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ABSTRACT

A widely acknowledged challenge in ranking and selection is how to allocate the simulation budget such
that the probability of correction selection (PCS) is maximized. However, there is yet another challenge:
when the input distributions are estimated using finite real-world data, simulation output is subject to input
uncertainty and we may fail to identify the best system even using infinite simulation budget. We propose
a new formulation that captures the tradeoff between collecting input data and running simulations. To
solve the formulation, we develop an algorithm for two-stage allocation of finite budget. We use numerical
experiment to demonstrate the performance of our algorithm.

1 INTRODUCTION

Simulation is a widely used tool for modeling and comparing large and complex systems. For instance,
when the interest lies in the expected performance of a stochastic system, one can run multiple simulation
replications and use sample mean to approximate the true mean. One driving force of stochastic simulation
is a set of distributions that describe the stochasticity in the system being modeled. Such distributions
can be regarded as input models to the simulation process, hence the name “input distributions”. Under
this setting, simulation output is subject to two different sources of uncertainty. On the one hand, the
limited computing power only allows us to run a finite number of replications, leading to what we call
the “stochastic uncertainty”; on the other hand, the input distributions are usually estimated using finite
real-world data, and the estimates are affected by the so-called “input uncertainty”.

When simulation is used to compare and select the best systems/designs according to their expected
performance, it is often referred to as ranking & selection (R&S), or more generally as simulation optimization
or Optimization via Simulation (OvS). Currently, most simulation literature assume full knowledge on input
distributions, and stochastic uncertainty is the dominating factor. Since we can only run finite simulation
replications, we cannot be absolutely certain about the order of the systems’ performances, and the probability
of the estimated best system being the true best one is called the “probability of correct selection” or PCS
in short. There are mainly two types of problems to consider in terms of PCS: (i) how to attain a given PCS
level using as few simulation runs as possible (see, e.g., Branke et al. (2005), Kim and Nelson (2007));
(ii) how to maximize the PCS under a finite computing budget (e.g., total runs) constraint.

The focus of this work is on the aforementioned second problem. When there is no input uncertainty,
one of the most widely used algorithms is the Optimal Computing Budget Allocation (OCBA) method
proposed by Chen et al. (2000). Its allocation strategy has an intuitive interpretation based on each system’s
signal-to-noise ratio, and it allows a sequential implementation to adaptively control the allocation process.
Aside from the simulation community, the budget allocation problem also receives lots of attention from
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those working on the multi-armed bandit problem and online learning. From a learning perspective, the
problem of selecting the best “arm” is known as the “best-arm identification” or the “pure exploration
problem”. For example, Audibert and Bubeck (2010) proposes a Upper Confidence Bound (UCB) type
algorithm for the case of bounded support, and Russo (2016) develops simple Bayesian algorithms which
are shown to attain the best possible exponential rate of the PCS in some sense. Due to limited space,
we refer the reader to Russo (2016) for a comprehensive and in-depth review on the history and recent
development of this problem.

In practice, input uncertainty can have a significant impact on R&S. Specifically, when the input
uncertainty is dominating, we cannot identify the true best system even using infinite computing budget.
Some work has been done on indifference zone (IZ) ranking & selection under input uncertainty, recent
progress includes but is not limited to Corlu and Biller (2013), Song et al. (2015), Song (2016). For the
finite budget allocation problem, Gao et al. (2016) seems to be the only work taking input uncertainty
into account, and they optimize the worst-case performance given a fixed finite number of input models.
In this paper, we consider the problem of balancing input uncertainty and stochastic uncertainty in R&S.
A new formulation is proposed to allow the flexibility of additional input data. To solve the problem, we
develop a two-stage algorithm based on a nested asymptotic result. Finally, we use numerical examples to
demonstrate the performance of our algorithm in terms of PCS.

2 PROBLEM FORMULATION

2.1 Traditional Formulation

Suppose we are given K stochastic systems I = {1, . . . ,K} and only one of them has the best expected
performance. Consider a maximization problem, where the goal is to find

b := argmax
i∈I

EFc [hi(ξ )], (1)

where hi : Rm→ R is system i’s simulation output function which usually does not have a closed form,
ξ ∈ Rm is a random vector following a distribution Fc. Since Fc must be specified to drive simulation, it
is also called an “input distribution”. In this work, we assume the same Fc across all systems, but this can
be easily generalized. In traditional computing budget allocation settings, Fc is assumed given and we can
estimate system i’s performance via its sample mean,

Ĥi :=
1

Mi

Mi

∑
r=1

hi(ξir),

where ξir’s are independent, identically distributed (i.i.d.) samples drawn from Fc, and Mi is the number
of simulation runs/replications allocated to system i. Then, the system with the highest Ĥi is estimated as
the best system, i.e.,

b̂ := argmax
i∈I

Ĥi.

However, unless Mi → ∞ for every i, the estimates Ĥi’s are always subject to noise and b̂ need not be
b. Moreover, each run can be quite costly in terms of time or money. Under a finite computing budget
(e.g., finite total runs), one practical goal is to maximize the probability of correctly selecting b . Such
probability is usually referred to as the probability of correct selection (PCS), and a typical computing
budget allocation problem looks like

max
M1,...,MK

PCS

s.t.
K

∑
i=1

Mi = T

Mi ∈ Z+, ∀i ∈I ,

(2)
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where the total budget T is a positive integer and Z+ denotes the set of nonnegative integers. A key
observation is that (2) only formulates a static problem: we are asked to determine M1, . . . ,MK before
running any simulation. Although this seems to be a heuristic approach, one can derive simple yet powerful
algorithms from solving (2). For example, one of the most widely used algorithms, the OCBA method, is
actually built on an approximate solution to (2). This suggests that solving a static problem may provide
insight into developing simple but good heuristic dynamic algorithms.

2.2 A New Formulation Under Input Uncertainty

The traditional formulation always assumes full knowledge on Fc. But in practice Fc is rarely known
exactly and often must be estimated using finite real-world data. Assuming that Fc has a known parametric
form F(·;θ c) with some unknown parameter θ c ∈Θ⊆ Rp, we can define a function

Hi(θ) := EF(·;θ)[hi(ξ )]

to be the expected performance of system i under parameter θ . Further assume without loss of generality
that Hi(θ

c) 6= H j(θ
c) for all i 6= j ∈I so that the best system is unique. Suppose θ c is estimated using

maximum likelihood estimation (MLE), and θ̂N is the estimator of θ c using N i.i.d. input data samples
ψn := (ξ1,ξ2, . . . ,ξN) from Fc. The estimated mean performance of system i is now

Ĥi(θ̂N) :=
1

Mi

Mi

∑
r=1

hi(ξ̂ir), (3)

where ξ̂ir’s are i.i.d. samples drawn from F(·; θ̂N), and the estimated best system is given by

b̂ := argmax
i∈I

Ĥi(θ̂N). (4)

In this paper, we refer to the error in estimating the mean performance caused by finite simulation runs
as “stochastic uncertainty”, and the error in estimating Fc as “input uncertainty”. To get a sense of how
input uncertainty affects R&S, define

P := {θ ∈Θ | ∃i 6= b s.t. Hb(θ)< Hi(θ)} (5)

to be the set of parameters θ under which the best system is not b. We will refer to P as the perturbation
zone. Since θ c is estimated using finite input data, it is possible that θ̂N falls into P . Should this happen,
we will have argmaxi∈I Hi(θ̂N) 6= argmaxi∈I Hi(θ

c), which means that the optimal system is perturbed,
and the more we simulate, the less likely we will select the true best system b. Therefore, input uncertainty
has an undeniable impact on R&S, and it cannot be controlled by increasing simulation runs. If we are
not allowed to collect more input data, there is no guarantee that we will select b with a large probability.
For this reason, we consider the following problem.

Suppose we are given a budget T , which can be used to collect input data and run simulations. The unit
costs of input data and simulation run are c1 and c2, respectively. The budget can be thought of as time or
money. For example, a company looking to launch a new product wants to collect information (data) about
the potential market demand. Then, simulations are run to decide the optimal order quantities, inventory,
etc.. Both collecting data and running simulations can be time-consuming, thus incurring an opportunity
cost since its competitors may launch a similar product first and take up a market share. In this scenario,
the decision is carried out in a two-stage style: first we determine N, the number of input data samples to
collect; then using the input data, we compute the estimate θ̂N and use an adaptive algorithm to select the
best system from I based on (3) and (4). Let

Fr := σ

(
I1,h1

I1
, . . . , Ir−1,hr−1

Ir−1

)
, r = 2,3, . . . ,R
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be the filtration generated by past decisions and observations up to (including) the (r−1)th run, where Ir
is the system being simulated at the rth run and hr

Ir
is the corresponding observation. The problem can be

formulated as

max
N

E

[
max
{Ir}R

r=1

P
{

b̂ = b | θ̂N
}]

s.t. c1N + c2R≤ T

N,R ∈ Z+

Ir ∈ {1, . . . ,K}, r = 1,2, . . . ,R

Ir ∈Fr, r = 2,3, . . . ,R

(6)

where R is the total number of simulation runs. The formulation (6) is interpreted as follows. After
determining N, we collect N input data samples to compute θ̂N . The remaining budget will be used to
run simulations, where ξ̂ir’s are drawn independently from F(·; θ̂N) and the total number of runs is upper
bounded by (T − c1N)/c2. Which system to be simulated at the rth run must be adapted to Fr. After R
runs, we use (4) to output the estimated best system.

Formulation (6) characterizes a tradeoff between input uncertainty and stochastic uncertainty: if N
is too small, then θ̂N is likely to fall into the perturbation zone and simulation does not help; if N is
too large, there will not be enough budget to perform simulation, and the PCS may also be very low.
Although (6) is a well-defined problem, it is nearly intractable even if we know the closed forms of hi’s
and the true parameter θ c. There are two major difficulties: (i) we cannot evaluate the inner-layer optimal
value, otherwise the problem reduces to a two-stage stochastic program with recourse; (ii) the inner-layer
optimization is essentially a dynamic program of which an optimal policy is still an open question. To
develop a heuristic algorithm, we consider the following static problem.

max
N,M1,...,MK

PCS

s.t. c1N + c2

K

∑
i=1

Mi = T

N ∈ Z+, Mi ∈ Z+,∀i ∈I

(7)

Formulation (7) can be viewed as an approximation to (6). Similar to formulation (2), formulation (7)
requires us to predetermine N and Mi’s prior to data collection and simulation. Given full knowledge of
hi’s and θ c, (7) is an integer program with a nonlinear objective and some linear constraints. Later we will
see that in a special case, the integrality constraints can be dropped and the problem becomes a standard
nonlinear optimization problem. At the expense of generality, (7) has better tractability than (6). Hopefully,
by solving (7), we can derive a simple and effective algorithm to solve the dynamic problem (6).

3 ALGORITHM

3.1 Asymptotic Normality Under Input Uncertainty

In order to solve (7), we need to know more about the objective function, or how the PCS depends on N
and Mi’s. By definition, we have

PCS = P

{ ⋂
i6=b,i∈I

{
Ĥb(θ̂N)> Ĥi(θ̂N)

}}
,

where the estimate Ĥi implicitly depends on the number of runs Mi allocated to system i. Generally
speaking, the PCS usually does not allow a closed-form expression except for some very special cases (e.g.,
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two systems with normal performance). We follow the standard approach in the literature and approximate
the PCS using Bonferroni’s inequality:

PCS≥ 1− ∑
i 6=b,i∈I

P
{

Ĥb(θ̂N)≤ Ĥi(θ̂N)
}
. (8)

The next step is to approximate each probability in the summation. In the derivation of OCBA under
no input uncertainty, the idea is basically to approximate the distribution of Ĥb(θ

c)− Ĥi(θ
c) using the

central limit theorem (CLT). With input uncertainty, however, we cannot directly apply CLT, and we need to
derive asymptotic results tailored to the nested structure. To begin with, we will assume that the asymptotic
normality of MLE (see, e.g., (Lehmann and Casella 2006)) holds throughout this paper, i.e.,

√
N(θ̂N−θ

c)⇒N (0, [I(θ c)]−1) as N→ ∞,

where “⇒” means convergence in distribution, N stands for a normal distribution, and I(θ c) is the Fisher
information that a sample from F(·;θ c) carries about the true parameter θ c. For a given system i ∈I ,
assuming that Hi is differentiable at θ c, by the delta theorem (see, e.g., Casella and Berger (2002)),

√
N[Hi(θ̂N)−Hi(θ

c)]⇒N (0,σ2
Hi
), (9)

where σ2
Hi

:= ∇θ Hi(θ
c)ᵀ[I(θ c)]−1∇θ Hi(θ

c). When Hi cannot be evaluated exactly and is approximated by
sample mean as in (3), a straightforward asymptotic result is given by the following iterated limits.

lim
Mi→∞

√
N[Ĥi(θ̂N)−Hi(θ

c)]⇒N (0,σ2
Hi
) as N→ ∞,

where the limit of Mi→∞ is based on strong law of large numbers (SLLN). However, this is hardly useful
because in practice we can never send Mi to infinity. Let us derive an asymptotic result that allows more
flexibility for the growth of N and Mi. For a system i ∈I , define

σ
2
i (θ) := VarF(·;θ)[hi(ξ )]

to be hi’s variance under parameter θ . Let “a.s.” be short for “almost surely”. To make the setting more
rigorous, we make the following assumptions.
Assumption 1

(1) θ̂N → θ c a.s. as N→ ∞ (strong consistency of MLE).
(2) For every system i ∈I , σ2

i (θ) is a continuous function of θ .
(3) For every system i ∈I , Hi is differentiable at θ c.

Note that Assumption 1(2) implies that σ2
i (θ̂N)→ σ2

i (θ
c) a.s. by continuous mapping theorem. The

following theorem will be useful in developing an algorithm to solve (7).
Theorem 1 Let Assumption 1 hold. If there exist constants αi > 0 such that limN→∞ N/Mi = αi for all
i ∈I , then for any two systems i and j,

√
N
{
[Ĥi(θ̂N)− Ĥ j(θ̂N)]− [Hi(θ

c)−H j(θ
c)]
}
⇒N (0, σ̃2

i j) as N→ ∞,

where σ̃2
i j := σ2

Hi j
+αiσ

2
i (θ

c)+α jσ
2
j (θ

c) and

σ
2
Hi j

:= [∇Hi(θ
c)−∇H j(θ

c)]ᵀ[I(θ c)]−1[∇Hi(θ
c)−∇H j(θ

c)].
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Proof. Decompose the difference as follows.
√

N
{
[Ĥi(θ̂N)− Ĥ j(θ̂N)]− [Hi(θ

c)−H j(θ
c)]
}

=
√

N
{
[Ĥi(θ̂N)− Ĥ j(θ̂N)]− [Hi(θ̂N)−H j(θ̂N)]

}︸ ︷︷ ︸
XN

+
√

N[
{

Hi(θ̂N)−H j(θ̂N)]− [Hi(θ
c)−H j(θ

c)]
}︸ ︷︷ ︸

YN

.

Observe that YN is σ(θ̂N)-measurable and YN ⇒N (0,σ2
Hi j

). Let i denote the imaginary number
√
−1.

We study the characteristic function (ch.f.) of Xn +Yn. By Theorem 3.3.8 and Theorem 3.4.2 from Durrett
(2010),

E[eit(XN+YN)]

= E
{

eitYN ·E[eitXN | θ̂N ]
}

= E
{

eitYN ·E
[

exp
(

it
√

N[Ĥi(θ̂N)−Hi(θ̂N)]
)∣∣∣∣θ̂N

]
·E
[

exp
(

it
√

N[−Ĥ j(θ̂N)+H j(θ̂N)]
)∣∣∣∣θ̂N

]}
= E

{
eitYN ·

(
1−σ

2
i (θ̂N)

t2

2Mi

N
Mi

+o
(

1
Mi

))Mi

·
(

1−σ
2
j (θ̂N)

t2

2M j

N
M j

+o
(

1
M j

))M j
}

→ exp

(
−

σ2
Hi j

t2

2

)
exp
(
−αiσ

2
i t2

2

)
exp

(
−

α jσ
2
j t2

2

)
,

where the last step follows from the fact that |eit | ≤ 1 and the dominated convergence theorem from complex
analysis. Since (XN +YN)’s ch.f. converges to the ch.f. of N (0, σ̃2

i j), the proof is complete.

Theorem 1 characterizes the asymptotic normality of the difference between systems i and j’s estimated
mean performance. The intuition behind theorem 1 is that as N grows large, θ̂N approximately equals θ c,
and ξ̂ik’s can be roughly treated as i.i.d. random variables drawn from Fc. Thus, the correlation between
ξ̂ik’s and θ̂N diminishes as N→ ∞, leading to a sum of limiting variances in σ̃2

i j. Another way to interpret
this result is that for N large,

Ĥi(θ̂N)− Ĥ j(θ̂N)
D
≈N

(
Hi(θ

c)−H j(θ
c), σ̃2

i j/N
)
,

where
D≈ means “approximately distributed as” and

σ̃2
i j

N
=

σ2
Hi j

N
+

σ2
i (θ

c)

Mi
+

σ2
j (θ

c)

M j
.

Here, σ2
Hi j

characterizes the relative sensitivity of i and j’s true performance to input uncertainty (error in
estimating θ c), while σ2

i (θ
c) and σ2

j (θ
c) capture the amount of stochastic uncertainty (error in estimating

H) in simulation. Clearly, increasing N,Mi and M j controls the variance caused by each individual source
of uncertainty.

3.2 Approximate Solution

With theorem 1, we can derive an approximate solution to problem (7). For ease of presentation, we write
σ2

i (θ
c) as σ2

i for short. Let

δbi := Hb(θ
c)−Hi(θ

c), σ
2
bi :=

σ2
Hbi

N
+

σ2
b

Mb
+

σ2
i

Mi
.
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Recall that we have the following lower bound on the PCS.

PCS≥ 1− ∑
i6=b,i∈I

P
{

Ĥb(θ̂N)− Ĥi(θ̂N)≤ 0
}
.

From theorem 1 we know that for N large, Ĥb(θ̂N)− Ĥi(θ̂N)
D
≈N (δbi,σ

2
bi). Using this fact, we have the

following approximate PCS.

APCS := 1− ∑
i 6=b,i∈I

∫ − δbi
σbi

−∞

1√
2π

e−
t2
2 dt

The APCS here is almost the same as that in OCBA except that σbi now depends on σ2
Hbi

and the input
data size N. Since σ2

bi is a continuous function of N and Mi’s, we may ignore the minor technicality that
N and Mi’s are integers. Following the derivation of OCBA, we drop the nonnegativity constraints for the
moment. So the problem becomes

max
N,M1,...,MK

APCS

s.t. c1N + c2

K

∑
i=1

Mi = T.
(10)

The Lagrangian function is given by

F := APCS+λ

(
c1N + c2

K

∑
i=1

Mi−T

)
.

Then, from the Karush-Kuhn-Tucker (KKT) conditions we have

∂F
∂N

= c1λ −∑
i6=b

1
2
√

2π
exp
(
−

δ 2
bi

2σ2
bi

)
δbiσ

2
Hbi

σ3
biN

2
= 0, (11)

∂F
∂Mi

= c2λ − 1
2
√

2π
exp
(
−

δ 2
bi

2σ2
bi

)
δbiσ

2
i

σ3
biMi

2 = 0 ∀i 6= b, (12)

∂F
∂Mb

= c2λ −∑
i6=b

1
2
√

2π
exp
(
−

δ 2
bi

2σ2
bi

)
δbiσ

2
b

σ3
biMb

2 = 0, (13)

N +
K

∑
i=1

Mi = T. (14)

Note that from (12) we have
1

2
√

2π
exp
(
−

δ 2
bi

2σ2
bi

)
δbi

σ3
bi
= c2λ

M2
i

σ2
i
,

and plugging this into (11) yields

N =

√√√√c2

c1
∑
i6=b

M2
i σ2

Hbi

σ2
i

. (15)

Once Mi’s are determined, (15) can be interpreted in a very intuitive way. First, how big N is depends
on the cost ratio c2/c1: the more expensive the input data is compared with simulation, the fewer input data
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samples we should collect. Second, N is related to the weighted sum of M2
i /σ2

i , i 6= I , where the weights
are the asymptotic variances σ2

Hbi
. From definition we know that σ2

Hbi
depends on the gradient difference

∇Hb(θ
c)−∇Hi(θ

c), which is the relative sensitivity information.
To understand the sensitivity information, consider an extreme case where there exists constants Ci

such that Hi(θ) =Ci+θ . As θ changes, the systems’ mean performances simply shift by the same amount
and their order is always preserved. Therefore, we do not need to collect any input data: simply plug in
any θ ∈Θ would work. Notice that in this example, ∇Hi(θ

c) is the same for all systems, so σ2
Hbi

= 0 and
(15) tells us N = 0. Similarly, a bigger σ2

Hbi
means that system i has a larger impact on N, because the

difference between Hb and Hi is very sensitive to the estimation error of θ̂N . The importance of using
sensitivity information is also observed in Song (2016).

The last step is to solve for the Mi’s. Unfortunately, we cannot find simple analytical expressions for
them. Instead, we will resort to the well-known noise-to-signal allocation rule result from OCBA:

Mb = σb

√
∑
i 6=b

M2
i

σ2
i
,

Mi

M j
=

σ2
i /δ 2

bi

σ2
j /δ 2

b j
, i 6= j 6= b. (16)

In other words, we will use (16) as an approximate solution to (10). The reasons are threefold: (i) the
problem’s dimension scales up as the number of systems increases; (ii) during implementation, we only
have noisy estimates of σ2

Hbi
,δbi, etc., so there is no need to solve (10) exactly; (iii) keep in mind that we

actually want to solve a dynamic problem, and the OCBA allocation rule is known to possess good and
robust dynamic performance.

Let α0 := N/T and αi := Mi/T . We summarize the approximate solution as follows.

α0 =

√√√√c2

c1
∑
i 6=b

α2
i σ2

Hbi

σ2
i

, αb = σb

√
∑
i 6=b

α2
i

σ2
i

αi

α j
=

σ2
i /δ 2

bi

σ2
j /δ 2

b j
, i 6= j 6= b, c1α0 + c2

K

∑
i=1

αi = 1.

(17)

In (17), the fractions of N and Mi’s of T are independent of T , so this approximate solution is a fixed
allocation scheme. Nevertheless, we do not follow this fixed allocation in implementation. Instead, we
only use (17) to determine N, whereas Mi’s are computed using an adaptive algorithm. To justify this,
observe that the PCS can be written as

PCS = P{b̂ = b | θ̂N ∈P} ·P{θ̂N ∈P}+P{b̂ = b | θ̂N /∈P} ·P{θ̂N /∈P},

where P is the perturbation zone defined in (5). When N is fixed, P{θ̂N /∈P} is fixed and we can
only control the conditional PCS. If we are unlucky and θ̂N ∈P , no allocation rule can guarantee a good
P{b̂ = b | θ̂N ∈P}. Thus, our only hope is to maximize P{b̂ = b | θ̂N /∈P}. But if θ̂N /∈P , the problem
reduces to the traditional computing budget allocation problem with no input uncertainty, where OCBA
can be used to effectively solve the problem. From this perspective, the key to solving (6) is to choose a
reasonable N. After that, any state-of-the-art allocation procedure can be called as a submodule.

3.3 Algorithm Design

Several aspects need to be taken into account when it comes to designing an implementable algorithm.
On the one hand, some intermediate quantities in (17) are unknown and must be estimated; on the other
hand, these estimates are subject to error, and we want to correct the error as the total budget increases.
This requires us to design a sequential allocation scheme with online updating, and it turns out that some
difficulties arise in the presence of input uncertainty. Let us first look at the estimation part.
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Algorithm 1 OCBA

1: Input: θ̂N ,M0,∆,B.
2: Initialization: Run M0 replications for all systems. Compute Ĥi(θ̂N) and σ̂2

i (θ̂N) via (18). Set Mi←M0
for all i, and B′← KM0 +∆.

3: while ∑i∈I Mi ≤ B do
4: Compute β1, . . . ,βK using (16).
5: for i = 1, . . . ,K do
6: Run max{0,bβiB′c−Mi} replications for system i.
7: Mi←max{Mi,bβiB′c}.
8: Update Ĥi(θ̂N) and σ̂2

i (θ̂N).
9: end for

10: B′← B′+∆.
11: end while
12: Output: b̂ := argmaxi∈I Ĥi(θ̂N).

The intermediate quantities to be estimated are (i) the parameter θ c; (ii) the mean performance Hi(θ
c);

(iii) the performance variance σ2
i ; (iv) the sensitivity information ∇Hi(θ

c). If no input data has been
collected, then first use a small budget to collect N0 (e.g., 20) input data samples. Then, MLE can be used
to get an estimate θ̂N , and we can directly use the input data to run N0 simulation replications for each
system to get hi(ξr)’s. Now Hi(θ

c)’s and σ2
i (θ

c)’s are estimated via

Ĥi(θ
c) =

1
N0

N0

∑
r=1

hi(ξr), σ̂
2
i =

1
N0−1

N0

∑
r=1

[hi(ξr)− Ĥi(θ
c)]2. (18)

There are many ways to estimate the gradient ∇Hi(θ
c) (see e.g., Fu (2006) for a review). Since we

are considering a parametric case, we assume that F(·;θ) has a density f (·;θ) to which we can apply the
likelihood ratio (LR) method (or the score function method), i.e., use

1
N0

N0

∑
r=1

hi(ξr)
∇θ f (ξr; θ c)

f (ξr; θ c)
(19)

as an unbiased and consistent estimator of ∇H(θ c). In practice, θ c is replaced by θ̂N in (19). We may
also apply LR if F has a probability mass function (p.m.f.) which is differentiable w.r.t. θ (e.g., Bernoulli
distribution). The benefit of using LR is that once we have the simulation outputs hi(ξr), it takes almost
no extra time to compute the weighted average (19). The downside, however, is that the LR estimator may
have a large variance due to the change of measure. Since the focus of this work is not gradient estimation,
we refer interested readers to Rubinstein and Shapiro (1993) for more extensive discussions.

Before we present a two-stage algorithm, let us briefly review the OCBA algorithm in our context.
The pseudo code of OCBA is given in algorithm 1. Apart from the aforementioned quantities, we also
need to specify ∆, the increment of the current budget B′ at each iteration. Here the budget B refers to
the total number of runs, and βi = Mi/(∑i Mi). To initialize the algorithm, we use M0 replications to get
a rough estimate of the mean and variance of each system’s performance. Then we enter the loop, where
the current budget B′ gets increased by ∆ at every iteration. The variable Mi represents the budget that has
been allocated to system i. We only run more replications if bβiB′c > Mi, because even if bβiB′c < Mi,
we cannot take back those Mi−bβiB′c replications. New simulation outputs are used to update the Ĥi(θ̂N)
and σ̂2

i (θ̂N). After the total budget is exhausted, the system with the highest sample mean is selected as
the best system.

Now we are ready to present a two-stage algorithm, OCBAIU, which stands for “OCBA under Input
Uncertainty”. The details of OCBAIU are provided in algorithm 2. OCBAIU starts off by collecting a small
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Algorithm 2 OCBAIU
1: Input: c1,c2,N0,M0,∆,T .
2: Initialization: Collect N0 input data samples and compute θ̂N using MLE. Run M0 replications for all

systems using the input data. Compute Ĥi(θ
c) and σ̂2

i via (18), and compute the gradients via (19).
3: Use (17) to determine α0.
4: if bα0Tc> N0 then
5: Collect additional bα0Tc−N0 input data samples.
6: Update θ̂N . Set N← bα0Tc.
7: end if
8: B← b(T − c1N− c2KN0)/c2c. Call algorithm 1.
9: Output: b̂ := argmaxi∈I Ĥi(θ̂N).

number of input data samples, which are fed directly into simulation for estimating intermediate quantities.
After N is determined, OCBA is used to solve the second-stage problem, i.e., finding argmaxi Hi(θ̂N).

4 NUMERICAL STUDY

The best way to demonstrate OCBAIU’s performance is to show how the PCS changes as the total budget
T increases. For illustrative purpose, we apply our algorithm to a simple quadratic case,

hi(ξ ) =−(i−ξ )2, I = {−3,−2,−1, . . . ,5,6}.

In words, we have ten systems corresponding to i ranging from −3 to 6. We assume that the input data ξ

follows an exponential distribution with rate θ c = 0.5. Then Hi has a closed form

Hi(θ) =−E[(i−ξ )2] =− 2
θ 2 +

2i
θ
− i2.

The optimal design is i = Eξ = 2, namely, b = 6. The LR estimator of Hi(θ
c) is given by

∇̂Hi(θ c) =
1

Mi

Mi

∑
r=1

hi(ξ̂ir)

(
1

θ̂N
− ξ̂ir

)
.

To study how the cost parameters c1 and c2 affects OCBAIU’s allocation, we study two cases: (i)
c1 = 10,c2 = 1 and (ii) c1 = 2,c2 = 1. Let the total budget T increase from 500 to 2500 with an increment
of 500. For a given budget, the PCS is estimated using 10,000 independent replications. We set N0 =M0 = 20
and ∆ = 50. To examine how well OCBAIU determines α0, we also compare OCBAIU’s allocation with
α0 fixed at different levels. The resulting PCS curves are shown in Figure 1.

In the first case, OCBAIU outperforms α0 = 0.02,0.06 and 0.08 while it is slightly worse than α = 0.04.
In the second case, OCBAIU is better than all fixed values of α0. Also, the α0 computed by OCBAIU
increases from around 0.04 to 0.2 as the cost of input data decreases from 10 to 2. This agrees with our
intuition that more input data should be bought if it is cheaper, and it demonstrates the adaptiveness of our
algorithm. In particular, if a decision maker does not make use of OCBAIU and simply allocates half (or
any arbitrary portion) of the budget to collecting input data, then α0 will be 0.05 and 0.25 in these two
cases, both of which will lead to an inferior PCS than OCBAIU.

Admittedly, the performance of OCBAIU is not totally satisfactory, mostly due to the fact that OCBAIU
is a “semi-heursitic” algorithm based on many approximations. It is possible to find an even better α0 by
enumerating more possibilities. However, in practice running the PCS curves is extremely expensive, and
brute-force enumeration is infeasible. Furthermore, note that the formulation we consider is a complex
two-stage stochastic program which does not have a well-studied solution. The purpose of this paper is
to draw attention to this problem and provide one efficient method to solve it. Two ways to improve the
algorithm might be the following.
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1. Explore the structure of PCS to see if a better approximation is possible. A deeper understanding
of the objective function is always helpful.

2. Improve the algorithm for the case of no input uncertainty. This is equivalent to improving the
solution quality of the second-stage problem.
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(a) Case i: c1 = 10,c2 = 1.
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(b) Case ii: c1 = 2,c2 = 1.

Figure 1: PCS curves.

5 CONCLUSION AND FUTURE WORK

This paper considers a new formulation for simulation budget allocation under input uncertainty. By
studying the asymptotics of a system’s performance, we apply the framework of OCBA and develop an
algorithm, OCBAIU, which can be viewed as an extension of OCBA to balance the effort in learning the
input model and doing optimization. Nevertheless, to further enhance the two-stage algorithm towards a
multi-stage sequential allocation procedure, we must perform online updating in an effective way so that the
PCS converges fast. Another open question is whether the PCS still has exponential decay in the presence
of input uncertainty. These are some of the fundamental questions we hope to answer in our future work.
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