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ABSTRACT

Ranking and Selection (R&S) procedures are designed for selecting the best among a finite set of systems
using stochastic simulation, guaranteeing the quality of the final selection. Instead of assuming a known
lower bound on the difference between the best and others, we consider the probably approximately
correct (PAC) selection formulation, which ensures a high quality solution with high probability for all
configurations. In this paper, we present a new fully sequential selection procedure, called the Envelope
Procedure (EP), which accommodates a variety of sampling rules that, together with a carefully defined
termination condition, ensures a PAC selection. A particular sampling rule that achieves good efficiency is
proposed. We compare the efficiency of the EP with some existing procedures in numerical experiments,
and the results show that the EP saves considerable computational effort in many problem configurations.

1 INTRODUCTION

Stochastic simulation is often used in identification of the best among a finite set of alternative systems,
where the best refers to the one with highest (or lowest) expected performance. The central problem is
to decide how many samples to take from each system so that we have some guarantee on the quality of
the selected system. When the number of systems is small enough that each system can be simulated,
at least to some degree, such a problem is called a Ranking and Selection (R&S) problem. The goal in
designing a R&S procedure is to allocate samples to systems wisely so that a good solution can be achieved
while taking as few samples as possible. One may notice that the R&S problems are closely related to
the best-arm problems or pure exploration problems in multi-armed bandit (MAB) literature. Though the
algorithms designed for best-arm problems usually have different assumption on the simulation outputs,
e.g., bounded (Even-Dar, Mannor, and Mansour 2002) or sub-Gaussian outputs (Jamieson et al. 2014),
the essence of the problems are quite similar. In the work of Jamieson and Nowak (2014), the best-arm
algorithms are divided into three general strategies: action elimination (AE), UCB and LUCB. Though
the algorithm we propose in this paper belongs to none of these families, the philosophy in designing its
stopping rule and sampling rule can be viewed as a variation of the mixture of them. Thus, we regard this
work as a connection between R&S and best-arm problems.

There are two approaches for solving R&S problems in general: 1) given a desired frequentist guarantee
on the quality of the selected system, the algorithm collects samples from systems until some stopping
criterion for delivering the guarantee is met; 2) given a finite computational budget, the algorithm collects
samples from systems in order to maximize some measure of the quality of the selection, e.g., the posterior
probability of correct selection. The first approach is often called the frequentist approach, while the
second approach is often referred to as the Bayesian approach. Both approaches can collect samples either
deterministically or sequentially based on the statistics acquired so far.

2225978-1-5386-3428-8/17/$31.00 ©2017 IEEE



Ma and Henderson

We focus on the frequentist approach. A great deal of research in this area (Paulson 1964, Rinott 1978,
Kim and Nelson 2001, Hong 2006, Frazier 2014) uses the indifference-zone (IZ) formulation, dating back
to the seminal work of Bechhofer (1954). IZ procedures guarantee to select the unique best system with
probability exceeding a given confidence level, assuming that the difference between the best and all others
is sufficiently large. Another form of guarantee is called probably approximately correct (PAC) selection,
which is also referred to as good selection (Nelson and Banerjee 2001, Ni et al. 2017). It guarantees, with
high probability, to select a system whose performance is not too far away from that of the best system.

Bayesian approaches and related approaches based on approximation of the frequentist guarantee, though
not explored in this paper, have been studied extensively in the literature, e.g., Chen et al. (2000), Chen
and Lee (2011), Chick and Inoue (2001a), Chick and Inoue (2001b); see Chen et al. (2015). Procedures
developed under these formulations typically require fewer samples than frequentist methods to deliver
good solutions (Branke, Chick, and Schmidt 2007). However, they do not explicitly deliver an exact PCS
or PAC guarantee.

In this paper, we develop a fully sequential procedure, that we call the envelope procedure (EP), which
provides a PAC guarantee. The PAC guarantee of EP is based on the construction of the confidence intervals
(CIs) of certain widths. The idea of linking CIs and R&S is also adopted in Lee and Nelson () and Lee and
Nelson (2015), but they consider pairwise difference between two systems, while our procedure is based
on events for each system one at a time, and the methods of constructing CIs are quite different. The EP is
designed to preserve the PAC guarantee over a wide range of sampling rules, thereby affording considerable
flexibility in design. Thus, the EP is really a family of procedures. We propose a particular sampling
rule that is designed to achieve high efficiency. Numerical experiments demonstrate that, across various
configurations, EP is more efficient than the KN procedure (Kim and Nelson 2001), broadly considered
the state-of-the-art IZ R&S procedure. Comparing to BIZ (Frazier 2014), an IZ procedure that has a
tight lower-bound on PCS for the worst-case configuration in continuous time, EP shows considerable
improvement for configurations with spread-out expectations, especially for large-scale problems. We
further compare thes procedures based on their empirical PAC instead of the input parameter for lower
bound of PAC, and the EP is dramatically more efficient than the other two under this setting. The statistical
validity of EP is also confirmed through numerical experiments.

The remainder of this paper is organized as follows. § 2 formally states the formulation of the problem.
We discuss the Envelope Procedure in § 3, first introducing the procedure in § 3.1, then proving its statistical
validity in § 3.2, followed by a specific choice of sampling rule in § 3.3 and discussion of certain input
parameters in § 3.4. We then summarize the numerical results in § 4, followed by conclusions in § 5.

2 PROBLEM FORMULATION

Suppose we have k alternative systems. Let Xi j indicate the jth sample from System i. We assume that
(Xi j : 1 ≤ i ≤ k, j ≥ 1) are independent and normally distributed, and that Xi j has mean μi and variance σ2

i
for all 1 ≤ i ≤ k and j ≥ 1. Here we assume that σ2

i , i = 1,2, . . . ,k are known, but can be unequal. Our
goal is to identify the index i with the highest mean μi by observing samples sequentially. Without loss of
generality, we assume that the true means of the systems are indexed so that μ1 ≤ μ2 ≤ ·· · ≤ μk, although
we do not know or exploit this ordering except to simplify the presentation.

The quality of the solution provided by R&S procedures can be measured by two forms of probabilistic
guarantee. The dominant form of guarantee is the indifference-zone (IZ) guarantee, which is given in the
form of the probability of correct selection (PCS). That is, the probability of selecting the best system k
is no less than 1−α for some confidence level 0 < 1−α < 1, provided that the difference between the
expectation of the best system and that of the second best system is at least δ . Formally, let I∗ be the
system selected as best, then an IZ guarantee takes the form

PCS = P(I∗ = k)≥ 1−α, if μk −μk−1 ≥ δ .
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Here the assumption on the problem configuration μk −μk−1 ≥ δ is often referred as the indifference-zone
assumption, and the constant δ is called the indifference-zone parameter.

The other form of guarantee is called a probably approximately correct (PAC) selection, which ensures
that the probability of being approximately correct (also abbreviated PAC), i.e., selecting a system whose
expectation is within δ of the best, is no less than 1−α . This can be stated as

PAC = P(μI∗ ≥ μk −δ )≥ 1−α.

We prefer this form of guarantee since it requires no assumption on the problem configuration, and it is
not hard to see that all procedures that provide a PAC guarantee also provide a PCS guarantee, while the
converse does not necessarily hold.

A fully sequential R&S procedure usually has three key parts: a sampling rule, a screening rule and a
stopping rule. The sampling rule defines how to allocate the computational budget to each system in each
iteration. The computational budget allocation is either pre-determined or determined based on statistics
collected and computed in the screening stage. The whole procedure terminates when the stopping rule is
satisfied.

3 THE ENVELOPE PROCEDURE

In this section we introduce the Envelope Procedure (EP) for the known-variance case. We first describe
the procedure in § 3.1, where the sampling rule is not specified since it can incorporate any valid sampling
rule. Then we prove the statistical validity of the procedure in § 3.2. A specific choice of sampling rule is
discussed in § 3.3, followed by discussion about certain input parameters in § 3.4.

3.1 The Procedure

The EP is a fully sequential procedure, meaning that it iteratively allocates samples to each system and
screens the systems until the stopping rule is met. We denote the total number of samples of System i
up to iteration r ≥ 0 as ni(r) and the number of samples to take from System i in iteration r as mi(r), so
ni(r+1) = ni(r)+mi(r), where ni(0) = n0, i = 1,2, . . . ,k is the number of samples to take from each system
in the initial stage. In each iteration, B = ∑k

i=1 mi(r) samples will be drawn from systems in total. We let
X̄i(n) = 1

n ∑n
j=1 Xi j denote the sample mean of the first n samples from System i. The sample size of each

system in the initial stage n0, together with the confidence level 1/k < 1−α < 1, the indifference-zone
parameter δ > 0 and the computational budget of each iteration B are given as inputs.

Envelope Procedure

1. Setup. Let a = 1− (1−α)1/k. Compute N and η , such that

P
(
Wn ≤ η

√
n, ∀n = 1,2, . . . ,N

)≥ 1−a, (1)

where Wn is a standard Brownian motion observed at discrete time n, and

2η maxi σi√
N

≤ δ . (2)

Here N is the maximum number of samples that can be taken from a system. The procedure is
guaranteed to stop before any ni(r) exceeds N. We show later that it is possible to choose N and
η in this manner.

2. Initialization. Initialize the iterator r = 0. Obtain n0 samples Xi j, j = 1,2, . . . ,n0 from each system
i = 1,2, . . . ,k. Compute sample means X̄i(n(0)) and let

i∗ = argmax
i=1,2,...,k

X̄i(n(0))
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be the index of the system with highest sample mean, breaking ties arbitrarily.
3. Stopping Rule. If

X̄i∗(ni∗(r))− ησi∗√
ni∗(r)

≥ max
j �=i∗

X̄ j(n j(r))+
ησ j√
n j(r)

−δ , (3)

go to Step 5. Otherwise go to Step 4.
4. Sampling and Screening. Compute mi(r) for i = 1,2, . . . ,k according to the sampling rule, and

take mi(r) samples from each system i. Let r = r+1 and update ni(r) and X̄i(ni(r)). Compute i∗,
the index of the system with highest sample mean. Go to Step 3.

5. Termination. Stop and select system I∗ = i∗ as the best.

We motivate the EP as follows. First, for each iteration r, we interpret

UCLi(ni(r)) = X̄i(ni(r))+
ησi√
ni(r)

LCLi(ni(r)) = X̄i(ni(r))− ησi√
ni(r)

as the upper and lower confidence limit of μi, respectively, and the range between them as its confidence
interval. We call this range between the UCL and LCL the “envelope”, which is why this procedure is called
the Envelope Procedure. The width of the confidence interval 2ησini(r)−1/2 monotonically decreases as
more samples are drawn. We carefully choose parameters η and N so that with high probability,

LCLi(n)≤ μi for i = 1,2, . . . ,k−1, and

UCLk(n)≥ μk,

for all n = 1,2, . . . ,N. Since N is chosen so that the procedure will surely terminate before the sample
size of any system exceeds N, the inequalities for UCLi(n) and LCLi(n) both hold throughout the whole
procedure with high probability. We demonstrate that such η and N exist, and show how to compute them,
in § 3.4.

In each iteration, we allocate samples to systems according to the sampling rule, take samples and
update the upper and lower confidence limits. Once we see that the lower confidence limit LCLi∗(ni∗(r))
of System i∗, the one with the highest sample mean, is no less than the highest UCL j(n j(r))−δ , j �= i∗,
we select System i∗ and stop. Since the inequalities for the upper and lower confidence limits should hold
with high probability when the procedure terminates, we expect that the selected system i∗ is probably a
good system. We prove this result in § 3.2.

The behavior of the EP is illustrated in Figure 1. The example has k = 3 systems. The sample mean
X̄i(ni(r)) and upper and lower confidence limits UCLi(ni(r)) and LCLi(ni(r)) for each system i are plotted
versus the iterator r. In this example we use the sampling rule discussed in § 3.3. Samples are drawn from
systems iteratively, and the total sample size varies across systems. Due to the sampling rule, the green
system has fewer samples and hence wider confidence interval, since its mean is relatively lower than
those of the red one and blue one. As ni(r) increases for each system, the sample means are converging
to their true means and the confidence intervals are shrinking. Finally, when the difference between the
lower confidence limit of System i∗ (the red one) and the highest upper confidence limit of the others is
no more than δ , the procedure stops and we take i∗ as the output. Here the final upper confidence limits
of the inferior systems (green and blue) are overlapping (the second dotted line from the top) since they
are very close, which is due to our choice of the sampling rule.
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Figure 1: Illustration of EP. Systems are distinguished by different colors. The solid lines are X̄i(n)’s and

the dashed lines are UCLi(n)’s and LCLi(n)’s throughout the procedure. The dotted lines are the final

upper and lower confidence bands when the procedure stops. The black dashed line indicates termination

of the procedure when the stopping rule is met.

3.2 Probabilistic Guarantee

The statistical guarantee of the EP relies on the following assumption on the distribution of the simulation
output, which is common in the R&S literature.

Theorem 1 Suppose that for each system i = 1,2, . . . ,k, the simulation outputs Xi j, j = 1,2, . . . are i.i.d.
samples from distribution N (μi,σ2

i ), and are independent for different i. Then the EP terminates in finite
time and selects a system I∗ that satisfies μI∗ ≥ μk −δ with probability at least 1−α , i.e., the EP provides
a PAC selection.

We discuss the key insights for proving Theorem 1, and defer the full proof to a journal version of this
paper.

Sketch of Proof. First, by (2), the stopping rule (3) is guaranteed to be satisfied before any ni(r) exceeding
N. Second, consider the event that the sample means X̄i never cross the upper (for i = 1,2, . . . ,k−1) or
lower (for i = k) confidence limits before the procedure terminates. By (1), the probabilities of those events
are no less than 1−a, so the probability of their intersection, denoted as A, is no less than 1−α , by the
independence assumption.

Then we consider a sample path ω ∈ A. The stopping rule (3) and the way we construct A jointly
ensure that the final selection of ω is a good selection. Therefore, A implies good selection, so the PAC
of EP is lower bounded by P(A)≥ 1−α .
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3.3 The Sampling Rule

The statistical validity of the EP does not depend on a specific sampling rule. However, the choice of
sampling rule affects the efficiency of the procedure, i.e., the total number of samples to draw before the
procedure terminates. Since we do not eliminate systems, the sampling rule determines how much effort is
wasted on inferior systems. The philosophy is that we want to focus computational effort on those systems
that are more likely to be the best system, or one of its strong competitors.

Here we propose a sampling rule that allocates the computing budget in a greedy fashion. In each step
it tries to shrink the absolute value of the (negative) gap between the lower confidence bound of the system
with highest sample mean and the highest upper confidence bound of all the other systems. In other words,
it attempts to minimize the difference between the right-hand side and left-hand side of the inequality (3),
ignoring the change in the sample means.

Formally, in each iteration r we solve the optimization problem

argmin
m1(r),m2(r),··· ,mk(r)

{
max
j �=i∗

X̄ j(n j(r))+
ησ j√

n j(r)+m j(r)
−
[

X̄i∗(ni∗(r))− ησi∗√
ni∗(r)+mi∗(r)

]}
,

s.t.∑
i

mi(r) = B,

which is equivalent to

argmin
mi∗ (r)

{
ησi∗√

ni∗(r)+mi∗(r)
+ argmin

m j(r), j �=i∗

{
max
j �=i∗

X̄ j(n j(r))+
ησ j√

n j(r)+m j(r)

}}
,

s.t.∑
i

mi(r) = B

For convenience we drop the iterator r. Let Ui = X̄i+ησi(ni+mi)
−1/2 for i = 1,2, . . .k be the shorthand

of UCLi, the upper confidence limit of System i. We enumerate mi∗ and solve the inner optimization problem.
Finally take mi∗ that minimizes the outer objective function and the corresponding m j, j �= i as our solution;
see Algorithm 1.

Algorithm 1 Greedy sampling rule

1: Let Ui ← X̄i +ησi/
√

ni for each i, i∗ ← argmaxi X̄i, j∗ ← argmax j �=i∗ Uj.

2: Let m j ← 0 for j �= i∗, mi∗ ← B, b ← 1.

3: Let minV ← ησi∗√
ni∗+B +Uj∗ , minMi = mi for each i.

4: while mi∗ > 0 do
5: Let mi∗ ← mi∗ −b, m j∗ ← m j∗ +b, Uj∗ ← X̄ j∗ +ησ j∗/

√
n j∗ +m j∗ .

6: Let j∗ ← argmax j �=i∗ Uj, V ← ησi∗/
√

ni∗ +mi∗ +Uj∗ .

7: if V < minV then
8: Let minV ←V , minMi = mi for each i.
9: Let mi ← minMi for each i.

Initially we set mi∗ = B and m j = 0 for each j �= i∗, and initialize the minimum value of the objective
function minV and the corresponding allocation minM to be the current value of the objective function and
current allocation, respectively. Then we iteratively update the allocation. In each iteration, we take b = 1
sample(s) allocated to i∗ and instead allocate them to j∗, the system with highest Uj, so that its confidence
bound is shrunk and hence the inner objective function decreases since it only depends on Uj∗ . Notice that

2230



Ma and Henderson

the identity of j∗ may change after that. Then we recalculate V , the value of the objective function, and
update minV and minM if V < minV. Finally, we set our allocation mmm = (m1,m2, . . . ,mk) to be minM, the
allocation that minimizes the objective function.

In our iterations, we keep finding j∗, the minimizer of Uj, allocating samples to it and updating Uj∗ . In
order to do that efficiently, we construct and maintain a min heap H for Uj. Each time we extract the node
with the minimum value of Uj, which is j∗, update its value and push it back to H. The time complexity
of these operations is O(logk), so the total running time is O(B logk/b).

We can set the step length b to a larger value than 1 in an attempt to increase the efficiency of the
algorithm. Notice that the value of B/b determines the maximum number of systems from which we can
draw samples in each iteration. In practice we suggest b = B/10 or b = B/100.

3.4 On Computing the Parameters η and N

3.4.1 Existence of η and N

The parameter η determines the width of the confidence interval, and hence how quickly the stopping rule
is met. In order for the procedure to be valid, we need to choose η together with N, so that both (1) and
(2) are satisfied at the same time. It is not immediately clear that one can satisfy both conditions. We first
establish this, and then give a method for computing N and η by simulation. To prove the existence, we
need the following lemma.

Lemma 1 Let (Wn,n = 1,2, . . .) be a random walk with independent increments Xn with support R, and
F(·) be the cumulative distribution function of Xn. then

P(Wn ≤ z |W1 ≤ y1,W2 ≤ y2, . . . ,Wn−1 ≤ yn−1)≥ P(Wn ≤ z), ∀z,y1,y2, . . . ,yn−1. (4)

We provide a sketch of the proof of the above lemma and the following proposition, referring to the
journal version of this paper for the full proof.

Sketch of Proof. We prove it by induction. The base case automatically holds. Second, suppose that
(4) holds for n−1. Let Vn−1 be the random variable that follows the conditional distribution Gn−1(x) =
P(Wn−1 ≤ x|W1 ≤ y1,W2 ≤ y2, . . . ,Wn−1 ≤ yn−1). Using the induction hypothesis, we can prove that Vn−1

is smaller than Wn−1 in the usual stochastic order (denoted by Vn−1 ≤st Wn−1). Next, since Wn =Wn+1 +
Xn, P(Wn ≤ z |W1 ≤ y1, . . . ,Wn−1 ≤ yn−1) and P(Wn ≤ z) can be written as E [F (z−Vn−1) |Vn−1] and
E [F (z−Wn−1) |Wn−1], respectively. Then we can compare these two expectations by using Theorem
1.A.3 of Shaked and Shanthikumar (2007) on stochastic order for monotonic functions and (1.A.7) of
Shaked and Shanthikumar (2007) on stochastic order of expectations, to complete the induction step and
hence the proof.

Now we prove the existence of parameters N and η that satisfy both conditions.

Proposition 1 For any a ∈ (0,1], c > 0, ∃ (η ,N), such that

P
(
Wn ≤ η

√
n, ∀n = 1,2, . . . ,N

)≥ 1−a, and (5)

cη ≤
√

N. (6)

Sketch of Proof. First, by lemma 1, P(Wn ≤ η
√

n, ∀n = 1,2, . . . ,N) ≥ Φ(η)N . Setting η =
√

N/c to
make (6) hold, and using a well-known tail inequality for the standard normal distribution 1−Φ(x) ≤

1√
2πx

e−x2/2 (Feller 1968, Section 7.1), in order to prove (6), it suffices to show that c√
2πN

e−
N
2c ≤ 1−(1−a)

1
N .

Then we can prove that this inequality holds for large enough N by considering the limit of the ratio between
the left-hand side and the Taylor expansion of the right-hand side, which confirms the existence of such
N and corresponding η .
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In Proposition 1, (5) and (6) are equivalent to (1) and (2) by setting c = 2maxi σi/δ . Hence, the
existence of η and N is assured.

3.4.2 Computing η and N

In the EP, only η is used during the procedure, while N is an auxiliary parameter for computing η . Hence
we only consider (1) and use naive Monte Carlo to calculate η for different values of k and N by simulating
the random walk with normally distributed increments. Here we fix α = 0.05. As seen in Table 1, for fixed
k (or equivalently, fixed a), as N increases by orders of magnitude, the corresponding η only increases by
a small amount. For example, when k = 1000, η only increases by 1% when N increases from 104 to 105,
which only causes an increase in the total number of samples by 1%. Practically speaking, then, we can
pick a large enough N so that (2) is always satisfied, and then set η to be the corresponding value. On
the other hand, as we will see in § 4, the estimated PAC of EP is always much larger than needed, so in
practice even though the value of η we pick is a little smaller than needed in the inequality (1), we expect
that the procedure is still able to deliver the pre-specified PAC. Therefore, even though in our experiments
we pick large enough N so that the theoretical validity of EP is guaranteed, in practice, as long as the value
of η and N are not much smaller than required by (1) and (2), we expect that the EP should still work
well and deliver the pre-specified PAC.

Table 1: η for different values of k and N.

k N = 103 N = 104 N = 105

10 3.58 3.69 3.77

100 4.20 4.30 4.37

1000 4.73 4.83 4.88

10000 5.22 5.28 5.35

Based on our simulation results, we give the empirical formula

η ≈ 3.015+0.711log10 k−0.035(log10 k)2

for computing η for a given k. This should prove sufficient in practice provided that the maximum number
of samples needed for one system, N, is not too large, e.g., N ≤ 109.

4 NUMERICAL EXPERIMENTS

In this section, we summarize the results of our numerical experiments to demonstrate the performance
of the EP on standard test problems, and compare it to two leading R&S procedures: the KN procedure
(Kim and Nelson 2001) and the BIZ procedure (Frazier 2014). The KN procedure improves the efficiency
over previous IZ procedures in a number of configurations, and is somewhat of a yardstick for selection
procedures. The BIZ procedure is a Bayes-inspired procedure, but it delivers a pre-specified frequentist
PCS and has a tight lower bound on worst-case PCS under the IZ setting. BIZ has been seen to require fewer
samples than KN on a variety of problems (Frazier 2014) and is regarded as a state-of-the-art procedure.
Since we focus on known-variance cases, we modify KN from its original version so that it exploits the
fact that the variances are known. All free parameters are set to their default values in the original papers.
We use the sampling rule described in § 3.3.

4.1 Statistical Validity and Efficiency

We use 4 classes of test problem configurations: 1) Slippage Configuration (SC), where μ1 = μ2 = . . .=
μk−1 = 0 and μk = δ . This is typically the most difficult configuration since the difference of the expectations
between the best (and the only good system) and all other systems is exactly δ ; 2) Monotone Increasing
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Means (MIM), where μi = δ (i− 1); 3) Random problem instances 1 (RPI1), where μi ∼ N (0,4δ 2),
and are i.i.d.; and 4) Random problem instances 2 (RPI2), where μi ∼ N (0,25δ 2), and are i.i.d. The
variances for all configurations are Chi-squared distributed: σ2

i ∼ χ2(4), and are i.i.d. We set δ = 0.1 and
α = 0.05 for all configurations. The samples Xi j are normally distributed with mean μi and variance σ2

i
and are independent, as assumed in our problem formulation. For the size of the problems, we choose
k = 100,1000,10000 for small, medium and large-scale problems, respectively.

Regarding statistical validity, we report the empirical PAC in Table 2, which is equal to PCS for SC and
MIM problems. For all of the configurations the estimated PAC of EP is 100%, which means that the EP
never errs in selecting an approximately correct system as the final output. By way of comparison, the PAC
of KN is about 98% in SC, and is 100% in all other configurations. The PAC of BIZ is lowest, and it almost
achieves the desired 95% accuracy in SC. These results indicate that EP is reliable, but this over-delivery
of the PAC guarantee suggests that EP takes more samples than are needed. Hence, even though EP is
more efficient than KN and BIZ in many of our instances, there is room for further improvement.

Table 2: PAC of different procedures.

Configuration k KN BIZ EP

100 0.981 0.961 1.000

SC 1000 0.976 0.955 1.000

10000 0.985 0.959 1.000

100 1.000 0.998 1.000

MIM 1000 1.000 0.987 1.000

10000 1.000 0.976 1.000

100 1.000 1.000 1.000

RPI1 1000 1.000 0.999 1.000

10000 1.000 0.999 1.000

100 1.000 0.998 1.000

RPI2 1000 1.000 1.000 1.000

10000 1.000 1.000 1.000

We compare the efficiency of EP with KN and BIZ based on n = ∑k
i=1 ni, the total number of samples

needed for the procedures to terminate. For each configuration, we run 100 experiments, and give the
average ratio between the sample size of EP and that of KN, and the average ratio between the sample size
of EP and BIZ. We also give the average sample size of each procedure for each configuration. For each
class of configurations, the variances (and expectations for RPI1 and RPI2) are randomly generated, and so
the average ratio perhaps better captures the difference between the efficiencies of the different procedures.
The average sample sizes are given to show the magnitude of the problem instances. The results are shown
in Table 3.

For the Slippage Configuration, the EP is about 20% more efficient than KN in medium and large
scaled problems. BIZ is nearly tight (tight when viewed in continuous time and with common variance)
for this configuration, so it is not surprising that BIZ is more efficient than EP in this case.

In practice we rarely see problems as difficult as the SC. Usually the means of systems are more
spread out, as in our other instances. For the MIM configurations, EP outperforms KN, especially for
medium-scale and large-scale problems, where EP uses only about half of the samples used by KN. EP
and BIZ are comparable, with EP having a slight edge over BIZ for medium and large-scale instances.

For RPI1, EP shows great improvement in efficiency over both KN and BIZ. For RPI1, EP only uses
72%, 40% and 29% of those used for KN for different scaled problems. Comparing with BIZ, EP is
dramatically more efficient for medium-scale and large-scale problems. For RPI2, the improvement is
even greater. Especially for large-scale problems, EP saves about 85% and 77% of the samples required
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by KN and BIZ respectively, which is a welcome improvement. Moreover it appears that EP saves more
computational effort as the size of the problem increases, suggesting that EP is more efficient than other
leading procedures in large-scale problems.

Table 3: Average sample size n (×105) and average ratio of sample sizes of different procedures. All

numbers are rounded to provide an approximate indication of statistical precision.

Configuration k KN BIZ EP mean(EP / KN) mean(EP / BIZ)

100 3.18 2.18 3.4 1.1 1.6

SC 1000 40.8 24.1 33.4 0.83 1.40

10000 502 255 385 0.78 1.51

100 0.239 0.152 0.175 0.72 1.16

MIM 1000 0.427 0.241 0.239 0.55 0.99

10000 0.694 0.384 0.379 0.54 0.98

100 0.99 0.70 0.74 0.72 1.04

RPI1 1000 8.53 5.49 3.42 0.40 0.62

10000 81.7 51.4 23.6 0.29 0.46

100 0.484 0.319 0.268 0.51 0.78

RPI2 1000 3.74 2.36 0.86 0.22 0.35

10000 35 21.9 5.10 0.15 0.23

4.2 Empirical PAC vs. Average Sample Size

As seen above, the procedures over-deliver PAC in our experiments. The target PAC, 1−α , that we provide
as an input parameter is a lower bound on their true PAC, and the lower bound can be very loose. When
we compare the accuracy of the procedures, we may prefer to compare their true PAC instead of the input
parameter 1−α , e.g., when we want to find a good system with limited computational budget. To that
end, we conduct some experiments to compare the efficiency of the EP and that of other procedures based
on their true PAC.

We consider the slippage configuration with common variance, where μ1 = μ2 = . . . = μk−1 = 0,
μk = δ = 0.1, σ2

1 = σ2
2 = . . . = σ2

k = 4, and k = 100. To compare the efficiency of the procedures with
different PAC, we vary the PAC by changing the value of the input α , which is equivalent to changing the
value of some parameters in the procedure, e.g., η in KN in the original paper (Kim and Nelson 2001)
and η in EP. These two η’s have different meanings. In order to differentiate them, we call them ηKN

and ηEP, respectively. By changing the value of those parameters, essentially we are changing the total
sample size, n. Intuitively, higher n should bring higher PAC. To achieve the desired range of PAC, for
KN we set ηKN ∈ [4.12,10.81], for EP we set ηEP ∈ [2.22,4.6], and for BIZ, which is nearly tight for this
configuration, we set 1−α ∈ [0.8,0.999]. The empirical PAC and corresponding average sample size is
obtained using 10,000 independent replications at each point.

The experimental results are shown in Figure 2. We see that all procedures achieve higher PAC as
computational effort increases. Among the three procedures, EP outperforms the other two consistently.
In particular, to achieve PAC = 0.95, on average KN requires 3.06×105 samples, BIZ requires 2.19×105

samples, while EP only requires 1.50×105 samples, which is 51% less than KN and 32% less than BIZ.
From another perspective, with the same computational cost, EP attains higher empirical PAC. In particular,
with 2×105 samples, the empirical PAC of KN, BIZ and EP is 0.827,0.935 and 0.987, respectively.
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Figure 2: Empirical PAC vs. total sample size n for different procedures in SC with common variance.

5 CONCLUSIONS

In this paper, we propose EP, a new frequentist R&S sequential procedure that delivers a PAC statistical
guarantee. The EP allows a variety of sampling rules, so it is actually a family of procedures. We also
design a particular sampling rule to make the EP more efficient. Instead of eliminating inferior systems
completely, the EP with this sampling rule saves computational effort by allocating different numbers
of samples to systems based on their performance so far. Numerical experiments show that EP is very
reliable, and is more efficient than the state-of-the-art procedures KN and BIZ on a variety of problems,
especially for some large-scale problems. Comparisons of the estimated PAC versus sampling effort further
demonstrate the empirical efficiency of EP.

The results also suggest possibilities for further improving the efficiency of EP. The EP over-delivers
the PAC, which is a common trait of R&S procedures. The results in § 4.2 suggest considerable room for
further improvement if this problem can be alleviated. There are also other possibilities, e.g., to seek a
better sampling rule or a tighter envelope region than the current one determined by the value of η .
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