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ABSTRACT

Simulation-based Optimization (SbO) assumes that the simulation model is valid, and that the probability
distributions used therein are accurate. However, in practice, the input probability distributions (input
models) are estimated by sampling data from the real system. The errors in such estimates can have a
profound impact on the optimal solution obtained by SbO. The existing two-stage framework for SbO under
computational budget constraint considers only the stochastic uncertainty. In our variant, we consider the
input model parameter uncertainty as well. Our algorithmic procedure is based on the stochastic kriging
metamodel-assisted bootstrapping with an efficient global optimization technique which sequentially searches
the optimum and incorporates Optimal Computational Budget Allocation (OCBA). This framework is also
used for determining tighter worst-case bounds of the SbO with input uncertainty. The proposed framework
is illustrated with the M/M/1 queuing model.

1 INTRODUCTION

We consider the following stochastic optimization problem:

min
x∈S,P∈Θ

y(x), (1)

where

• y(x) := EP[Y (x,ξ )]
• Y (x,ξ ) is a real-valued function of two variables x and ξ

• x is a decision variable which belongs to a bounded continuous set S
• ξ is a random vector having an input probability distribution P (viz for exponential input probability

distribution P).
• Θ is an ambiguity set of input probability distribution P, and is defined as follows:

Θ = {P ∈ D : D(P||P0)≤ η},

where D(·||·) is the Kullback-Leibler divergence between two probability distributions, P0 is a known
nominal distribution (fitted from the historical data), η is a measure of input model misspecification
due to lack of knowledge or inadequacy in sample data and D is the set of all possible probability
distributions on sample data.

We assume that the expected value function y(x) is well defined for every x∈ S and P∈Θ. Let {ξ1,ξ2, . . . ,ξr}
be an independent and identically distributed (i.i.d.) sample of size r drawn from P. Then the expected
value function can be approximated by the sample average function ȳ(x) := 1

r ∑
r
j=1Y (x,ξ j). Thus, the
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corresponding optimization problem is:
min

x∈S,P∈Θ
ȳ(x). (2)

In many cases, the underlying distribution P on ξ that controls the expectation EP[Y (x,ξ )] is not known
precisely and is estimated based on a sample data from a real system. For example, in a queuing model,
the inter-arrival time distribution is often estimated from the historical data of customer arrivals; and in an
inventory model, the demand distribution is estimated from the past sales data. This causes uncertainty in
the estimation of P. Uncertainty in P causes additional variability in the output response of the simulation
experiment. Various methods have been proposed in the literature for quantifying the impact of input
model uncertainty on output system performance, such as the delta method given by Cheng and Holland
(1997), Cheng and Holland (1998); the bootstrapping method by Cheng (1994), Cheng (1995), Barton and
Schruben (2001); the Bayesian model averaging method by Chick (2001), Zouaoui and Wilson (2003); and
more recently, the meta-model assisted bootstrapping method by Barton, Nelson, and Xie (2014), Xie and
Nelson (2014). The pros and cons of the four methods for quantifying input uncertainty mentioned above
have been briefly explained by Barton (2012), Song, Nelson, and Pegden (2014). Input model uncertainty
has also been quantified by Song, Nelson, and Hong (2015), Corlu and Biller (2015) in case of finding the
best x among a finite set of x.

When the true distribution Ptrue of ξ is known, the optimality gap between formulations (1) and (2),
given by O =| y(x∗)− ȳ(x∗) |, tends to zero only when r→ ∞. This uncertainty is caused due to inherent
random number streaming inside the simulation model. To reduce uncertainty, we need to perform a large
number of simulation experiments, which can be computationally expensive and time-consuming.

Jone and Welch (1998) have proposed an efficient global optimization algorithm based on kriging
metamodel (i.e. regression model fitted to input/output data) for solving deterministic optimization problems.
Dellino, Kleijnen, and Meloni (2008) have proposed a robust simulation-based optimization by combining
Taguchi’s approach and kriging metamodel. Ankenman, Nelson, and Staum (2010) have proposed a
Stochastic Kriging (SK) metamodel for stochastic simulation experiment which incorporates the inherent
stochastic uncertainty in the metamodel. Quan et al. (2013) have proposed a two-stage framework for
performing SbO via kriging metamodel with computational budget constraints which incorporates only
stochastic uncertainty. The two-stages are those of allocation and search. Their proposed algorithm gives
a split up of the computational budget to each of the stages. Mehdad and Kleijnen (2015) proposed a
stochastic intrinsic kriging for simulation optimization but there is no significant improvement in the optimal
solution compared to stochastic kriging.

The main motivation of this paper is to provide an efficient algorithm for performing simulation-based
optimization with input uncertainty and estimating tighter worst-case bounds of the optimal solution. The
worst-case bounds provide an interval for the optimal solution of a simulation based optimization problem
with input uncertainty. Our algorithmic procedure for solving the above problem is as follows:

(i) Generate an ambiguity set by bootstrap re-sampling of the sample data from the real system.
(ii) Perform simulation experiments with a few samples (x,P)∈ (S,Θ) and estimate the output responses.

(iii) Fit an SK metamodel with (x,P) and its output response.
(iv) The optimal (x,P) which gives the minimum output response is obtained by sequentially minimizing

the SK metamodel over (S,Θ).

The key contribution of this paper is to provide a combination of the stochastic kriging metamodel-
assisted bootstrapping with the aforementioned two-stage framework for finding the optimum. This improves
the performance of robust simulation optimization with computational budget constraints for providing a
tighter worst-case lower bound of the SbO with input uncertainty. We also propose a new algorithmic
procedure for sequentially solving a min-max formulation to obtain the worst-case upper bound of SbO
with input uncertainty.
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The layout of the paper is as follows. Section 2 explains fitting the collected data to the input probability
distribution model. Section 3 describes the stochastic kriging metamodel. Section 4 discusses the efficient
global optimization algorithm. Section 5 contains the proposed algorithms for performing SbO with input
uncertainty. Section 6 explains the M/M/1 queuing simulation model example considered in the paper.
Section 7 presents numerical results and the related discussion on the techniques.

2 INPUT MODELING

When the true distribution Ptrue of ξ is not known, it is estimated by fitting the given i.i.d. sample data
ξ = (ξ1,ξ2 . . . ,ξn0) to a suitable theoretical probability distribution (Barton and Schruben 2001). In this
paper, we assume that the true distribution of a given data ξ = (ξ1,ξ2, . . . ,ξn0) belongs to a known parametric
family of theoretical distributions (viz exponential distribution with the parameter, λ ). Sufficiently large
sample data is required for an accurate estimation of the distribution parameter. But, collecting a large
amount of data is costly. In order to improve the accuracy of parameter estimations using limited sample
data, bootstrap re-sampling can be employed.

2.1 Bootstrap Re-sampling Approach

In this subsection, we review the bootstrapping approach of simulation input modeling by Cheng (1994),
Cheng (1995), Barton and Schruben (2001). Bootstrapping is a technique for reusing data to estimate
the statistics of interest by re-sampling sets of data from a given i.i.d. sample data ξ = (ξ1,ξ2, . . . ,ξn0).
The re-sampled data are fitted to a distribution P and its parameter (say, λ̂ ) is estimated. Let a random
sample ξ1 = (ξ11,ξ12, . . . ,ξ1n0) of size n0 be drawn with replacement from a given i.i.d. sample data
ξ = (ξ1,ξ2, . . . ,ξn0). Using this bootstrap sample ξ1, the parameter value λ̂1 is estimated as the original
λ̂ . Repeated sampling and estimation yields independent estimates λ̂i, i = 1,2, . . . ,B where B is the total
number of bootstraps.

2.2 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence between two distributions P and P0 is the expectation of logarithmic
difference between them. In our case P is the unknown input probability distribution and P0 is the known
nominal probability distribution. If P and P0 belong to a continuous family of distributions, then the KL
divergence between them is given as

D(P||P0) =
∫

∞

−∞

p(ξ ) log
(

p(ξ )
p0(ξ )

)
dξ , (3)

where p and p0 are the densities corresponding to P and P0. p0 is obtained by fitting the given data
ξ = (ξ1,ξ2, . . . ,ξn0) to a known parametric family of theoretical distributions and p is obtained using the
bootstrap re-sampled data described in the previous subsection.

3 STOCHASTIC KRIGING

In this section, we review the stochastic kriging metamodeling technique proposed by Ankenman, Nelson,
and Staum (2010). Stochastic kriging is a metamodeling (i.e. regression model fitted for input/output data)
methodology developed for stochastic simulation experiment. The stochastic simulation output response
Yj(x) on replication j at a design point x is:

Yj(x) = f (x)T
β +M(x)+ ε j(x), (4)

where f (x) is a vector of known functions on x, β is a vector of unknown parameter of compatible
dimension, M(x) represents the parameter uncertainty and ε j(x) represents sampling variability inherent
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in a stochastic simulation. To generate a global predictor, consider a set of input points xi, i = 1, . . . ,n
where r is the number of replications on input design xi. Let the sample mean be Ȳ (x) = 1

r ∑
r
j=1Yj(x) and

let Ȳ = (Ȳ (x1),Ȳ (x2), . . . ,Ȳ (xn))
T . As in typical spatial correlation models, a linear prediction of the form

w0(x0)+w(x0)
T Ȳ is considered, where w0(x0) and w(x0) are weights that depend on a design point x0.

The optimal value of these weights is obtained by minimizing the mean squared error of predictor. The
linear predictor at x0 is:

Ŷ (x0) = β0 +∑M
(x0, ·)T [

∑M
+∑

ε

]−1
(Ȳ −β01n×1), (5)

where β0 is a vector of the unknown parameter of compatible dimension, ∑M(x0, ·) is an n×1 covariance
vector between prediction point x0 and all input points, ∑M represents the n× n covariance matrix,
Cov(M(xi),M(x j)), across all input points xi, i = 1, . . . ,n and ∑ε is the diagonal matrix of intrinsic output
variance. The covariance between two input points is estimated by, ∑M(xi,x j) = τ2R(θ ,xi,x j), where τ2

is the variance of M(x) over all input.
These ∑M and ∑M(x0, ·) often uses the Gaussian correlation function R(θ ,xi,x j) = exp−(∑d

j=1(θl|xil−
x jl|pl ), where θl is the parameter which determines the rate of decrease of correlation as we move along
the lth coordinate, d is the dimension of the input vector and pl determines the smoothness of function in
the lth coordinate. The parameters of the stochastic kriging model (β0,τ

2,θ ) are estimated using maximum
likelihood function derived based on the assumption that ∑ε is known. For a fixed input point, the likelihood
function of (β0,τ

2,θ ) is obtained by maximum likelihood approximation is:

l(β0,τ
2,θ) = − ln

[
(2π)n/2]−0.5ln

[
|τ2RM(θ)+∑

ε
|
]

−0.5(Ȳ −β01n×1)
T [

τ
2RM(θ)+∑

ε

]−1
(Ȳ −β01n×1), (6)

where RM(θ) is a correlation matrix of M across all input points.
Given the input/output data Yj(xi), i = 1, . . . ,n; j = 1, . . . ,r the stochastic kriging meta model is fitted

as follows:

• Estimate the sample mean and sample variance of the output response (Ȳ (xi),σ
2(xi)), i = 1, . . . ,n

and let ∑ε = diag[σ2(x1)/r, . . . ,σ2(xn)/r].
• Maximize the likelihood function l(β0,τ

2,θ) to obtain the parameters (β0,τ
2,θ ) of the stochastic

kriging metamodel.
• Predict Y (x0) by the metamodel

Ŷ (x0) = β0 +∑M
(x0, ·)T [

∑M
+∑

ε

]−1
(Ȳ −β01n×1), (7)

with mean square error is

σ̂
2(x0) = τ

2 +∑M
(x0, ·)T [

∑M
+∑

ε

]−1
∑M

(x0, ·)+δδ
T (1T

n×1
[
∑M

+∑
ε

]−11n×1)
−1, (8)

where δ = 1− (1T
n×1[∑M +∑ε ]

−1
∑M(x0, ·)).

4 EFFICIENT GLOBAL OPTIMIZATION ALGORITHM

In this section, we summarize the Efficient Global Optimization (EGO) algorithm for both deterministic as
well as stochastic simulation optimization problems. In order to improve the accuracy of the optimal solution
obtained by SbO with input uncertainty under computational budget constraints, the optimal computational
budget allocation technique can be employed.
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4.1 EGO for Deterministic Simulation

Here, we summarize EGO for deterministic simulation by Jone and Welch (1998). EGO uses the expected
improvement criteria for bringing the balance between local and global search of the optimum solution.
The algorithm can be described as follows:

1. Fit a kriging meta-model with the initial set of input design points Y (xi), i = 1, . . . ,n.
2. Find x by maximizing Expected Improvement (EI) function. The EI is estimated by assuming that

the prediction at any x follows a normal distribution. It is estimated by,

EI(x) = ( f min− Ŷ (x))φ
(

f min− Ŷ (x)
σ̂(x)

)
+ σ̂(x)φ

(
f min− Ŷ (x)

σ̂(x)

)
, (9)

where f min is the minimum of all Y (xi) values, φ(·) is the standard normal density, Ŷ (x) is the
predicted optimal objective value and σ̂(x) is the predicted standard deviation at x.

3. If the EI is less than 1%, then the minimum is suggested as the best optimum (x∗,Y (x∗)). Otherwise,
the simulation experiment is performed with x found in step 2. This new point is added to set of
initial points, the kriging meta-model is reconstructed again including the new point and the above
procedure is repeated.

4.2 EGO for Stochastic Simulation

In this subsection, we summarize the EGO algorithm for stochastic simulation by Quan et al. (2013). The
algorithmic procedure is same as in Subsection 4.1 for deterministic simulation. The two major differences
in the case of stochastic simulation are that the ordinary kriging metamodel is replaced by stochastic kriging
metamodel and EI criteria is replaced by Modified Expected Improvement (MEI). The MEI is estimated
by assuming that, the prediction at any x follows normal distribution. It is estimated by,

MEI(x) = ( f min− Ŷ (x))φ
(

f min− Ŷ (x)
σ̂(x)

)
+ σ̂(x)φ

(
f min− Ŷ (x)

σ̂(x)

)
, (10)

where f min is the minimum of predicted Ŷ (xi) values i = 1, . . . ,n, φ(·) is a standard normal density, Ŷ (x)
is the predicted optimal objective value and σ̂(x) is the predicted standard deviation at x.

4.3 Simulation Budget Allocation

Computational budget allocation technique for simulation-based optimization by Chen et al. (2000) is a
highly efficient technique. It provides a more rigorous way of determining the input design point with the
best response. Theorem 1 provided by Chen et al. (2000), assumes that we have the sample mean and
sample standard deviation at the all input design points Ȳ (xi),σ

2(xi), i = 1, . . . ,n. As computational budget
goes to infinity, the probability of correct selection can be approximately maximized when,

ri

r j
=

(
σ(xi)/∆b,i

σ(x j)/∆b, j

)2

, i, j ∈ 1, . . . ,n; i 6= j 6= b, (11)

rb = σ(xb)

√
n

∑
i=1,i6=b

r2
i

σ2(xi)
, (12)

where ri is the number of replication allocated to input design xi, rb is the number of replication allocated
to input design with lowest sample mean, xb is the input design with the lowest sample mean and ∆b,i is
the difference between the lowest sample mean and the sample mean at input design xi.
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5 SbO WITH INPUT UNCERTAINTY

We discuss the robust simulation optimization with input uncertainty and the proposed algorithm for
solving the simulation-based optimization described in (1). We have considered the following formulation
for determining the robust simulation optimization bounds:

min
x∈S

VaRα(EP[Y (x,ξ )]), (13)

where VaRα(EP[Y (x,ξ )]) is the value of risk at α quantile of the mean output response, defined as

VaRα(EP[Y (x,ξ )]) = inf{t : F(t)≥ α},

where F is the cumulative distribution function of EP[Y (x,ξ )]. If EP[Y (x,ξ )] is a continuous random
variable, then the α-level VaR is evaluated as VaRα(EP[Y (x,ξ )]) = F−1(α). The objective function of
(13) is determined by fitting an empirical cumulative distribution function of EP[Y (x,ξ )] over ambiguity
set Θ at a particular x and estimate its value F−1(α). The formulation in (13) at α = 1

N is equal to the
formulation given below:

min
x∈S

min
P∈Θ

EP[Y (x,ξ )], (14)

where N is the number of elements in the ambiguity set Θ. The following equality will always hold,

min
x∈S,P∈Θ

EP[Y (x,ξ )] = min
x∈S

min
P∈Θ

EP[Y (x,ξ )]. (15)

Hence, we have proposed Algorithm 1 for solving the optimization problem on the left hand side of equation
(15).

In our algorithm we have used bootstrap resampling on the given sample data to find the accurate
estimate of the ambiguity set Θ. The SbO experiment is performed over the ambiguity set and bound
constraints on the decision variable x. In order to determine the global optimum, we have used stochastic
kriging metamodel for fitting the output response of the simulation experiments with few input design points.
We have implemented an efficient global optimization algorithm for sequentially searching the optimal
solution. Finally, we have applied an optimal allocation computational budget technique for efficiently
allocating the available computational budget during the search stage. The following terminology is used
in the algorithm below:

• T is the total computational budget
• r is the number of replications available at each iteration
• rmin is the minimum number of replications
• j is the current iteration j = 1, . . . , I, I = d(T −nr)/re
• rS( j) is the number of replications available for search stage at iteration j
• rA( j) is the number of replications available for allocation stage at iteration j.

Algorithm 1 Algorithm for SbO with input uncertainty
1: Determining the valid range of uncertain parameter: Given an i.i.d. sample ξ = (ξ1,ξ2, . . . ,ξn0)

of size n0, perform bootstrap resampling on the given sample (as mentioned in the Subsection 2.1).
2: Estimate the ambiguity set Θ = {P ∈D : D(P||P0)≤ η} (as described in the Subsection 2.2). Compute

the minimum and maximum value of the estimated parameter in Θ. Use these values as a bound for
estimated parameter λ̂ .

3: Initialization: Generate an initial input design (x, λ̂ ) of size n using Latin Hypercube sampling.
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4: Run a simulation experiment at all the initial input design (xi, λ̂i), i = 1, . . . ,n for r replications and
estimate the corresponding sample mean Ȳ (xi, λ̂i) and sample variance σ2(xi, λ̂i) of the output response
for each i = 1, . . . ,n.

5: Validation: Fit a stochastic kriging metamodel to the set {Ȳ (xi, λ̂i), σ2(xi, λ̂i)}, i= 1, . . . ,n (as described
in the Section 3). Use leave-one-out cross validation method to check the quality of initial fitting. For
searching and allocation stage, use the sequential search algorithm proposed by Quan (2013).

6: Set j = 1,rA(0) = 0
7: while j ≤ I do rA( j) = rA( j−1)+min( r−rmin

I ,T −nr− ( j−1)r)
8: if (T −nr− ( j−1)r− rA( j))> 0 then rS( j) = r− rA( j)
9: Search stage: Find a new point which maximize the MEI function in equation (10). Run a

simulation experiment at new point for rS( j) replication.
10: Allocation stage: Allocate rA( j) replications among all the sampled points using equation (11)

and (12).
11: Fit a stochastic kriging metamodel to the set {Ȳ (xi, λ̂i),σ

2(xi, λ̂i)}, i = 1, . . . ,n+ j.
12: end if
13: end while
14: The input design point with the lowest sample mean at the end of the iteration is taken as a global

optimum.

In order to obtain the accurate worst-case upper bound of SbO with input uncertainty, the formulation
in (13) at α = 1 is as given below,

min
x∈S

max
P∈Θ

EP[Y (x,ξ )]. (16)

We have proposed Algorithm 2 for solving the formulation in (16). The algorithmic procedure is
same as Algorithm 1 till the initialization stage. After initialization, we fit a separate stochastic kriging
metamodel for each xi, i = 1, . . . ,n using the set of {Ȳ (xi, λ̂w),σ

2(xi, λ̂w)}, w = 1, . . . ,m. First, we want to
find the maximum value of output response for given x over Θ. The maximum output response Ŷmax(xi)

and corresponding variance at each xi is obtained by maximizing the stochastic kriging metamodel Ŷ (xi, λ̂ )
over Θ. Next, we want to find a point x which gives the minimum value of Ŷmax(x). For that, we fit
an another stochastic kriging metamodel using the maximum output response and its variance. We have
used efficient global optimization algorithm for sequentially searching the optimal solution. The following
terminology is used in algorithm below:

• Ŷ (xi, λ̂ ) is the prediction of stochastic kriging metamodel at input parameter λ̂ when the design
point is xi

• m is the number of input parameters λ̂ .

Algorithm 2 Algorithm for determining the worst-case upper bound of SbO with input uncertainty
1: Determining valid range of uncertain parameter: Given an i.i.d. sample ξ = (ξ1,ξ2, . . . ,ξn0) of size

n0. Perform bootstrap resampling on the given sample (as mentioned in the Subsection 2.1).
2: Estimate the ambiguity set Θ = {P ∈D : D(P||P0)≤ η} (as described in the Subsection 2.2). Compute

the minimum and maximum values of the estimated parameter in Θ. Use these values as bounds for
estimated parameter λ̂ .

3: Initialization: Generate an initial input design point x of size n and λ̂ of size m using Latin Hypercube
sampling technique.
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4: Run a simulation experiment at all the possible combination of xi, i = 1, . . . ,n and λ̂w, w = 1, . . . ,m
for r replications and estimate the corresponding mean and variance of the output performance
{Ȳ (xi, λ̂w),σ

2(xi, λ̂w)}, i = 1, . . . ,n; w = 1, . . . ,m.
5: Validation: Fit a stochastic kriging metamodel to xi using the set of {Ȳ (xi, λ̂w),σ

2(xi, λ̂w)}, w= 1, . . . ,m.
Use leave-one-out cross validation method to check the quality of initial fitting.

6: Perform the above step for each xi, i = 1, . . . ,n.
7: Optimize: Obtain the maximum output response Ŷmax(xi) and the corresponding variance σ̂2(xi) over

ambiguity set for each xi, i = 1, . . . ,n by solving optimization formulation given below:

max
λ̂∈Θ

Ŷ (xi, λ̂ ).

8: Fit the stochastic kriging metamodel to the set of {Ŷmax(xi), σ̂
2(xi)}, i = 1, . . . ,n.

9: Search stage: Find a new point x which maximize the Modified Expected Improvement function in
equation (10).

10: If the MEI is less than 1%, then the minimum of Ŷmax(xi), i = 1, . . . ,n is suggested as the best optimum.
Otherwise, the simulation experiment is performed with all combination of x (found in step 9) and
λ̂w, w = 1, . . . ,m for r replications. Perform steps 5 and 7 at the new point x. This new point x is
added to set of initial points. Then steps 8,9 and 10 are repeated.

6 NUMERICAL EXAMPLE

We will illustrate the above described framework of SbO with input uncertainty on a simple M/M/1 queuing
model example. The arrival of customers in the system follows Poisson distribution with rate λ and the
service time of the customers follows an exponential distribution with mean time x. The objective is to
find a mean service time x that minimizes the cost:

min
x>0

C(x) =

{
min{Eλ [Y (x,ξ )]+ c

x ,M}, if λx < 1,
M, otherwise,

where c is the cost per unit increase in the service rate, M is the practical limitation on the total cost, ξ

represents the inter-arrival time that is exponentially distributed with parameter λ and Y (x,ξ ) is the amount
of time spend in the system. The theoretical expression for expected amount of time spend in the system
Eλ [Y (x,ξ )] of M/M/1 queuing model is x

1−λx . The unique optimal solution for the above optimization is

x∗ =
√

c√
cλ+1 .

In the numerical experiments, it is assumed that the true value of λ is unknown. For the purpose
of experimentation, n0 i.i.d. sample of inter arrival times ξ1, . . . ,ξn0 are generated from the exponential
distribution with parameter λ true. The sample data is fitted to exponential distribution and its corresponding
parameter λ̂ is estimated using maximum likelihood estimate. The above optimization problem is solved
under the estimated input probability distribution.

The convergence of Algorithm 1 is evaluated using mean absolute deviation and mean square deviation
of the response. We run K independent macro replications, and in each replication k, we generate an i.i.d.
sample ξ1, . . . ,ξn0 of inter arrival times of size n0 from the exponential distribution with parameter λ true.
The above optimization problem solved using Algorithm 1 to obtain optimal solution x̂∗k for kth macro
replication. The Mean Absolute Deviation (MAD) is estimated as follows:

MAD =
1
K

K

∑
k=1
|x̂∗k− x∗|, (17)
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where x∗ is the true optimal solution. The Mean Square Deviation (MSD) of the response is estimated as
follows:

MSD =
1
K

K

∑
k=1

(Y (x̂∗k)−Y (x∗)
Y (x∗)

)2
, (18)

where Y (x∗) is the true optimal output response and Y (x̂∗k) is the optimal output response obtained at kth

replication.

7 RESULT AND DISCUSSION

This section briefly explains the experimental results that were obtained by performing SbO with input
uncertainty of M/M/1 queuing model using Algorithm 1 and Algorithm 2. The M/M/1 queuing simulation
model is implemented in MATLAB. The stochastic kriging metamodel is also implemented in MATLAB
and its parameter values are estimated by maximizing the likelihood function using fmincon solver. For
Latin Hypercube Sampling, lhsdesign function in the statistical toolbox of MATLAB is used.

The parameter settings used in the Algorithm 1 for testing the convergence of the optimal solution of
formulation (1) are as follows: The interarrival time is exponentially distributed with parameter (λ = 1).
The cost per unit increase in the service rate c is 1. The practical limitation on the total cost M is 500. The
number of i.i.d. sample n0 drawn from the exponential (λ = 1) varies from 10 to 1000. The simulation
experiment run length L is 1000. The number of bootstrap B is 1000. The measure η of input model
misspecification due to lack of knowledge or inadequacy in sample data is 0.5. The initial number of input
design points is n = 10d, where, d is the dimension of the design point. In this case, the dimension is d = 2
so the number of initial input design points n = 20. The total computational budget T is 1200. The number
of replications r available at each iteration is 40. The minimum number of replications rmin is 10. The
number of macro replications K is 100. The true optimal solution of the optimization problem defined in
Section 6 for a given interarrival rate (λ = 1) is (x∗,Y (x∗)) = (0.5,3). Table 1 shows the MAD and MSD
of the optimum solution obtained by solving the optimization problem illustrated in the Section 6 using
Algorithm 1. The numerical result in the Table 1 clearly shows that the MAD and MSD of the optimal

Table 1: MAD and MSD of optimal solutions of M/M/1 Queuing model.

n0 10 20 50 100 1000
MAD 0.16516 0.10419 0.07097 0.04806 0.0218
MSD 0.02271 0.01582 0.00969 0.00663 0.00104

solution decreases as the size of the input sample increases. This guarantees that the optimal solution of
the above optimization problem converges to the true optimum solution as the size of the input sample
increases.

The worst-case lower bound of the M/M/1 queuing model simulation optimization is obtained by
solving the formulation in (1) using Algorithm 1 with the same experimental settings. Except that the
number of macro replication K is 1. The worst-case upper bound of the M/M/1 queuing model is
obtained by solving the formulation in (16) using Algorithm 2 with the following experimental settings:
λ = 1,L = 1000,η = 0.5,B = 1000,n = 10,m = 10 and r = 40. Table 2 shows the bounds of the estimated
uncertain parameter λ̂ and the true theoretical worst-case bounds of the optimal solution.

Table 2: Theoretical worst-case bounds.

n0
10 20 50 100 1000

lb ub lb ub lb ub lb ub lb ub
λ̂ 0.5901 3.4075 0.5242 3.0647 0.6282 1.4693 0.7613 1.4423 0.8499 1.0303
x∗ 0.6289 0.2269 0.6561 0.2460 0.6142 0.405 0.5678 0.4095 0.5406 0.4925
Y (x∗) 2.5901 5.4075 2.5242 5.0647 2.6282 3.4693 2.7613 3.4423 2.8499 3.0303
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Table 3 shows the worst-case bounds of the optimal solution of M/M/1 queuing model. The numerical
results in the Table 3 clearly shows that the true optimal solution of the underlying M/M/1 queuing model
lies within the bounds. The distance between the lower and upper bound of the optimal solution reduces
as the sample size n0 increases.

Table 3: Worst-case bounds obtained by the proposed algorithm.

n0
10 20 50 100 1000

lb ub lb ub lb ub lb ub lb ub
x̂∗ 0.6176 0.2296 0.5948 0.2312 0.5719 0.3957 0.5415 0.4062 0.5092 0.4959
Y (x̂∗) 2.5781 5.3583 2.7162 5.0939 2.6369 3.4579 2.7371 3.4183 2.9692 2.9993

The optimality gap in the Table 4, shows that the proposed algorithm for performing SbO with input
uncertainty gives promising worst-case bounds.

Table 4: Optimality gap.

n0
10 20 50 100 1000

lb ub lb ub lb ub lb ub lb ub
|x̂∗− x∗| 0.0113 0.0028 0.0612 0.0148 0.0423 0.009 0.026 0.003 0.031 0.003
|Y (x̂∗)−Y (x∗)| 0.0119 0.0491 0.1921 0.0293 0.0087 0.011 0.024 0.024 0.119 0.031

8 CONCLUSION AND FUTURE WORK

The algorithmic procedure of performing robust simulation-based optimization with input uncertainty for
determining the worst-case bounds is discussed in the paper. The stochastic kriging metamodel assisted
bootstrapping is combined with an efficient global optimization with OCBA for determining the worst-case
bounds of the optimal solution. The proposed approach is illustrated with an M/M/1 queuing model. The
numerical results shows that the proposed algorithm gives tighter worst-case bounds for simulation-based
optimization with input uncertainty. The applicability of proposed algorithm for SbO with non-parametric
family of input probability distribution and for the case of more than one input probability distributions
are to be investigated.
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