated points; see Hunter et al. 2017 for a brief discussion of the conventions.)

Ideally, we would like to obtain the globally Pareto optimal set as the solution to Problem M, however,
in this paper, we seek only a local Pareto set, which we now define. First, recall the definition of a
Ba-neighborhood of a point: for x ∈D⊆ Zq and a≥ 0, the Ba-neighborhood of x is Ba(x) := {x′ ∈ Zq :
||x− x′|| ≤ a}. Then the corresponding Na-neighborhood of a set is the union of the Ba-neighborhoods
of all the points belonging to the set. That is, for S ⊂ D ⊆ Zq, the Na-neighborhood of a set S is
Na(S) := ∪x∈SBa(x). Since the neighborhood of a set S contains S, we say that points in Na(S)\S are
neighborhood-only points. Henceforth, as is typical in similar settings that deal with local optimality (see,
e.g., Li et al. 2015), we only consider a = 1.
Definition 1 A vector x∗ ∈D is N1-locally Pareto optimal (henceforth, locally Pareto optimal) if there
does not exist x ∈D∩N1({x∗}) such that g(x)� g(x∗).
Definition 2 (Li et al. 2015) A set P1 is an N1-local Pareto set (N1-LPS) if for all x∗ ∈ P1, there does
not exist x ∈ N1(P1)∩D such that g(x)� g(x∗), and for all x ∈ (N1(P1)\P1)∩D, there exists x∗ ∈ P1
such that g(x∗)� g(x).
That is, a set P1 is an N1-LPS if all points in the N1-neighborhood are not dominated by any other points
in the N1-neighborhood, and all N1-neighborhood-only points are dominated by at least one point in the
set P1. As in MO-COMPASS (Li et al. 2015), we seek an N1-LPS as the solution to Problem M.

2.2 The Sample-Path Problem

Since we are in an SO context, we cannot observe the objective functions in Problem M directly. Instead, we
can only observe estimates of the objective functions from, for example, a Monte Carlo simulation oracle.
Given a simulation budget m, we assume we can construct an estimator ḠGGm(x) := (Ḡ1,m(x), Ḡ2,m(x)) =
(1

m ∑
m
i=1 G1(x,ξi),

1
m ∑

m
i=1 G2(x,ξi)) for all x ∈ D, where (G1(x,ξ1),G2(x,ξ1)), . . . ,(G1(x,ξm),G2(x,ξm))

are m independent and identically distributed copies of the random objective vector (G1(x,ξ),G2(x,ξ))
generated by the oracle. Additionally, for k = 1,2, we have Ḡk,m(x)→ gk(x) w.p.1 as m→∞. Using these
estimators, the we define the (deterministic) sample-path problem as

Problem M̂m: minimize
x∈D

(Ḡ1,m(x), Ḡ2,m(x)).

The solution to Problem M̂m is the estimated global Pareto set P̂ := {x ∈D : @ x′ ∈D 3 ḠGGm(x′)� ḠGGm(x)},
and its estimated image is Ê := {ḠGGm(XXX) : XXX ∈ P̂}. Thus P̂ and Ê estimate P and E.

Instead of solving the sample-path problem to global optimality, after fixing a sample size m, we seek
only a sample-path N1-estimated approximate local Pareto set, defined as follows.

2306

Cooper, Hunter, and Nagaraj

Definition 3 A set P̂1 ⊆D is called an N1-estimated approximate local Pareto set (N1-EALPS) if
1. for all x∗ ∈ P̂1, there does not exist x ∈ P̂1 such that ḠGGm(x)� ḠGGm(x∗),
2. for all x∗ ∈ P̂1, there does not exist x ∈ (N1(P̂1)\ P̂1)∩D such that ḠGGm(x)� (ḠGGm(x∗)−δδδ (x∗)),
3. for all x ∈ (N1(P̂1)\ P̂1)∩D, there exists x∗ ∈ P̂1 such that (ḠGGm(x∗)−δδδ (x∗))� ḠGGm(x),

where 0002 ≤ δδδ (x∗) ∈ R2 for all x∗ ∈ P̂1.
Definition 3 defines a relaxed version of an estimated LPS. Condition 1 ensures no point in the N1-

EALPS dominates any other point in the N1-EALPS. Condition 2 allows points x∗ in the N1-EALPS to
be dominated by neighborhood-only points, as long as the neighborhood-only points do not dominate x∗
by more than some amount δδδ (x∗). Condition 3 allows neighborhood-only points not to be dominated by
anyone in the N1-EALPS, as long as there exists a point x∗ in the N1-EALPS such that ḠGGm(x∗)−δδδ (x∗)
dominates it. Notice that when δδδ (x∗) = 0002 for all x∗ ∈ P̂1, we retrieve an estimated version of an N1-LPS.
When solving the sample-path Problem M̂m, we seek an N1-EALPS, in which the relaxation is determined
by the parameter δδδ (·). We suggest setting δδδ (·) as a function of the estimated standard errors in §3.1.

2.3 The ε-Constraint Sample-Path Problem

Since the sample-path Problem M̂m is deterministic, we can find an N1-EALPS using deterministic methods.
We solve the sample-path Problem M̂m by solving a sequence of ε-constraint problems. Given parameters
m, ε , and a chosen objective k∗, we define the sample-path ε-constraint problem as

Problem M̂m(ε,k∗): minimize
x∈D

Ḡk∗,m(x) s.t. Ḡkcon,m(x)≤ ε for kcon 6= k∗.

With minor modifications to the results in Miettinen (1999), p. 85–86), it follows that a local solution to
Problem M̂m(k∗,ε) is a sample-path locally weakly Pareto optimal point, where in general, we say that
a vector x∗ ∈D is N1-locally weakly Pareto optimal (henceforth, locally weakly Pareto optimal) if there
does not exist x ∈D∩N1({x∗}) such that g(x) < g(x∗). As in Wang et al. (2013), we say that a point
x∗ ∈D is an N1-local minimum (henceforth, a local minimum) of objective k∗ if gk∗(x)≥ gk∗(x∗) for all
x ∈N1({x∗})∩D. By varying the parameter ε , we retrieve various constrained local minima on the chosen
objective k∗ that belong to an N1-EALPS.

2.4 Questions Raised by Using the ε-Constrant Method in an RA Framework

We now consider specific questions raised by solving Problem M using the ε-constraint method within an
RA framework. Briefly, our proposed solution method proceeds as follows. Given an increasing sequence
of sample sizes {mν} and a sequence of objectives to minimize {k∗ν}, at each RA iteration ν = 1,2, . . .
we solve Problem M̂mν

(εν ,i,k∗ν) for a finite set of εν ,i values, εν ,i ∈ Ξν . For each ε-constraint problem we
solve, we obtain one weakly locally Pareto optimal point. We ensure that together, these points form an
N1-EALPS. Then we ask, how should the εν ,i values be chosen to ensure the N1-EALPS converges to an
N1-LPS at the fastest possible rate?

Due to space constraints, we do not discuss algorithm convergence or the rate of convergence in this
paper. However, we make the following remark on convergence requirements.
Remark 1 A “separation” assumption similar to that in MO-COMPASS is required: there exists a κ > 0
such that for all x,x′ ∈D and all k ∈ {1,2}, x 6= x′ implies |gk(x)−gk(x′)| ≥ κ . This assumption implies
that there are no weakly locally Pareto optimal points that are not also locally Pareto optimal points.
Further, algorithm parameters from §3, such as {mν},{bν},γ, and β must be chosen appropriately to
ensure convergence. We are likely to inherit optimal algorithm parameters from R-SPLINE (Wang et al.
2013) and cgR-SPLINE (Nagaraj and Pasupathy 2016).

2307

Cooper, Hunter, and Nagaraj

3 A RETROSPECTIVE APPROXIMATION EPSILON-CONSTRAINT ALGORITHM

We begin with a broad overview of the RA algorithm to solve the bi-objective SO problem on integer-ordered
spaces using the ε-constraint method; then, we discuss the sub-routines of our proposed algorithm in detail.

The RA algorithm appears in Algorithm 1, and consists of repeatedly solving bi-objective sample-path
Problem M̂mν

using a schedule of increasing sample sizes {mν}. For each sample size mν in the sequence, we
solve sample-path Problem M̂mν

using the algorithm EPSILONSWEEP. EPSILONSWEEP solves a sequence
of ε-constrained sample-path problems and returns an N1-EALPS. The information carried forward from the
(ν−1)nth RA iteration to the ν th RA iteration is the sample-path N1-EALPS returned by EPSILONSWEEP,
which is used as the warm start solution for solving the sample-path problem in the ν th iteration.

Algorithm 1 An RA algorithm to solve Problem M via the ε-constraint method

Require: initial solutions for each objective x0
1 and x0

2; a sequence containing the objective to minimize {k∗ν};
a schedule of sample sizes {mν} to expend on each visited solution at iteration ν ; a schedule of the
maximum number of oracle calls allowed in SPLINE, {bν}.

1: Initialize P̂0 = {x0
1,x

0
2}.

2: for ν = 1,2, . . . with CRN do
3: P̂ν = EPSILONSWEEP(P̂ν−1,k∗ν ,mν ,bν)
4: end for

In the following sections, we discuss the details of the EPSILONSWEEP algorithm, including the
algorithms it calls, TRACEBACK and LPSCRAWL. We highlight three key features of our (deterministic)
EPSILONSWEEP algorithm:

1. The number of ε-constraint problems we solve in each RA iteration is a function of the standard
errors of the estimated objective function values of the estimated Pareto points. On average, smaller
sample sizes solve fewer ε-constraint problems. In the limit, we solve as many ε-constraint problems
as there are points in the image of the LPS.

2. In each RA iteration, initial ε values are set to disqualify the local Pareto points found in the
previous RA iteration. The function TRACEBACK uses the SPLINE algorithm to search for new
sample-path local Pareto points in between the initial ε values. This function searches for new
sample-path local Pareto points by “tracing back” through the trajectory of a SPLINE call, adding
ε values to disqualify each new sample-path local Pareto point it finds, and re-starting the search
from feasible points in the trajectory.

3. The function LPSCRAWL returns a sample-path N1-EALPS, which ensures we do not “over-solve”
the sample-path problem at low sample sizes. The amount of relaxation δδδ (·) used in LPSCRAWL
is also a function of the standard errors. There exist pathological Problems M such that without
LPSCRAWL, our RA algorithm may not converge. In “nice” problems (like our test problem in §4
that has a single N1-LPS), with properly chosen parameters, the algorithm should converge even
when LPSCRAWL is mostly inactive.

For exposition in all algorithms that follow, everywhere the oracle is queried with sample size m at
decision vector x, we assume the triple (x, ḠGGm(x), ŝ.e.(ḠGGm(x))) is stored for future reference. Thus for
legibility, we omit the explicit passing of the additional information (ḠGGm(x), ŝ.e.(ḠGGm(x))) between functions.

3.1 The EPSILONSWEEP Algorithm

Algorithm 2, EPSILONSWEEP, solves the sample-path bi-objective problem by solving a sequence of
ε-constraint problems. The broad idea of the algorithm is to initialize the ε values so as to disqualify the
Pareto points carried forward from the last RA iteration, and then employ a search procedure to find new
sample-path locally Pareto optimal points that are at least some function of the standard deviation away
from the known sample-path locally Pareto optimal points.

2308

Cooper, Hunter, and Nagaraj

Algorithm 2 P̂new = EPSILONSWEEP(P̂old,k∗,m,b)

Require: initial estimated Pareto set P̂old; sample size m; limit on oracle calls within SPLINE b.
Ensure: updated estimated Pareto set P̂new.

1: Initialize k∗ = k∗ν and kcon = k for k ∈ {1,2},k 6= k∗.
2: for all XXX∗ ∈ P̂old do obtain ḠGGm(XXX∗) and ŝ.e.(ḠGGm(XXX∗)). {Bring up estimators to new sample size m.}
3: Set [XXXmin

1 ,XXXmin
2] = GETMIN(P̂old,m,b). {Search for new minima.}

4: if XXXmin
1 = XXXmin

2 then
5: return P̂new = {XXXmin

1 }.
6: else
7: Set P̂ε = {XXXmin

1 ,XXXmin
2 }∪ P̂old. {Initialize the set that determines the ε values.}

8: Set constraints Ξ̂ = {Ḡkcon,m(XXXmin
kcon)}∪{Ḡkcon,m(XXX∗)− f (ŝ.e.(Ḡkcon,m(XXX∗))) : XXX∗ ∈ P̂ε}.

9: Update Ξ̂ = Ξ̂\{ε ∈ Ξ̂ : ε < Ḡkcon,m(XXXmin
kcon)}. {Remove infeasible constraints.}

10: Sort elements of Ξ̂ in ascending order, and denote the ith element as ε[i], i = 0,1, . . . , |Ξ̂|.
11: for i = 1,2, . . . , |Ξ̂| do
12: Find XXX0

i = argminXXX∗∈P̂ε
{Ḡk∗,m(XXX∗) : Ḡkcon,m(XXX∗)≤ ε[i−1]}.

13: P̂i = TRACEBACK(XXX0
i ,ε[i−1],ε[i],k∗,kcon,m,b).

14: end for
15: Update P̂new =GETPARETOS(P̂ε ∪ (∪|Ξ̂|i=1P̂i)).
16: Set P̂new =LPSCRAWL(P̂new).
17: return P̂new.
18: end if

To be more specific, the algorithm works as follows. After initializing parameters, in Step 2, we obtain
estimators at the current sample size m = mν for all points in the previous N1-EALPS, P̂ν−1. This step
helps ensure good ε choices in the sample-path problem. (Henceforth, when discussing algorithms that
operate within an RA iteration, we drop the subscript ν). Then, in Step 3, we obtain estimators for the
sample-path local minima on each objective using the SPLINE algorithm (Algorithm 5) inside the function
GETMIN (Algorithm 3). While we use the SPLINE algorithm to find the local minimum, any convergent
algorithm can be used in this step. If the minima from GETMIN are equal in EPSILONSWEEP Step 4, then
the algorithm returns this value as the new estimated LPS in Step 5.

If the minima do not equal each other, the ε values are determined in Step 8 by (a) setting one ε value
equal to the estimated minimum objective function value on the constrained objective, which serves as the
smallest ε value, and (b) setting all other epsilon values equal to the estimated objective function values
of the Pareto points, minus a function f , of their estimated standard error on the constrained objective. As
in cgR-SPLINE (Nagaraj and Pasupathy 2016), we define f as

f (ŝ.e.(Ḡkcon,m(x))) := ŝ.e.(Ḡkcon,m(x))(m
1
2−γ) = σ̂kcon(x)/mγ ,

Algorithm 3 [XXXmin
1 ,XXXmin

2] = GETMIN(S,m,b)

Require: a set of points S⊆D.
Ensure: Minima on each objective, XXXmin

1 and XXXmin
2 .

1: Calculate XXXmin
1,old = argminXXX∗∈S{Ḡ1,m(XXX∗)} and XXXmin

2,old = argminXXX∗∈S{Ḡ2,m(XXX∗)}.
2: for k = 1,2 do {Solve two unconstrained single-objective problems.}
3: [XXXmin

k ,∼] = SPLINE(XXX0
k ,D,m,b).

4: end for
5: if XXXmin

2 � XXXmin
1 then [XXXmin

1 ,∼] = SPLINE(XXXmin
2 ,D,m,b). {Find a better local min if one dominates the other.}

6: if XXXmin
1 � XXXmin

2 then [XXXmin
2 ,∼] = SPLINE(XXXmin

1 ,D,m,b).

2309

Cooper, Hunter, and Nagaraj

where γ ∈ (0, 1
2) and σ̂kcon(x) is the estimated standard deviation on the constrained objective after obtaining

m samples at x ∈D. Thus in each ε-constraint problem, the current estimated Pareto points are rendered
infeasible by their respective ε values. Step 9 removes all sample-path infeasible ε-constraint problems.

After a sorting step, Steps 11–14 divide the search space based on the ε values and use the SPLINE
algorithm within the TRACEBACK function to find new sample-path local Pareto points. These steps are
designed to be executed in parallel; Step 12 ensures every SPLINE algorithm call within the TRACEBACK
algorithm has a feasible starting solution. In Step 15, the results of each TRACEBACK search are collected
into a new set of estimated local Pareto points, and any sample-path dominated points are eliminated from
the set using the function GETPARETOS.

Finally, we call LPSCRAWL (Algorithm 6) to ensure that we have a sample-path N1-EALPS, which
is returned in the ν th RA iteration. This function is analogous to the “neighborhood enumeration” step
in the SPLINE Algorithm 5, which checks that a point is truly a sample-path N1-local minimum on the
feasible space. Define the relaxation of the N1-EALPS as δδδ (x) := (σ̂1(x)/mβ , σ̂2(x)/mβ), where σ̂k(x) is
the estimated standard deviation on the kth objective, k ∈ {1,2}, and β ∈ (0,∞).

3.2 The TRACEBACK Algorithm

In this section, we discuss the details of the TRACEBACK algorithm, which is the main search mechanism
inside EPSILONSWEEP. The TRACEBACK algorithm is designed to work with the SPLINE Algorithm 5.
Since the first step of TRACEBACK is a call to SPLINE, we discuss SPLINE first.

SPLINE is a single-objective optimization algorithm that iterates between two functions, SPLI and
NE. The SPLI function conducts a line search with piecewise-linear interpolation. The direction of the line
search is determined by pseudo-gradients, which are constructed from the piecewise-linear interpolation.
The NE function performs neighborhood enumeration to check if the current solution is a local minimum.
For a complete listing of SPLI and a discussion of NE, we refer the reader to Wang et al. (2013). Given

Algorithm 4 P̂sub = TRACEBACK(XXX0,ε`,εu,k∗,kcon,m,b)
Require: initial solution XXX0, objective to minimize k∗, objective to constraint kcon, constraints ε`,εu, sample size

m, limit on oracle calls within SPLINE b.
Ensure: a subset of the sample-path Pareto set P̂sub.

1: [XXX∗,T] = SPLINE(XXX0,Dk∗(εu),m,b).
2: Set P̂sub = {XXX∗}.
3: Set ε = Ḡkcon,m(XXX∗)− f (ŝ.e.(Ḡkcon,m(XXX∗))).
4: while ε > ε` do {Trace back the SPLINE trajectory to find more Pareto points.}
5: Update T = {XXX ∈ T : Ḡkcon,m(XXX)< ε}.
6: Update XXX0 = argminXXX∈T Ḡk∗,m(XXX).
7: [XXX∗,T′] = SPLINE(XXX0,Dk∗(ε),m,b).
8: Update P̂sub = P̂sub∪{XXX∗} and T = T∪T′. {Update Pareto set and trajectory set.}
9: Update ε = Ḡkcon,m(XXX∗)− f (ŝ.e.(Ḡkcon,m(XXX∗))).

10: end while

Algorithm 5 [XXX∗,T] = SPLINE(XXX0,D,m,b)

Require: initial solution XXX0 ∈D; sample size m; limit on oracle calls b.
Ensure: local solution XXX∗ on D; sample-path search set T.

1: Initialize n = 0, XXXNE = XXX0, and T = {XXX0}.
2: repeat
3: [n′,XXXSPLI] = SPLI(XXXNE,m,b) {Line search with piecewise-linear interpolation.}
4: [n′′,XXXNE] = NE(XXXSPLI,m) {Neighborhood enumeration to check for local optimality on D.}
5: Set n = n+n′+n′′ and T = T∪{XXXSPLI,XXXNE}. {Update oracle calls expended and search trajectory.}
6: until XXXNE = XXXSPLI or n > b {Line search ends on a local solution.}

2310

Cooper, Hunter, and Nagaraj

a feasible starting solution x0 ∈D, SPLINE is guaranteed to return a local minimum on D. Note that
SPLINE treats points outside the feasible set D as hard constraints, i.e., the Monte Carlo simulation is
not defined on Dc. There is no “recovery” mechanism if SPLINE begins at an infeasible point x ∈Dc.

We provide two minor modifications to the SPLINE listing in Wang et al. (2013). First, we modify
SPLINE so that it accepts a feasible domain D as a parameter. Since we wish to run SPLINE on only
a subset of the feasible space, we use the bound constraint ε to disqualify a portion of the feasible space,
and define Dk∗(ε) := {x ∈D : gkcon(x)< ε for all kcon ∈ {1,2},kcon 6= k∗}. SPLINE is still guaranteed to
return a local minimum on such a space (and hence an estimated weakly locally Pareto optimal point),
as long as we ensure a feasible starting solution x0 ∈Dk∗(ε). By EPSILONSWEEP Step 12, the starting
solution XXX0 in TRACEBACK is guaranteed to be sample-path feasible for all ε-constraint problems solved
within TRACEBACK. Second, we also modify the SPLINE algorithm to ensure that it saves and returns
its trajectory, T, which is the set of all points returned by SPLI or NE. This modification enables the
TRACEBACK algorithm to “trace back” through the initial SPLINE trajectory created in Step 1.

After obtaining an initial local sample-path optimal point XXX∗ on the feasible space constrained by the
largest ε value, εu, in Step 1, TRACEBACK updates the estimated subset of the local Pareto set in Step 2,
and sets a new ε constraint that disqualifies the point XXX∗ in Step 3. If this new ε value is still within the
search interval [ε`,εu], then the SPLINE search trajectory is truncated to only points that are feasible for
the new ε value, and a new start solution is found as the best feasible point in the trajectory in Steps 5
and 6, respectively. The SPLINE algorithm is re-started from the new start solution, and yields a new
estimated local Pareto point in Step 7. This point is added to the estimated subset of the local Pareto set,
the trajectory is updated by appending the points from the new search, a new epsilon value is set that
disqualifies the latest estimated local Pareto point (Steps 8–9), and the process is repeated. In this sense,
the algorithm “traces back” through the space [ε`,εu] for new Pareto points and returns a set of estimated
local Pareto points on [ε`,εu].

3.3 The LPSCRAWL Algorithm

Finally, we discuss the LPSCRAWL algorithm, which is listed as Algorithm 6. Assuming appropriate
parameter choices, LPSCRAWL is designed to ensure that our algorithm returns an LPS in the limit, but
does not waste samples on expensive naı̈ve searching. We define the set of neighborhood points that do
not conform to the definition of an N1-EALPS as follows.
Definition 4 Let P̂⊆D be a collection of sample-path local Pareto points. Then define the non-conforming
neighborhood X1(P̂) as the set of points x ∈ (N1(P̂)\ P̂)∩D such that

1. there exists x∗ ∈ P̂ such that ḠGG(x)� ḠGG(x∗)−δδδ (x∗), or
2. there does not exist x∗ ∈ P̂ such that (ḠGG(x∗)−δδδ (x∗))� ḠGG(x).
That is, Definition 4 is the set of all points in the neighborhood of P̂ that do not satisfy Conditions 2 or 3

of Definition 3. The function LPSCRAWL first checks if the candidate estimated Pareto set is an N1-EALPS.
If so, it returns the candidate set. Otherwise, it performs a recursive call after adding all non-conforming

Algorithm 6 P̂local = LPSCRAWL(P̂)

Require: candidate local Pareto set P̂.
Ensure: P̂local is an approximate Local Pareto Set.

1: X1(P̂) =EALPSCHECK(P̂). {Check if P̂ is an N1-EALPS.}
2: if X1(P̂) = /0 then
3: return P̂local = P̂.
4: else
5: Update P̂=GETPARETOS(P̂∪X1(P̂)).
6: return P̂local = LPSCRAWL(P̂).
7: end if

2311

Cooper, Hunter, and Nagaraj

neighborhood points X1(P̂) to the candidate Pareto set and removing the dominated points. Notice that
when the parameters δδδ (x∗) are “large” for each x∗ ∈ P̂, LPSCRAWL terminates quickly.

4 NUMERICAL EXPERIMENTS

In this section, we discuss the performance of proposed Algorithm 1 and MO-COMPASS on a modified
version of a test problem given by Kim and Ryu (2011). (Kim and Ryu (2011) considers MOSO problems
on continuous spaces, and thus does not appear in Table 1.) Our modifications discretize and scale the
domain of the test problem to coincide with the integer lattice, and reduce the variance of the objective
functions. The following is the modified version of the problem from Kim and Ryu (2011):

Problem MKR: minimize

{
g1(x) = E

[
(x1/10−2ξ1)

2 +(x2/10−ξ2)
2
]

g2(x) = E
[
x2

1/100+(x2/10−2ξ3)
2
]

s.t. x ∈D= X1×X2,

where X1 = X2 = {0,1,2, . . . ,50} and ξ1,ξ2,ξ3 are independent chi-square random variables, each with
one degree of freedom. The size of the feasible and Pareto sets are |D|= 2601 and |P|= 49, respectively.
Notice that there is no correlation between the objectives.

Figure 1: The black circles represent the Pareto set P (left
panel) and the efficient set E (right panel) in Problem MKR.

0 1 2 3 4 5

Total simulation effort (wν) ×10
6

0

1

2

3

4

S
a
m
p
le

q
u
a
n
ti
le
s

o
f
d
H
(g
(P̂

ν
),
E
)

.25

.50

.75

.25

.50

.75

.25

.50

.75

.25

.50

.75

ε-constraint method
MO-COMPASS

Figure 2: Sample quantiles of the Hausdorff
distance on Problem MKR.

To compare the two algorithms, we ran one hundred independent sample paths of each of Algorithm 1
and MO-COMPASS on Problem MKR. We use CRN across algorithms within each independent run.
Algorithm 1 takes five parameters: we set the schedule of sample sizes {mν} and the schedule of limits on
oracle calls in SPLINE {bν} exactly as recommended in Wang et al. (2013), {mν} = {2∗1.1ν}∞

ν=1 and
{bν} = {8∗1.1ν}∞

ν=1; we set γ = 0.4, β = 0.5, and {k∗ν} = {1,2,1,2,1,2, . . .}. In MO-COMPASS, we
configure the algorithm as close as possible to the recommended settings in Li et al. (2015).

For both algorithms, Figure 2 shows the sample quantiles of dH(g(P̂ν),E), which is the Hausdorff
distance between the set containing the true objective function values of the estimated Pareto set and the
true efficient set of Problem MKR, as a function of the total simulation effort wν := ∑

ν
i=1 mi. There is

autocorrelation across total simulation effort values wν . As seen in Figure 2, Algorithm 1 exhibits faster
convergence to the true Pareto set than MO-COMPASS.

CONCLUDING REMARKS

We present an ε-constraint algorithm in an RA framework for integer-ordered bi-objective SO. Though we
have not proven that our algorithm converges to an N1-LPS, it appears to converge faster than its competitor
on our test problem.

2312

Cooper, Hunter, and Nagaraj

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation through grant CMMI-1554144.

REFERENCES

Branke, J., and W. Zhang. 2015. “A new myopic sequential sampling algorithm for multi-objective problems”.
In Proceedings of the 2015 Winter Simulation Conference, edited by L. Yilmaz, W. K. V. Chan, I. Moon,
T. M. K. Roeder, C. Macal, and M. D. Rossetti, 3589–3598. Piscataway, NJ: IEEE: Institute of Electrical
and Electronics Engineers, Inc.

Branke, J., W. Zhang, and Y. Tao. 2016. “Multiobjective ranking and selection based on hypervolume”.
In Proceedings of the 2016 Winter Simulation Conference, edited by T. M. K. Roeder, P. I. Frazier,
R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, 859–870. Piscataway, NJ: IEEE: Institute of
Electrical and Electronics Engineers, Inc.

Chen, C.-H., and L. H. Lee. 2010. Stochastic Simulation Optimization: An Optimal Computing Budget
Allocation. Hackensack, NJ: World Scientific.

Chen, H., and B. W. Schmeiser. 2001. “Stochastic root finding via retrospective approximation”. IIE
Transactions 33:259–275.

Ehrgott, M., and M. M. Wiecek. 2005. “Multiobjective Programming”. In Multiple Criteria Decision
Analysis: State of the Art Surveys, edited by J. Figueira, S. Greco, and M. Ehrgott, International Series
in Operations Research & Management Science, Chapter 17. Springer New York.

Eichfelder, G. 2008. Adaptive Scalarization Methods in Multiobjective Optimization. Berlin Heidelberg:
Springer.

Feldman, G., and S. R. Hunter. 2016. “SCORE allocations for bi-objective ranking and selection”. Opti-
mization Online.

Fu, M. (Ed.) 2015. Handbook of Simulation Optimization, Volume 216 of International Series in Operations
Research & Management Science. New York: Springer-Verlag.

Hamacher, H. W., C. R. Pedersen, and S. Ruzika. 2007. “Finding representative systems for discrete
bicriterion optimization problems”. Operations Research Letters 35 (3): 336–344.

Healy, K., and L. W. Schruben. 1991. “Retrospective simulation response optimization”. In Proceedings
of the 1991 Winter Simulation Conference, edited by B. L. Nelson, W. D. Kelton, and G. M. Clark,
901–906.

Huang, H., and Z. B. Zabinsky. 2014. “Multiple objective probabilistic branch and bound for Pareto optimal
approximation”. In Proceedings of the 2014 Winter Simulation Conference, edited by A. Tolk, S. Y.
Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, 3916–3927. Piscataway, NJ: IEEE:
Institute of Electrical and Electronics Engineers, Inc.

Hunter, S. R., E. A. Applegate, V. Arora, B. Chong, K. Cooper, O. Rincón-Guevara, and C. Vivas-Valencia.
2017. “An introduction to multi-objective simulation optimization”. Optimization Online.

Hunter, S. R., and B. McClosky. 2016. “Maximizing quantitative traits in the mating design problem via
simulation-based Pareto estimation”. IIE Transactions 48 (6): 565–578.

Huschka, T. R., B. T. Denton, S. Gul, and J. W. Fowler. 2007. “Bi-criteria evaluation of an outpatient
procedure center via simulation”. In Proceedings of the 2007 Winter Simulation Conference, edited
by S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, 1510–1518.
Piscataway, NJ: IEEE: Institute of Electrical and Electronics Engineers, Inc.

Kim, S., and J. Ryu. 2011. “The sample average approximation method for multi-objective stochastic
optimization”. In Proceedings of the 2011 Winter Simulation Conference, edited by S. Jain, R. R.
Creasey, J. Himmelspach, K. P. White, and M. Fu, 4026–4037. Piscataway, NJ: IEEE: Institute of
Electrical and Electronics Engineers, Inc.

Lee, L. H., E. P. Chew, S. Teng, and D. Goldsman. 2010. “Finding the non-dominated Pareto set for
multi-objective simulation models”. IIE Transactions 42:656–674.

2313

Cooper, Hunter, and Nagaraj

Lee, L. H., C. U. Lee, and Y. P. Tan. 2007. “A multi-objective genetic algorithm for robust flight scheduling
using simulation”. European Journal of Operational Research 177 (3): 1948–1968.

Li, H., L. H. Lee, E. P. Chew, and P. Lendermann. 2015. “MO-COMPASS: A fast convergent search algorithm
for multi-objective discrete optimization via simulation”. IIE Transactions 47 (11): 1153–1169.

Li, H., Y. Zhu, G. Pedrielli, N. A. Pujowidianto, and Y. Chen. 2015. “The object-oriented discrete event
simulation modeling: a case study on aircraft spare part management”. In Proceedings of the 2015
Winter Simulation Conference, edited by L. Yilmaz, W. K. V. Chan, T. M. K. Roeder, C. Macal, and
M. Rosetti, 3514–3525. Piscataway, NJ: IEEE: Institute of Electrical and Electronics Engineers, Inc.

Marler, R. T., and J. S. Arora. 2004. “Survey of multi-objective optimization methods for engineering”.
Structural and Multidisciplinary Optimization 26:369–395.

Miettinen, K. 1999. Nonlinear Multiobjective Optimization. Boston: Kluwer Academic Publishers.
K. Nagaraj and R. Pasupathy 2016. “Stochastically constrained simulation optimization on integer-ordered

spaces: The cgR-SPLINE algorithm”. http://www.optimization-online.org/DB HTML/2015/10/5139.
html.

Pasupathy, R., and S. Ghosh. 2013. “Simulation optimization: a concise overview and implementation
guide”. In TutORials in Operations Research, edited by H. Topaloglu, Chapter 7, 122–150. Catonsville,
MD: INFORMS.

Pasupathy, R., and S. G. Henderson. 2006. “A testbed of simulation-optimization problems”. In Proceedings
of the 2006 Winter Simulation Conference, edited by L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson,
D. M. Nicol, and R. M. Fujimoto, 255–263. Piscataway, NJ: IEEE: Institute of Electrical and Electronics
Engineers, Inc.

Pasupathy, R., and S. G. Henderson. 2011. “SimOpt: A library of simulation optimization problems”. In
Proceedings of the 2011 Winter Simulation Conference, edited by S. Jain, R. R. Creasey, J. Himmelspach,
K. P. White, and M. Fu. Piscataway, NJ: IEEE: Institute of Electrical and Electronics Engineers, Inc.

Peirleitner, A. J., K. Altendorfer, and T. Felberbauer. 2016. “A simulation approach for multi-stage supply
chain optimization to analyze real world transportation effects”. In Proceedings of the 2016 Winter
Simulation Conference, edited by T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka,
and S. E. Chick, 2272–2283. Piscataway, NJ: IEEE: Institute of Electrical and Electronics Engineers,
Inc.

Ralphs, T. K., M. J. Saltzman, and M. M. Wiecek. 2006. “An improved algorithm for solving biobjective
integer programs”. Annals of Operations Research 147 (1): 43–70.

Wang, H., R. Pasupathy, and B. W. Schmeiser. 2013. “Integer-ordered simulation optimization using R-
SPLINE: Retrospective Search using Piecewise-Linear Interpolation and Neighborhood Enumeration”.
ACM Transactions on Modeling and Computer Simulation 23 (3): 17:1–17:24.

AUTHOR BIOGRAPHIES

KYLE COOPER is a Ph.D. student at Purdue University and researcher for Tata Consultancy Services.
His email address is coope149@purdue.edu.

SUSAN R. HUNTER is an assistant professor in the School of Industrial Engineering at Purdue University.
Her research interests include Monte Carlo methods and simulation optimization, especially in the presence
of multiple performance measures. Her e-mail address is susanhunter@purdue.edu, and her website is
http://web.ics.purdue.edu/∼hunter63/.

KALYANI NAGARAJ is an assistant professor in the School of Industrial Engineering & Management
at Oklahoma State University. Her research interests include Monte Carlo methodology, with a focus on
simulation optimization and rare-event estimation. Her email address is kalyani.nagaraj@okstate.edu.

2314

