
Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

A SMOOTHING STOCHASTIC QUASI-NEWTON METHOD FOR NON-LIPSCHITZIAN
STOCHASTIC OPTIMIZATION PROBLEMS

Farzad Yousefian

School of Industrial Engineering
and Management

Oklahoma State University
Stillwater, OK 74078, USA

Angelia Nedić
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ABSTRACT

Motivated by big data applications, we consider unconstrained stochastic optimization problems. Stochastic
quasi-Newton methods have proved successful in addressing such problems. However, in both convex
and non-convex regimes, most existing convergence theory requires the gradient mapping of the objective
function to be Lipschitz continuous, a requirement that might not hold. To address this gap, we consider
problems with not necessarily Lipschitzian gradients. Employing a local smoothing technique, we develop
a smoothing stochastic quasi-Newton (S-SQN) method. Our main contributions are three-fold: (i) under
suitable assumptions, we show that the sequence generated by the S-SQN scheme converges to the unique
optimal solution of the smoothed problem almost surely; (ii) we derive an error bound in terms of the
smoothed objective function values; and (iii) to quantify the solution quality, we derive a bound that relates
the iterate generated by the S-SQN method to the optimal solution of the original problem.

1 INTRODUCTION

The problem of interest in this paper is an unconstrained stochastic optimization problem given as follows:

min
x∈Rn

f (x) := E[F(x,ξ (ω))] , (SO)

where F : Rn×Rd → R is a function, the random vector ξ is given as ξ : Ω→ Rd , (Ω,F ,P) denotes the
associated probability space and the expectation E[F(x,ξ )] is taken with respect to P. A wide range of
big data applications arising from statistical learning and signal processing can be formulated as (SO). In
these applications, a training sample {(ai,bi)

N
i=1} is given comprising of input objects ai and output objects

bi. The problem of interest is to learn a classifier h(x,a) such that the empirical risk function of the form
1
N ∑

N
i=1 `(h(x,ai),bi) is minimized, where ` is a loss function. In these problems, when the sample size N

is large, the implementation of deterministic first order and second order methods becomes challenging.
In contrast, stochastic approximation (SA) methods, first introduced by Robbins and Monro (Robbins and
Monro 1951), have been widely used in addressing stochastic optimization (Nemirovski et al. 2009; Ghadimi
and Lan 2012) and variational inequality problems (Juditsky, Nemirovski, and Tauvel 2011). In the classical
SA method, the update rule is given by

xk+1 := xk− γk∇F(xk,ξk), (SA)

2291978-1-5386-3428-8/17/$31.00 ©2017 IEEE



Yousefian, Nedić, and Shanbhag

where γk > 0 is the stepsize parameter, ∇F(xk,ξk) is the sample of the stochastic gradient at xk, and k = 0,1, . . .
is the iteration number. In the past few decades, there have been much interest in the development of
efficient variants of SA schemes and their convergence analysis in addressing stochastic optimization and
variational problems. While the convergence properties and rate statements of these scheme have been
established in the literature, it has been observed that the performance of SA methods can be very sensitive
to the problem properties, choice of the stepsize, and dataset characteristics. Motivated by the need to
address some of these shortcomings, stochastic variants of quasi-Newton methods, for solving stochastic
optimization problems have been developed in the past few years. In this class of methods, xk is updated
according to the following rule:

xk+1 := xk− γkHk∇F(xk,ξk), for k ≥ 0, (SQN)

where Hk � 0 is an approximation of the inverse of Hessian at iteration k that incorporates the curvature
information of the objective function within the scheme. The choice of the matrix Hk and the stepsize γk
play a key role in establishing the convergence of SQN methods. In (Schraudolph, Yu, and Gunter 2007),
the performance of SQN methods was studied numerically and was compared to that of SA schemes.
Mokhtari et al. (Mokhtari and Ribeiro 2014) considered stochastic optimization problems with strongly
convex objectives and developed a regularized BFGS method (RES) in that the matrix Hk is updated using
a modified version of the classical BFGS update rule. To address large scale applications, limited memory
variants of these scheme were developed to address problems with high dimentionality of the solution
space (Mokhtari and Ribeiro 2015; Byrd et al. 2016). The extensions to non-convex regimes were studied
in for example (Wang, Ma, and Liu 2017). Moreover, a variance reduced SQN method with a constant
stepsize was developed (Lucchi, McWilliams, and Hofmann ) addressing smooth strongly convex problems.
Recently, we developed a regularized SQN method addressing problem (SO) in absence of strong convexity
of the objective function (Yousefian, Nedić, and Shanbhag 2016b)

Motivation and summary of contributions: One of the main assumptions required to establish the
convergence of the current SQN method, is the Lipschitzian property of the gradient mapping ∇F(x,ξ ).
For example see (Mokhtari and Ribeiro 2014; Mokhtari and Ribeiro 2015; Byrd et al. 2016; Wang, Ma,
and Liu 2017). To the best of our knowledge, in absence of this assumption, neither convergence nor
rate statements of the current SQN methods have been addressed in the literature. Motivated by this gap,
in this paper, we consider the case where ∇F(x,ξ ) is differentiable but non-Lipschitzian. Our goal lies
in establishing the asymptotic convergence and also deriving the convergence rate statements. To this
end, we employ a smoothing technique introduced by Steklov (Steklov 1907) and employed in stochastic
optimization problems (Bertsekas 1973, Lakshmanan and Farias 2008, Duchi, Bartlett, and Wainwright
2012). Given a function f : Rn→ R and a random variable z associcated with a probability distribution,
the function f̂ (x) := E[ f (x+ z)] is considered a smoothed approximation of f . While the properties of f̂ is
well-studied in the literature, direct application of this technique in solving problem (SO) is challenging.
This is because in stochastic regimes, the closed form of the function f , and consequently f̂ is either
unavailable or computationally expensive to be evaluated. To contend with this challenge, in our previous
work, employing this local smoothing technique, we developed smoothing SA methods for solving both
stochastic optimization problems (Yousefian, Nedić, and Shanbhag 2012, Yousefian, Nedić, and Shanbhag
2016a) and stochastic variational inequality problems (Yousefian, Nedić, and Shanbhag 2013, Yousefian,
Nedić, and Shanbhag 2017a) in the absence of Lipschitzian property. In a similar vein, in this paper, we
develop a smoothing stochastic quasi-Newton method, referred to as S-SQN method. The convergence and
rate analysis of the S-SQN scheme in this paper is different than that of our earlier work on SA methods.
This is mainly because in SQN methods, the presence of the stochastic matrix Hk introduces numerous
challenges in the analysis of the underlying algorithm and a direct extension of the convergence analysis
in SA schemes is not straightforward.

We summarize our contributions as follows: (i) under suitable assumptions on the stepsize γk, the
Hessian approximation Hk, the stochastic noise, and boundedness of the iterate xk, we show that the
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sequence generated by the S-SQN scheme converges to the unique optimal solution of the smoothed
problem almost surely; (ii) we then derive an error bound of the order O

(1
k

)
in terms of the smoothed

objective function values, where k is the iteration number; and (iii) to quantify the solution quality, under
a local boundedness assumption of the Hessian, we derive a bound that relates the iterate generated by the
S-SQN method to the optimal solution of the original problem (SO).

The reminder of the paper is organized as follows: In Section 2, we present an outline of the S-SQN
scheme, discuss the underlying assumptions, and introduce the smoothing technique. The convergence
analysis of the S-SQN scheme is provided in Section 3 in an almost sure sense. In Section 4, we derive
the convergence rate of the generated iterate by the S-SQN method to the optimal solution of the original
problem. Lastly, we outline the concluding remarks in Section 5.

Notation: Throughout this paper, a vector x is assumed to be a column vector and xT denotes its
transpose. ‖x‖ denotes the Euclidean vector norm, i.e., ‖x‖=

√
xT x. We write a.s. as the abbreviation for

“almost surely”, and use E[z] to denote the expectation of a random variable z. The mapping F is Lipschitz
continuous with parameter L > 0 if for any x,y ∈ Rn, we have ‖F(x)−F(y)‖ ≤ L‖x− y‖. For a given
vector x ∈ Rn and scalar ε > 0, we use B(x,ε) to denote an n-dimensional ball centered at x with radius
ε > 0.

2 ALGORITHM OUTLINE

To address problem (SO) in absence of Lipschitzian property of the gradient mappings, we consider the
following scheme: given an x0 ∈ Rn, let xk be generated by the following recursive update rule:

xk+1 := xk− γkHk∇F(xk + zk,ξk), for all k ≥ 0, (S-SQN)

where γk denotes the steplength sequence, Hk ∈ Rn×n represents a matrix that captures the curvature
information of the objective function, and zk ∈Rn is a uniform random variable drawn from a ball centered
at the origin with radius ε > 0, i.e., zk ∈ B(0,ε). An immediate distinction between the standard SQN
scheme and (S-SQN) is the presence of random vector zk. At iteration k, the stochastic gradient ∇F(.,ξk)
is evaluated, not at xk, but at the perturbed vector xk + zk. We will show that under this modification,
and under suitable assumptions, we can establish the convergence properties of the scheme in absence of
Lipschitzian property. Throughout, we let Fk denote the history of the method up to time k, i.e.,

Fk = {x0,ξ0,z0,ξ1,z1, . . . ,ξk−1,zk−1}, for k ≥ 1,

and F0 = {x0}. Next, we state the main assumptions in our work. In the results in this paper, whenever
needed, we may refer to all or a subset of these assumptions.
Assumption 1 (Differentiability) The function F(x,ξ ) is continuously differentiable for all x ∈ Rn and
ξ ∈Ω.

The following assumption imposes boundedness of the gradient mapping over Rn.
Assumption 2 (Boundedness of gradients) There exists a scalar C such that for all x ∈ Rn, we have
E
[
‖∇F(x,ξ )‖2

]
≤C2.

It is important to note that Assumption 2 may hold for some merely convex or even non-convex
functions F , but it does not hold when F is strongly convex. This can be seen since for a strongly convex
function F , we can write

‖∇F(x,ξ )−∇F(y,ξ )‖ ≥ µ‖x− y‖, for all x,y ∈ Rn,ξ ∈Ω.

where µ > 0 is the strong convexity parameter. By setting y = 0, it can be seen that ‖∇F(x,ξ )‖ will
become unbounded over Rn when x ∈Rn. In some parts of our analysis where we impose strong convexity
assumption, we consider a weaker version of Assumption 2 as follows:
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Yousefian, Nedić, and Shanbhag

Assumption 2′ For any scalar M > 0 such that ‖x‖< M, there exists C > 0 such that E
[
‖∇F(x,ξ )‖2

]
≤C2.

The following two assumptions regulate the standard requirements on the inherent uncertainty charac-
terized by ξ , as well as the properties of the smoothing random variable z.
Assumption 3 (Random variable ξ ) (a) Random variables ξk are i.i.d. for any k ≥ 0;
(b) The stochastic gradient ∇F(x,ξ ) is an unbiased estimator of ∇ f (x), i.e. E[∇F(x,ξ )] = ∇ f (x);

Assumption 4 (Random variable z) (a) Random variables zk ∈Rn are i.i.d. and independent of random
variables ξk. Additionally, zk is uniformly distributed over B(0,ε), a ball centered at the origin with
a radius ε > 0.

Next we consider general assumptions on the structure and properties of the matrix Hk. These assumptions
are standard requirements to establish the convergence of the SQN method. For example, see (Byrd et al.
2016).
Assumption 5 (Conditions on matrix Hk) Let the following hold for any k ≥ 0:
(a) Matrix Hk is Fk-measurable, i.e., E[Hk |Fk] = Hk.
(b) Matrix Hk ∈Rn×n is symmetric and satisfies the following condition: There exist positive scalars λmin
and λmax such that λminI� Hk � λmaxI, for all k ≥ 0.

One natural research question lies in the development of an update rule for Hk that satisfies Assumption
5. This indeed can be done for example through a modification of the existing limited memory stochastic
BFGS update rules (e.g., (Mokhtari and Ribeiro 2015)) even in absence of strong convexity or Lipschitzian
property. However, the design of an update rule for Hk that satisfies Assumption 5 is beyond the scope
of our work in this paper and remains as a future research direction to our work. Next, we state the
requirements on the stepsize sequence.
Assumption 6 The stepsize is such that γk > 0 for all k, ∑

∞
k=0 γk = ∞, and ∑

∞
k=0 γ2

k < ∞.
As mentioned in Section 1, the intuition behind the (S-SQN) method is employment of a local smoothing

technique within the standard SQN scheme. To this end, we introduce the smoothing technique by defining
a smoothed function in the following:
Definition 1 (Smoothed function) Consider function f : Rn→Rn. Let z ∈Rn be uniformly distributed in
B(0,ε). The smoothed (approximate) function fε : Rn→ R is defined by fε(x) = E[ f (x+ z)].

The function f ε is characterized by the random variable z and the parameter ε . Throughout, we refer
to ε as the smoothing parameter. Note that the probability density function of the uniform random variable
z is given as pu(z) = 1

cnεn , for z ∈ B(0,ε) and 0 otherwise, where cn is the volume of the unit ball in Rn,

i.e., cn =
∫

B(0,1) dy =
π

n
2

Γ(n
2 +1)

, and Γ is the gamma function. Next, we present the main properties of the

smoothing technique used in the convergence analsis of the (S-SQN) scheme including the strong convexity
of fε and the Lipschitz continuity of ∇x fε . The following result is an extension of Lemma 8 in (Yousefian,
Nedić, and Shanbhag 2012).
Lemma 1 (Properties of smoothed function) Consider the smoothed function fε prescribed in Definition
1. Let Assumption 1 hold. Then, we may claim the following:

(a) The function fε : Rn→R is differentiable with gradients ∇ fε(x) = E[∇ f (x+ z)] = E[∇F(x+ z,ξ )].
(b) For all x,y ∈ Rn we have

‖∇ fε(x)−∇ fε(y)‖ ≤

(
sup

v∈B(x,ε)∪B(y,ε)
‖∇ f (v)‖

)
κn!!

(n−1)!!ε
‖x− y‖, (1)

where κ = 1 if n is odd and κ = 2
π

otherwise.
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(c) Let Assumption 2 hold. Then, the gradient mapping ∇ fε is Lipschitz continuous over Rn with the
parameter κ

n!!
(n−1)!!

C
ε

, i.e.,

‖∇ fε(x)−∇ fε(y)‖ ≤
κn!!C

(n−1)!!ε
‖x− y‖, for all x,y ∈ Rn. (2)

(d) Let function f be strongly convex with parameter µ > 0 over Rn. Then, fε is also strongly convex
with parameter µ > 0 over Rn.

Proof. (a) First we show that under Assumption 1, ∇ f (x) exists and ∇ f (x) = E[∇F(x,ξ )]. Note that since
F is differentiable for all x ∈Rn and ξ ∈Ω, we have ∂F(x,ξ )

∂x j
= limh→0

F(x+e jh,ξ )−F(x,ξ )
h for all j = 1, . . . ,n,

where e j is a column vector in Rn with the jth element equal to 1, and all other elements equal to 0. Taking
expectations on both sides of the preceding relation, we obtain

E

[
∂F(x,ξ )

∂x j

]
= E

[
lim
h→0

F(x+ e jh,ξ )−F(x,ξ )
h

]
= lim

h→0

E[F(x+ e jh,ξ )]−E[F(x,ξ )]
h

= E

[
∂ f (x)
∂x j

]
,

where in the second equation, since F is assumed to be differentiable implying that limh→0
F(x+e jh,ξ )−F(x,ξ )

h
exists and is bounded, we may apply the Lebesgue’s dominated convergence theorem. Therefore, we have
∇ f (x) = E[∇F(x,ξ )]. In a similar fashion, using the definition of fε , it can be shown that ∇ fε(x) =
E[∇ f (x+ z)]. Combining this with the previous result, we conclude that the statement of part (a) holds.
(b) From part (a), we may express ‖∇ fε(x)−∇ fε(y)‖ as follows

‖∇ fε(x)−∇ fε(y)‖=
∥∥∥∥∫Rn

∇ f (x+ z)pu(z)dz−
∫
Rn

∇ f (y+ z)pu(z)dz
∥∥∥∥ .

By a change of the integral variable in the preceding relation, it follows that

‖∇ fε(x)−∇ fε(y)‖=
∥∥∥∥∫Rn

(pu(v− x)− pu(v− y))∇ f (v)dv
∥∥∥∥

=

∥∥∥∥∫B(x,ε)∪B(y,ε)
(pu(v− x)− pu(v− y))∇ f (v)dv

∥∥∥∥≤ ∫B(x,ε)∪B(y,ε)
|pu(v− x)− pu(v− y)|‖∇ f (v)‖dv

≤ sup
v∈B(x,ε)∪B(y,ε)

‖∇ f (v)‖
∫

B(x,ε)∪B(y,ε)
|pu(v− x)− pu(v− y)|dv, (3)

where the first inequality follows from Jensen’s inequality and the second inequality is an implication of
the boundedness of the mapping ∇ f over Rn. The remainder of the proof is similar to that of (Yousefian,
Nedić, and Shanbhag 2012, Lemma 8).
(c) The proof this part follows from the result of part (b) and Assumption 2.
(d) The proof of this statement follows directly by the definition of strong convexity and the definition of
function fε .

3 CONVERGENCE ANALYSIS

In this section, we establish the asymptotic convergence of the (S-SQN) method. To this end, in Lemma
4, we derive a recursive relation on the error bound of the scheme. Then, in Theorem 1, we present
the convergence properties of the scheme in an almost sure sense. In our analysis, we use the following
definition for referring to the stochastic errors of the gradient mapping ∇F :

wk := ∇F(xk + zk,ξk)−∇ f (xk + zk), for all k ≥ 0. (4)

The following result, is used in the analysis of the scheme. It states the conditional expectation of the
stochastic error wk is zero. This indeed is a consequence of the Assumptions 3 and 4.
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Lemma 2 (Conditional first moment of wk) Consider the (S-SQN) scheme and suppose Assumptions 1,
3, and 4 hold. Then, for any k ≥ 0 we have E[wk |Fk∪{zk}] = 0.

Proof. Let k ≥ 0 be a a fixed integer. The definition of wk in (4) and Assumption 3(b) imply that

E[wk |Fk∪{zk}] = E[∇F(xk + zk,ξk) |Fk∪{zk}]−∇ f (xk + zk) = ∇ f (xk + zk)−∇ f (xk + zk) = 0,

where we employ the independence of zk between ξk and by recalling that zk and ξk are both i.i.d. random
variables.

We use the following Lemma in establishing the convergence of (S-SQN) method (see (Polyak 1987),
page 50).
Lemma 3 (Robbins-Siegmund) Let vk, uk,αk, and βk be nonnegative random variables, and let the following
relations hold almost surely:

E
[
vk+1 | F̃k

]
≤ (1+αk)vk−uk +βk for all k,

∞

∑
k=0

αk < ∞,
∞

∑
k=0

βk < ∞,

where F̃k denotes the collection v0, . . . ,vk, u0, . . . ,uk, α0, . . . ,αk, β0, . . . ,βk. Then, the following holds

lim
k→∞

vk = v,
∞

∑
k=0

uk < ∞ a.s.,

where v≥ 0 is a random variable.
Next, we derive a recursive relation for the smoothed objective function value fε . This relation is a

key in establishing the convergence and rate analysis of the developed (S-SQN) method.
Lemma 4 [A recursive error bound] Consider the (S-SQN) scheme. Let Assumptions 1, 3, 4, and 5
hold.

(a) Let us define θε,k := sup
v∈[xk,xk+1]+B(0,ε)

‖∇ f (v)‖. The following inequality holds:

E[ fε(xk+1) |Fk]≤ fε(xk)−λminγk‖∇ fε(xk)‖2 +
κλ 2

max n!!
2ε(n−1)!!

γ
2
kE
[
θε,k‖∇F(xk + zk,ξk)‖2 |Fk

]
.

(5)

(b) Suppose Assumption 2 holds in addition. Then,

E[ fε(xk+1) |Fk]≤ fε(xk)−λminγk‖∇ fε(xk)‖2 +
κC3λ 2

max n!!
2ε(n−1)!!

γ
2
k . (6)

(c) Let f (x) be a strongly convex function with parameter µ and f ∗ε , minx∈Rn fε(x). We have

E[ fε(xk+1)− f ∗ε |Fk]≤ (1−2µλminγk)( fε(xk)− fε
∗)

+
κλ 2

max n!!
2ε(n−1)!!

γ
2
k sup

v∈B(xk,ε)

E
[
θε,k‖∇F(v,ξk)‖2 |Fk

]
. (7)

Proof. (a) From Lemma 1(b), we have

‖∇ fε(x)−∇ fε(y)‖ ≤

(
sup

v∈B(x,ε)∪B(y,ε)
‖∇ f (v)‖

)
κn!!

(n−1)!!ε
‖x− y‖, for all x,y ∈ Rn. (8)
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Let us define function g : [0,1]→ R as g(t) , fε(y+ t(x− y)). Note that g(0) = fε(y), g(1) = fε(x), and
∇g(0) = ∇ fε(y+ t(x− y))T (x− y). Note that

∫ 1
0 ∇g(t)dt = g(1)−g(0). This implies that

fε(x)− fε(y)−∇ fε(y)T (x− y) =
∫ 1

0
∇ fε(y+ t(x− y))T (x− y)dt−∇ fε(y)T (x− y)

=
∫ 1

0

(
∇ fε(y+ t(x− y))−∇ fε(y)

)
T (x− y)dt ≤ ‖x− y‖

∫ 1

0

∥∥∥∇ fε(y+ t(x− y))−∇ fε(y)(x− y)
∥∥∥dt,

where the last inequality follows by the Cauchy-Schwarz inequality. Applying relation (8), we obtain

fε(x)− fε(y)−∇ fε(y)T (x− y)≤ κn!!
(n−1)!!ε

‖x− y‖2
∫ 1

0
sup

v∈B(y+t(x−y),ε)∪B(y,ε)
‖∇ f (v)‖tdt

≤ κn!!
(n−1)!!ε

‖x− y‖2
∫ 1

0
sup

v∈∪α∈[0,1]B(y+α(x−y),ε)
‖∇ f (v)‖tdt,

where the last inequality follows since B(y+ t(x−y),ε)∪B(y,ε)⊂∪α∈[0,1]B(y+α(x−y),ε) holds for any
t ∈ [0,1]. Note that the set ∪α∈[0,1]B(y+α(x− y),ε) can be written as [x,y] +B(0,ε) = [x,y]+B(0,ε),
where the addition is in the Minkowski sense. Therefore, we have that

fε(x)− fε(y)−∇ fε(y)T (x− y)≤

(
sup

v∈[x,y]+B(0,ε)
‖∇ f (v)‖

)
κn!!

2(n−1)!!ε
‖x− y‖2, for all x,y ∈ Rn.

Let xk be generated by the (S-SQN) recursion. Substituting x = xk+1 and y = xk in the preceding relation,
we have

fε(xk+1)≤ fε(xk)−γk∇ fε(xk)
T Hk∇F(xk + zk,ξk)+

κθε,k n!!
2ε(n−1)!!

∥∥∥− γkHk∇F(xk + zk,ξk)
∥∥∥2
,

where θε,k , sup
v∈[xk,xk+1]+B(0,ε)

‖∇ f (v)‖. Next, from the definition of wk in (4), and that Hk is symmetric,

we can write

fε(xk+1)≤ fε(xk)− γk∇ fε(xk)
T Hk (∇ f (xk + zk)+wk)+

κθε,k n!!
2ε(n−1)!!

γ
2
k

∥∥∥Hk∇F(xk + zk,ξk)
∥∥∥2

= fε(xk)− γk∇ fε(xk)
T Hk∇ f (xk + zk)− γk∇ fε(xk)

T Hkwk

+
κθε,k n!!

2ε(n−1)!!
γ

2
k ∇F(xk + zk,ξk)

T H2
k ∇F(xk + zk,ξk). (9)

Recall that for any positive definite matrix A with bounded eigenvalues, we have λmin(A)‖x‖2 ≤ xT Ax ≤
λmax(A)‖x‖2 for all x ∈ Rn. This implies that

∇F(xk + zk,ξk)
T H2

k ∇F(xk + zk,ξk)≤ λ
2
max‖∇F(xk + zk,ξk)‖2. (10)

Therefore, by taking expectations conditioned on Fk ∪ zk from the relation (9), and taking into account
that fε , xk, and Hk are Fk∪ zk-measurable, we obtain

E[ fε(xk+1) |Fk∪ zk]≤ fε(xk)− γk∇ fε(xk)
T Hk∇ f (xk + zk)− γk∇ fε(xk)

T HkE[wk |Fk∪ zk]

+
κ n!!

2ε(n−1)!!
λ

2
maxγ

2
kE
[
θε,k‖∇F(xk + zk,ξk)‖2 |Fk∪ zk

]
.
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Invoking the result of Lemma 2, we haveE[wk |Fk∪ zk] = 0. Taking this into account, by taking expectations
with respect to zk on the preceding inequality, we have

E[ fε(xk+1) |Fk]≤ fε(xk)− γk∇ fε(xk)
T Hk fε(xk)+

κ n!!
2ε(n−1)!!

λ
2
maxγ

2
kE
[
θε,k‖∇F(xk + zk,ξk)‖2 |Fk

]
,

where we invoke the definition of the smoothed function, i.e., E[ f (xk + zk)|Fk] = fε(xk). Using the inequality
∇ fε(xk)

T Hk∇ fε(xk)≥ λmin‖∇ fε(xk)‖2 we obtain the (5).
(b) To show relation (6), note that using Jensen’s inequality and Assumption 2, for v ∈ Rn we have

‖∇ f (v)‖=
√
‖∇ f (v)‖2 =

√
‖E[∇F(v,ξ )]‖2 ≤

√
‖E[∇F(v,ξ )‖2]≤

√
C2 =C.

This implies that θε,k ≤C for all k ≥ 0. Moreover, we have

E
[
‖∇F(xk + zk,ξk)‖2 |Fk

]
≤ sup

v∈B(xk,ε)

E
[
‖∇F(v,ξk)‖2 |Fk

]
≤ sup

v∈B(xk,ε)

C2 =C2.

From the preceding two inequalities and relation (5), the inequality (6) follows.
(c) Note that from Lemma 1(d), function fε is strongly convex with parameter µ . Therefore, from Theorem
2.3.3 of (Facchinei and Pang 2003), problem minx∈Rn fε(x) has a unique optimal solution x∗ε . Recall that as
a property of strongly convex functions, we have ‖∇ fε(x)‖2 ≥ 2µ( fε(x)− f ∗ε ) for any x ∈ Rn. Therefore,
from (5) we obtain

E[ fε(xk+1) |Fk]≤ fε(xk)−2λminγkµ( fε(x)− f ∗ε )+
κλ 2

max n!!
2ε(n−1)!!

γ
2
k sup
‖z‖≤ε

E
[
θε,k‖∇F(xk + z,ξk)‖2 |Fk

]
,

where we used the definition of random variable zk in the last term of the preceding inequality. Subtracting
f ∗ε from both sides and taking to account that xk is Fk-measurable, we obtain the desired relation.

The next result establishes convergence of the proposed scheme in an almost sure sense.
Theorem 1 [Almost sure convergence] Consider the sequence xk generated by the (S-SQN) scheme. Let
Assumptions 1, 3, 4, 5, and 6 hold. Then, we have the following results:

(a) If Assumption 2 holds, then almost surely liminfk→∞ ∇ fε(xk) = 0, where ∇ fε(x) is the smoothed
gradient mapping.

(b) Let Assumption 2′ hold and f be strongly convex with parameter µ > 0. Then, problem minx∈Rn fε(x)
has a unique optimal solution denoted by xε

∗, and the following statements are equivalent:
(i) The sequence {xk} is bounded almost surely.

(ii) The sequence {xk} converges to the unique optimal solution xε
∗ almost surely.

Proof. (a) Note that Lemma 4(b) holds. To show (a), we apply Lemma 3. Let us define

vk := fε(xk), αk = 0, uk = λminγk‖∇ fε(xk)‖2, βk =
κC n!!

2ε(n−1)!!
λ

2
maxC2

γ
2
k .

Note that the preceding defined sequences are nonnegative and ∑
∞
k=0 αk = 0 < ∞. Assumption 6 implies that

∑
∞
k=0 βk < ∞. Therefore, from Lemma 3 and Lemma 4(b), we conclude that almost surely limk→∞ fε(xk)

exists, and that ∑
∞
k=0 γk‖∇ fε(xk)‖2 < ∞. As a consequence of the latter statement, and that ∑

∞
k=0 γk = ∞,

we have liminfk→∞ ‖∇ fε(xk)‖= 0.
(b) The uniqueness of x∗ε follows by strong convexity property of fε and Theorem 2.3.3 of (Facchinei
and Pang 2003). Note that Lemma 4(c) holds. Let us also assume (i) holds. Since xk is bounded, from
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Assumption 2′, there exists a constant C > 0 such that θε,k ≤C and sup
v∈B(xk,ε)

E
[
‖∇F(v,ξk)‖2 |Fk

]
≤C2 for

all k. In a similar fashion to the proof of part (a), invoking Lemma 3 and Lemma 4(c), we can conclude
that xk goes to x∗ε almost surely. Now suppose statement (ii) holds. Therefore, xk is a convergent sequence
a.s., implying that {xk} is bounded a.s., i.e., statement (i) holds. Therefore, statements (i) and (ii) are
equivalent.

4 RATE ANALYSIS

The result of Theorem 1 provides asymptotic convergence properties of the (S-SQN) method. A natural
question is how fast does the iterate xk converge to the approximate optimal solution x∗ε in some probabilistic
sense. Moreover, can we derive a bound on the expected error between xk and the optimal solution of
the original problem (SO)? In this section, our goal lies in addressing these two questions. First, in the
following result, we provide a bound on the error ‖x∗ε − x∗‖ under a strong convexity assumption of the
objective function f .
Proposition 1 [Solution quality of the smoothed problem] Let Assumption 1 hold and f be strongly
convex on Rn with a constant µ > 0.

(a) Then, we have ‖x∗ε − x∗‖ ≤
sup‖z‖≤ε ‖∇ f (x∗+ z)‖

µ
, where x∗ and x∗ε denote the unique optimal

solutions to problem (SO) and the smoothed problem min
x∈Rn

fε(x), respectively.

(b) Let f be twice continuously differentiable over Rn. Suppose there exists a neighborhood of x∗ in
which f has a bounded Hessian. Let bH denote a bound on the maximum eigenvalue of the Hessian
matrix in that neighborhood. Then, for a sufficiently small ε we have: ‖xε

∗− x∗‖ ≤ bH ε

µ
.

Proof. (a) The existence and uniqueness of the optimal solution to minx∈Rn f (x), as well as minx∈Rn fε(x),
is guaranteed by Theorem 2.3.3 of (Facchinei and Pang 2003). Note that by the optimality conditions, we
have ∇ f (x∗) = ∇ fε(x∗ε) = 0. Using strong convexity of fε implied by Lemma 1(d), we have

(∇ fε(x∗)−0)T (x∗− x∗ε)≥ µ‖x∗− x∗ε‖2.

By invoking the Cauchy-Schwarz inequality, we obtain

µ‖x∗− x∗ε‖ ≤ ‖∇ fε(x∗)‖. (11)

It suffices to show that, ‖∇ fε(x∗)‖ ≤ sup‖z‖≤ε ‖∇ f (x∗+ z)‖. From Lemma 1(a) we can write

‖∇ fε(x∗)‖=
∥∥∥∥∫‖z‖≤ε

∇ f (x∗+ z)pu(z)dz
∥∥∥∥≤ ∫‖z‖≤ε

sup
‖z‖≤ε

‖∇ f (x∗+ z)‖pu(z)dz ≤ sup
‖z‖≤ε

‖∇ f (x∗+ z)‖,

(12)

where the first inequality is implied using the Jensen’s inequality and the convexity of the norm. Therefore,
relations (11) and (12) imply the desired result.
(b) By assumption, there exists a ρ > 0 where ‖∇2 f (x)‖ ≤ bH for any x ∈ B(x∗,ρ), where B(x∗,ρ) denotes
an n-dimensional ball centered at x∗ with radius ρ . Let δ ∈ Rn. Using the mean value theorem,

∇ f (x∗+δ )−∇ f (x∗) =
(∫ 1

0
∇

2 f (x+ tδ )dt
)

δ , for all δ ∈ B(0,ρ). (13)

Assume that ε is small enough such that ε < ρ . From (13) we obtain ‖∇ f (x∗+z)−∇ f (x∗)‖≤ bH‖z‖≤ bHε.
The desired result follows from the preceding relation and the inequality of part (a).
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In deriving the convergence rate result, we make use of the following Lemma. The proof can be found
in (Yousefian, Nedić, and Shanbhag 2017b).
Lemma 5 (Convergence rate of a recursive sequence) Let {ek} be a non-negative sequence such that
for an arbitrary non-negative sequence {γk}, we have ek+1 ≤ (1−αγk)ek +βγ2

k , for all k≥ 0, where α and
β are positive scalars. Suppose γ0 =

2
α

, γk =
γ0
k for any k ≥ 1, where γ > 1

α
. Then, for all k ≥ 2 we have

ek ≤ 8β

α2k .
Next, we provide the rate statements of the developed (S-SQN) scheme.

Theorem 2 (Rate statements) Consider the sequence xk generated by the (S-SQN) scheme. Let Assump-
tions 1, 2′, 3, 4, and 5 hold. Let function f be strongly convex with parameter µ > 0, and the stepsize γk
be given by γ0 =

1
µλmin

, and γk =
γ0
k for all k ≥ 1. Let the sequence {xk} be bounded almost surely. Then,

there exist C > 0 and θ > 0 such that

E[ fε(xk)− f ∗ε ]≤
(

κC3λmax n!!
λ 2

minµ2ε (n−1)!!

)
1
k
, for all k ≥ 2. (14)

Moreover, suppose there exists a neighborhood of x∗ in which f has a bounded Hessian. Let bH denote
a bound on the maximum eigenvalue of the Hessian matrix in that neighborhood. Then, for a sufficiently
small ε we have:

E
[
‖xk− x∗‖2]≤ 4

κC3λmax n!!
λ 2

minµ3ε (n−1)!!k
+

2b2
Hε2

µ2 , for all k ≥ 2. (15)

Proof. Since xk is assumed to be bounded almost surely, from Assumption 2′, there exists a constant
C > 0 such that θk,ε ≤C and sup

v∈B(xk,ε)

E
[
‖∇F(v,ξk)‖2 |Fk

]
≤C2. Therefore, from Lemma 4(c) we have

E[ fε(xk+1)− f ∗ε ]≤ (1−2µλminγk)E[ fε(xk)− fε
∗]+

κCλ 2
max n!!C2

2ε(n−1)!!
γ

2
k .

Let us define the terms ek := E[ fε(xk)− fε
∗] ,α := 2µλmin, and β := κλ 2

max n!!C3

2ε(n−1)!! . Applying Lemma 5, we

conclude that relation (14) holds. To show (15), note that from Proposition 1, we have ‖x∗ε − x∗‖2 ≤ b2
H ε2

µ2 .
Moreover, strong convexity of fε implies that fε(xk)− f ∗ε ≥

µ

2 ‖xk− x∗ε‖2. Therefore, we can write

‖xk− x∗‖2 ≤ 2‖xk− x∗ε‖2 +2‖x∗ε − x∗‖2 ≤ 4
µ
( fε(xk)− f ∗ε )+

2b2
Hε2

µ2 .

Invoking relation (14), we obtain the inequality (15).

5 CONCLUDING REMARKS

In this paper, we consider unconstrained stochastic optimization problems where the objective function is
differentiable and strongly convex. To address this class of problems , we consider stochastic quasi-Newton
methods. The convergence analysis and rate statements of the classical SQN methods presented in the
literature require the objective function to have Lipschitzian gradients. Our goal in this paper is to weaken
this assumption. To this end, employing a local smoothing technique, we develop a smoothing SQN method.
Under standard assumptions on the stepsize and the approximate Hessian, we derive convergence properties
of the scheme in both an almost sure and a mean sense. Importantly, we derive rate statements in terms
of the expected error between the generated iterate and the optimal solution to the original problem under
an additional assumption of twice continuous differentiability.. The development of efficient approximate
Hessian update rules remains a future research direction.
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