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ABSTRACT 

Comparing with the well-studied unconstrained ranking and selecting problems in simulation, literatures 

on constrained ranking and selection problems are relatively fewer. In this paper, we consider the problem 

of ranking the top-m designs subjected to stochastic constraints, where the design performance of the 

main objective as well as the constraint measures can only be estimated from simulation. Using the 

optimal computing budget allocation framework, we derive an asymptotically optimal allocation rule. The 

effectiveness of the suggested rule is demonstrated via numerical experiments. 

1 INTRODUCTION 

We consider the problem of ranking the top-m feasible designs from a finite number of designs, assuming 

that a main objective and constraint measures of each design can only be obtained through simulation. 

Although simulation has been successfully applied to analyze and evaluate complex systems where no 

analytical solutions are available, it is computationally expensive since a large number of simulation 

replications are needed in order to have a steady mean performance value. As a result, it is practically 

useful and important to allocate the simulation replications efficiently. Since the number of designs for 

comparison is finite, this problem is closely related with the ranking and selection (R&S) in statistics 

(Bechhofer, Santner, and Goldsman 1995). In recent years, R&S procedures have been successfully 

applied in simulation (Andradóttir et al. 2005; Chen and Lee 2010). 

In the literature, most of the works deal with unconstrained R&S problems, which are well studied 

from the indifference-zone (IZ) formulation and the optimal computing budget allocation (OCBA) 

framework. The IZ formulation first established by Bechhofer (1954) focuses on finding a feasible way to 

guarantee the pre-specified probability of correct selection is achieved. The optimal computing budget 

allocation (OCBA) focuses on the efficiency of simulation by intelligently allocating further replications 

based on the means and variances (Chen et al. 2000). Depending on the objective of the study, these R&S 

procedures have been further developed to select the best subset (Chen et al. 2008; Zhang et al. 2015), 

select the Pareto designs for multi-objective simulation optimization problems (Lee, Chew, and Teng 

2010; Lee et al. 2010), select the best design based on opportunity cost (He, Chick, and Chen 2007; Gao 

and Chen 2015; Gao and Chen 2015) and rank all designs completely (Xiao, Lee, and Ng 2014).  

Previous research on constrained R&S problems is relatively fewer compared with unconstrained 

problems. Among these works, some focus more on providing a guarantee on the probability of correct 

selection. For example, Andradóttir and Kim (2010) proposed a two-stage procedure to select the best in 

the presence of one constraint. The first stage aims to screen out all infeasible designs, while the best 
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design is selected in the second stage. Morrice and Bulter (2006) used the utility functions to convert the 

constrained problem to an unconstrained one. The constrained R&S problems were also converted 

feasibility determination in Batur and Kim (2010) and Szechtman and Yücesan (2008). More recently, 

Lee et al. (2012), Hunter and Pasupathy (2013) and Pasupathy et al. (2014) used the optimal computing 

budget allocation framework and derived the simulation procedures for selecting the best design subjected 

stochastic constraints. These procedures focus on improving the efficiency of simulation rather than 

guaranteeing the probability of correct selection. 

This paper aims to derive an efficient simulation budget allocation procedure for ranking the top 

feasible designs. In many multi-criteria decision making problems, identifying top designs are not 

enough. The relative ranking of the top designs is required since they have different importance in making 

the final decision. To the best of our knowledge, no previous work has studied the simulation budget 

allocation for ranking the top designs subjected to stochastic constraints. The next section formulates the 

R&S problem for ranking the top feasible designs. Section 3 derives the asymptotically optimal allocation 

rule. Numerical experiments are provided in Section 4, followed by the conclusion in Section 5. 

2 PROBLEM FORMULATION 

We consider the problem of ranking the top-m designs from a given set of k designs. Assume that the 

number of feasible designs is not less than m. Each design has 1H   performance measures. Let 
, ,i h nX  

denote the thn  simulation output of the main objective when 0h  , and constraint measures if 

{1, , }h H  for the design i . 
iN  denotes the number of simulation replications allocated to design i . 

Let 
,i hJ , 2

,i h  and ,i hJ  denote the mean, the variance and the sample mean, i.e., 
, ,, ( )h i h ni E XJ  , 

2

, , ,n( )i h i hVar X   and 
,1, ,(1/ )

iN

i inh hi nN XJ


  . The main objective values, i.e., 
,0 {1, , }i iJ k ，  are 

used to determine the relative ranking of all designs and the constraint measures 
, , {1, , }i h h HJ   are 

used to check the feasibility. Without loss of generality, it can be assumed that design i  is feasible if 

, , {1, , }h hi c h HJ    . In this paper, the simulation outputs, i.e., , ,i h nX , are assumed to be normally 

distributed and independent from replication to replication, as well as independent across different 

designs. The normality assumption is typically satisfied and used in simulation because the outputs are 

generally obtained from batch means such that the Central Limit Theorem holds. 

For any arbitrary set A , 
cA  denotes its complement. Under the assumption that 

1,0 2,0 ,0mJ J J   , the probability of correctly ranking the top-m feasible designs  can be written as 

follows: 

   

   

1

, ,0 1,0

1 1 1

, ,0 ,0

1 1

.

m H m

i h h i i

i h i

C
k H

i h h j m

j m h

PCR P J c J J

J c J J





  

  

   
     

   

    
     
     

                                   (1)   

Given a fixed simulation budget, the ranking of the top-m feasible designs cannot be determined with 

certainty. A common way to deal with this problem is to allocate the simulation budget efficiently such 

that the probability of correctly ranking the top-m feasible designs can be maximized. However, as shown 

in (1), evaluating the PCR is computationally intractable. To overcome this technical difficulty, we 

propose a lower bound on the PCR such that we can evaluate it in an fast and inexpensive way. Theorem 

1 below provides the lower bound. 

 

 Theorem 1. A lower bound on the probability of correct ranking can be given as follows:  
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 

     

1

, ,0 1,0

1 1 1

, ,0 ,0
0

1

( )

min min , 2 1

m H m

i h h i i

i h i

k

j h h j m
h

j m

PCR P J c P J J

P J c P J J m H

APCR





  


 

   

       
   



 

                             (2) 

Theorem 1 can be proven using Bonferroni inequality. As the result of Theorem 1, we can convert our 

objective from maximizing the PCR to maximizing the APCR because the PCR goes to one when the 

APCR goes to one.  

Therefore, we consider the following optimization problem: 

1 , ,

1

max

. . , 0, {1, , }.

kN N

k

i ii

APCR

s t N T N i k


   
                                                                         (3) 

The optimal solution of (3) is the desired asymptotically optimal budget allocation rule, which can be 

obtained via maximizing the APCR. 

3 OPTIMAL SIMULATION BUDGET ALLOCATION 

Given the optimization model in (3), the objective is to derive the optimal values of ,iN {1, , }i k   

such that the APCR can be maximized. Theorem 2 below gives the asymptotically optimal solutions to 

model (3).  

Let , ,0 ,0 ,0i j i jJ J    denote the mean difference of design i  and j  for their main objectives for any 

, {1, , }i j k , and 2 2 2

, ,0 ,0 ,0/ /i j i i j jN N     is the corresponding variance. Let 
, ,i h i h hJ c    denote 

the difference of the stochastic constraints with its corresponding performance measure for each design 

1, ,i k . Let  , ,
{1, , }

arg max / , 1, ,i i h i h
h H

q i k 


    denote the index of the dominating constraint 

measure for each design. Let  , ,0 , ,0
{ 1, , }

argmin /j m j m j
j m k

r  
 

  , and let /i iN T   denote the proportion of 

the simulation budget allocated to each design.  

Define the sets as follows.  

      

      

         
   

{1, , } , ,0 ,0

{1, , } , ,0 ,0

{1, , } , ,0 1,0 ,0 1,0

{1, , } ,

Θ | 1, , ,min

Θ | 1, , ,min

Θ | 2, , 1 ,min min ,

Θ | 2, , 1 ,min <min

O h H j h h j m

F h H j h h j m

DO h H i h h i i i i

DF h H i h h i

j j m k P J c P J J

j j m k P J c P J J

i i m P J c P J J P J J

i i m P J c P J





  



     

     

     

 



       ,0 1,0 ,0 1,0,i i iJ P J J 

  

The optimal simulation budget allocation is expressed using , {1, , }i i k   , which are defined as 

follows. 

For the first design, 
1  is defined as follows： 

1, 1,2,01

1, 1,2,01

2 2

2 2

1

1 ,m .
/

in
q

q
T

 




 

 
 
 
 

                                                                         (4) 

For each design  1, ,j m k  , j  is defined as follows: 
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                                                                        (5) 

For each design  2, , 1i m  , 
i  is defined as follows: 

1, ,0

1, ,0

.

.

2

2

2

2

,         

/

 if Θ

,   if .

m m

m m

m qm

m qm
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i
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i

i
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
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                                                                (6)  

For design m ,  
m  is defined as follows. 

, ,0. 1, ,0

. , ,0 1, ,0

22 2

2 2 2
= m , ,

/
in .

m rm q j m mm

m q m r m mm j

m

mT

 
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







 
 
 
 

                                                (7) 

 Theorem 2. The asymptotically optimal allocation rule  1, , k α  that maximizes the APCR is 

such that 

   1 , 1, , 1 , 1, , .i m j i m j m k                                       (8) 

4 NUMERICAL EXPERIMENTS 

In this section, we conduct three sets of numerical experiments in order to investigate the performance of 

our proposed simulation budget allocation rule, which is named as CmR-OCBA. The proposed rule is 

compared with proportional to variance allocation (PTV) and equal allocation (EA). PTV allocates 

simulation budget proportionally to the variance of the each design. In this paper, the variance of each 

design refers to the performance variance of the design’s main objective. EA allocates simulation equally 

to each design. Both PTV and EA can serve as benchmarks against which improvement can be measured. 

The allocation rule CmR-OCBA is implemented sequentially. Initially, we allocate 20 replications to 

each design. Based on the simulation outputs, we can obtain the sample mean and sample variance of 

each design. They are used as the estimation of the population mean and population variance. Then, the 

sample means and sample variances are substituted into equations (4) – (8) to compute q ,  1, ,q k 

. Let *

{1, , }argminq k qq   denote the design with the minimum value of q . In the next iteration, the 20 

incremental replications are allocated to the design 
*q  such that the equality in (8) can be balanced. The 

simulation procedure repeats until the total simulation replications T are exhausted.  

The constraint measures , 1,2hc h   are set as 
1 11c   and 

2 9c  . The experiment parameters are 

summarized in the Table 1 and Table 2. We can see that designs 4, 7, 8, 9 ,10, 11 ,12 and 13 are infeasible 

since their performance values of the first constraint are larger than 1 11c  . Designs 5, 10, 15 and 20 are 

infeasible since their performance values of the first constraint are larger than
2 9c  . 

The simulation is run independently for 1000 times, and we count the number of times that we have 

made a correct ranking. The numerical results are summarized in Table 3. We can see that significant 

budget reduction is achieved via using our proposed allocation rule comparing with using PTV and EA. 

For example, our allocation rule requires only 4140 number of simulation replications in order to achieve 

a PCS of 95% for Scenario 2, but both PTV and EA require more than 8400 replications. If we fix the 
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number of simulation replications to be 8400, we can see CmR-OCBA can achieve much higher PCS than 

PTV and EA in all three scenarios.  

 

Table 1. Mean Performance Values of Each Design. 
Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Main 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 

Constraint 1 2 4 8 12 4 10 12 18 18 20 22 24 26 4 4 2 4 4 2 4 

Constraint 2 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 

 

Table 2. Numerical Experiments Parameters. 

 Scenario 1 Scenario 2 Scenario 3 

k   20 20 20 

H   3 3 3 
m   5 5 5 

,0i  15 5 10 

,1i  10 10 10 

,2i  5 10 10 

constraints 
1c  11 11 11 

constraints 
2c  9 9 9 

 

Table 3. Numerical Comparison of CmR-OCBA, EA and PTV. 

 Scenario 1 Scenario 2 Scenario 3 

simulation budget T for  

reaching PCS of 95%  

CmR-OCBA 6520 4140 5410 

EA >8400 >8400 >8400 

PTV >8400 >8400 >8400 

simulation budget T for 

 reaching PCS of 90% 

CmR-OCBA 5080 3240 4450 

EA >8400 7550 8020 

PTV >8400 >8400 >8400 

PCS when T=8400 

CmR-OCBA 0.974 0.998 0.987 

EA 0.871 0.918 0.914 

PTV 0.477 0.649 0.535 

5 CONCLUSIONS 

The R&S procedures in simulation have been well studied and applied in many real world problems. The 

problem becomes more complex when the stochastic constraints are present in real industry. In this paper, 

the problem of ranking the top-m designs that are subjected to stochastic constraints is studied. Using the 

OCBA framework, we develop an efficient simulation budget allocation rule for ranking the top feasible 

designs. The numerical experiments have demonstrated the high efficiency of the proposed allocation 

rule. 
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