
Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

EMPIRICALLY COMPARING THE FINITE-TIME PERFORMANCE OF
SIMULATION-OPTIMIZATION ALGORITHMS

Naijia (Anna) Dong Matthias Poloczek

David J. Eckman

Xueqi Zhao

Shane G. Henderson

School of Operations Research and Info. Engrg Department of Systems and Indust. Engrg

Cornell University University of Arizona

206 Rhodes Hall 1127 East James E. Rogers Way

Ithaca, NY 14853, USA Tucson, AZ 85721, USA

ABSTRACT

We empirically evaluate the finite-time performance of several simulation-optimization algorithms on a
testbed of problems with the goal of motivating further development of algorithms with strong finite-time
performance. We investigate if the observed performance of the algorithms can be explained by properties
of the problems, e.g., the number of decision variables, the topology of the objective function, or the
magnitude of the simulation error.

1 INTRODUCTION

The practice of simulation optimization (SO) deals with optimizing a real-valued objective function that
cannot be evaluated exactly, but instead must be estimated via simulation. In addition to the challenge of
estimating the objective function, its structural properties, e.g., continuity, differentiability, or convexity,
may be unknown. On account of this, SO algorithms are often designed to solve a broad class of problems
without exploiting any structure of the objective function.

In the SO literature, one commonly sees theoretical results on the asymptotic performance of an
algorithm. It is often shown that an algorithm will converge to a local or global optimizer as the simulation
effort approaches infinity. Some results further specify a rate at which an algorithm converges once within
a neighborhood of an optimizer. Unfortunately, the asymptotic regimes in which these results hold likely
require an amount of computational effort that exceeds practical budgets, making the asymptotic results
less useful to practitioners. For a practitioner deciding which algorithm to use for a particular problem,
understanding how an algorithm can be expected to perform for a finite simulation budget is more meaningful.

The SO community lags behind other research communities when it comes to having an established
testbed of problems and developing metrics for comparing the empirical finite-time performance of algorithms
(Pasupathy and Henderson 2006). Moreover, a comprehensive comparison of SO algorithms has not been
done on a large testbed (Amaran et al. 2016). As a first step toward such a comparison, we implement
several popular SO algorithms and test them on a subset of problems from SimOpt (SimOpt Library
2011), a growing library of SO problems developed by Pasupathy and Henderson (2011). We evaluate
the finite-time performance of the algorithms and discuss insights into the types of problems on which
the algorithms might be expected to perform well. An objective of our study is to spur the development
of SO algorithms that have strong finite-time performance for various classes of problems. We also hope
to encourage further contributions to the SimOpt library so that a more comprehensive testbed of SO
problems can become available to researchers for evaluating new algorithms.

2206978-1-5386-3428-8/17/$31.00 ©2017 IEEE

Dong, Eckman, Poloczek, Zhao and Henderson

2 EVALUATING FINITE-TIME PERFORMANCE

In deterministic optimization, an algorithm’s performance on a given problem is usually measured by either
the number of function evaluations or the wall-clock time needed to find the optimal solution or to get
within a specified tolerance. In this way, one can easily compare algorithms. Applying this approach
to SO algorithms runs into several challenges. Firstly, the optimal solutions to SO problems are often
unknown or have no certificate of optimality. Secondly, sampling error makes it harder to determine whether
the objective function value of a solution is within a given tolerance of the optimal objective function
value. Instead, SO algorithms can be more fairly compared by fixing a given simulation budget—either
the wall-clock time or the number of objective function evaluations—and evaluating the objective function
at the estimated best solution visited within the budget.

Although measuring a simulation budget in terms of wall-clock time may make sense from a practical
standpoint, the resulting performances are platform dependent. On the other hand, using the number of
objective function evaluations as a measure of time has its own potential issues; see also Pasupathy and
Henderson (2006). Firstly, a potentially significant portion of computational effort may go unmeasured if,
for example, the constraints are stochastic or gradient information is calculated without taking additional
objective function valuations. Secondly, for steady-state simulations that involve simulating a single, long
sample path, counting one replication as one objective function evaluation may be misleading.

In our experiments, we specify the simulation budget in terms of the number of objective function
evaluations, i.e., replications. Our justification for this choice is twofold: all of the problems we study have
deterministic constraints and the simulations all have finite horizons. Moreover, we count all objective
function evaluations towards the budget, including function evaluations used to obtain gradient estimates,
e.g., via finite differences; see also Sect. 3.1.

For evaluating finite-time performance, we fix a simulation budget and consider the estimated best
system visited before the budget is exhausted. On a given macroreplication, i.e., a single execution of
an algorithm on a given problem instance that exhausts the budget, let Z(n) denote the true objective
function value of the estimated best solution visited in the first n objective function evaluations. Because
the estimated best solution X(n) is random, Z(n) is a random variable. Conditional on the solution X(n), the
objective value Z(n) is not random, but we probably cannot compute it exactly because we use simulation
to evaluate the objective function. In our experiments, we get fairly precise estimates of Z(n)—conditional
on X(n)—by running additional replications in a post-processing step. These replications are not counted
towards the algorithm’s budget.

Plotting Z(n) as a function of n shows how the objective value of the estimated best solution changes
as the algorithm progresses (Pasupathy and Henderson 2006). For most of the algorithms we test, they
use the budget only to determine when to stop, and not in setting other algorithm parameters. For such
algorithms, the random variable Z(n) for fixed n is equivalent in distribution to the objective function value
of the best system visited when running the algorithm with a simulation budget of n function evaluations.
This implies that by fixing a large simulation budget, a single macroreplication can be used to evaluate an
algorithm’s finite-time performance for a range of budget values. The lone exception in our study is SPSA
which takes the simulation budget as an input for setting its parameters. For SPSA, it is necessary to rerun
the algorithm with different budgets in order to evaluate its performance.

Plotting the Z(n) curve for one macroreplication has limited value since the location of the curve is itself
random. Instead, it is more informative to run multiple macroreplications and average to obtain a mean
performance curve Z̄(n). The median performance of an algorithm is also worthy of consideration as it is
less sensitive to outliers in performance. The empirical cumulative distribution function (cdf) of Z(n) also
contains a great deal of information about how an algorithm performs, including its variability. Although
plotting the empirical cdf of Z(n) for a single algorithm on a single problem is straightforward, comparing
empirical cdfs for multiple algorithms is challenging.

By testing algorithms on only a modest number of SO problems, we were able to present in this
paper many of the plots of Z̄(n). Ideally, we would like to graphically compare the performances of

2207

Dong, Eckman, Poloczek, Zhao and Henderson

algorithms across a large number of problems as is done in the deterministic optimization community using
performance profiles (Dolan and Moré 2002). Adapting performance profiles to simulation optimization
remains an active area of research with a notable challenge being how exactly to define the performance
ratio. See Ali, Khompatraporn, and Zabinsky (2005) and Rios and Sahinidis (2013) for examples of how
performance profiles have been adapted to different classes of optimization problems. We believe that
performance profiles have great potential for future comparisons of SO algorithms, especially when a large
testbed of problems is available.

3 ALGORITHMS AND PROBLEMS

3.1 Algorithms

We suppose that when evaluating a solution x, an algorithm observes y(x) = f (x)+ε(x) where f (x) is the
value of the objective function f at x and ε(x) is the observational noise associated with simulating x. We
further assume that ε(x) has a mean of zero and finite variance. In our implementations, each algorithm
estimates the objective value at a given solution by taking 30 replications and using the sample mean ȳ(x).

All problems specify a deterministic domain D ⊆ R
d where d is the number of decision variables.

Unless otherwise stated, the initial solution x1 is drawn from within D according to some probability
distribution. For problems with bounded domains, we used a uniform distribution and for unbounded
domains, we used either independent exponential or Laplace distributions for generating the components of
x1. The exact parameters of these distributions are given in the source code posted in our public repository
(Bitbucket 2017). If an algorithm attempts to visit a solution xk+1 /∈ D , it instead samples the solution
located where the the line connecting xk+1 and the previous solution xk intersects the boundary of D .

For our experiments, we selected a variety of well-known SO algorithms and compared them with two
baseline methods: random search and gradient-based search. We provide a high-level description of the
algorithms here and refer the interested reader to our repository for the codes.

Random Search

Random search (RandomSearch) iteratively evaluates solutions until the simulation budget is exhausted.
The solutions are drawn from D according to the same probability distribution used to draw x1 and the
solutions are independent and identically distributed.

Gradient Search with Random Restarts

The gradient-based search algorithm (GradSearch) approximates the gradient of the objective function
at a given solution xk via d finite differences. That is, the jth component of the approximation ĝ(xk) is

ĝ j(xk) =
ȳ(xk +h je j)− ȳ(xk −h je j)

2h j
,

where for iterations k ≥ 2, h j :=
√

Var(y(x1))/(
√

2(30) · ĝ j(x1)), Var(y(x1)) is the estimated variance of
the noise ε(x1), we perform 30 replications, and e j is the d-dimensional unit vector whose jth entry is one.
In the first iteration, we randomly draw two solutions x1 and x′ from D and set h j = mini ‖x1[i]− x′[i]‖/3
for all j ∈ {1, . . . ,d}, in order to compute ĝ j(x1). In a given iteration k, we first test a step size of ck = 2
by evaluating ȳ(xk + ĝk · ck) (for maximization problems). If this yields a better solution than xk, we set
xk+1 = xk + ĝk · ck. Otherwise we iteratively divide ck by 2 and test again, until either a better solution is
found or ck is too small, in which case we choose xk+1 to be a random point.

In order to prevent GradSearch from becoming trapped at a local optimum, the algorithm restarts
from a randomly chosen solution if all of the following conditions are met:

i) ȳ(xk)− ȳ(xk+1)< τ · (1+‖ȳ(xk+1)‖), ii) ‖xk − xk+1‖<
√

τ · (1+‖xk+1‖),

2208

Dong, Eckman, Poloczek, Zhao and Henderson

iii) ‖ĝk‖< 3
√

τ · (1+‖ȳ(xk+1)‖), and iv) ‖ĝk‖< Var(y(xk)),

where τ is a constant chosen by the user. In our experiments, we set τ = 10−4.

The Simultaneous Perturbation Method

The Simultaneous Perturbation Method (SPSA) (Spall 1992, Spall 1998) also performs an iterative search
that starts from a randomly selected solution x1 and approximates the gradient in each step. However,
instead of using the method of finite differences, SPSA relies on a simultaneous perturbation approximation
of the gradient: the jth component of g(xk) is approximated as

ĝ j(xk) =
ȳ(xk + ckΔk)− ȳ(xk − ckΔk)

2ckΔk(j)
,

where Δk is a carefully chosen d-dimensional random vector; see Spall (1998) for details. SPSA requires
only 2 · 30 = 60 function evaluations per iteration to approximate the gradient, whereas GradSearch
requires 60d. For the step-length sequence, we used the “automatic gain selection” implementation of
Spall (2001).

The Stochastic Trust-Region Response-Surface Method

The Stochastic Trust-Region Response-Surface Method (STRONG) of Chang, Hong, and Wan (2013)
approximates the unknown objective function by a series of local models, where each model is sufficiently
accurate within its corresponding trust region. In iteration k, STRONG constructs a local model rk that is
believed to resemble the objective function within a trust region B(xk,Δk) of radius Δk centered at xk. It
then computes a point x∗k ∈ B(xk,Δk) that is “close” to the optimum of rk over B(xk,Δk). The point x∗k is
accepted and becomes the center point xk+1 for the next iteration if the following two tests are both passed:

1. The estimated improvement in objective value ȳ(xk)− ȳ(x∗k) (for minimization problems) is suffi-
ciently large compared to the predicted improvement rk(xk)− rk(x∗k).

2. The improvement in objective value is statistically significant, accounting for observational noise.

If the local model fits the observed data at xk and x∗k well—indicated by satisfactory results to the above
tests—then the radius of the trust region for the next iteration is increased. Otherwise it stays the same or,
in the case of a poor prediction, is decreased.

Our implementation of STRONG follows Chang, Hong, and Wan (2013), with the exception that we
do not apply design of experiments to select the evaluation points for fitting. Instead, we use central finite
differences to estimate the gradient and a BFGS update to estimate the Hessian. We also tested a version
(STRONGstg1) that does not fit second-order models, i.e., it only applies Stage I of STRONG.

The Nelder-Mead Algorithm

The algorithm of Nelder and Mead (1965) (Nelder-Mead) iteratively maintains a simplex of d+1 vertices
whose centroid is denoted by xk. In iteration k, the vertex with the worst observed objective value, say zk,
is reflected through the centroid of the remaining d vertices to obtain a new point z′k that is then sampled.
If the observed value ȳ(z′k) is worse than the values previously observed at the remaining d vertices of the
simplex, the simplex is contracted and z′k is chosen closer to the centroid. Otherwise zk is removed from
the simplex and z′k is added as (d +1)st vertex. We implemented the improvements suggested by Barton
and Ivey Jr. (1996) for accelerating the convergence of the algorithm when function evaluations are noisy.

2209

Dong, Eckman, Poloczek, Zhao and Henderson

3.2 Benchmark Problems

We have compiled a testbed of 15 problems: 12 were taken from SimOpt and the other three (POMDPCon-
troller, RoutePrices, and TollNetwork) were developed during the course of this project and will be made
available on SimOpt upon publication. The characteristics of the problems are summarized in Table 1.

Table 1: The benchmark problems and their characteristics: The first column gives the abbreviations used

in this paper and hyperlinks to their respective entries on SimOpt.

Problems Name on SimOpt Dimension Optimal Solution
Ambulance Ambulances in a Square 6 Unknown

CtsNews Continuous Newsvendor 1 Known

DualSourcing Dual Sourcing 2 Unknown

EOQ Economic-Order-Quantity 1 Known

FacilityLocation Facility Location 4 Unknown

MM1 M/M/1 Metamodel 3 Known

MultiModal A Multimodal Function 2 Known

ParameterEstimation Parameter Estimation: 2D Gamma 2 Known

POMDPController Optimal Controller for a POMDP 10 Unknown

ProductionLine Optimization of a Production Line 3 Unknown

QueueGG1 GI/G/1 Queue 1 Unknown

Rosenbrock Rosenbrock’s Function 40 Known

RoutePrices Route Prices for Mobility-on-Demand 12 Unknown

SAN SAN Duration 13 Unknown

TollNetwork Toll Road Improvements 12 Unknown

4 RESULTS AND DISCUSSION

For every problem, we ran 30 macroreplications of each algorithm. Each macroreplication produced a
sequence of estimated best solutions X(n), where n ranges over the simulation budget as specified by
the problem’s description on SimOpt. As a post-processing step, we averaged 30 replications at each
solution X(n) to obtain estimates of the objective function Z(n). These post-processing replications were
independent of those used to identify the sequence of solutions X(·), and they use common random numbers
across all algorithms. We then averaged the 30 estimates of Z(n) to produce the Z̄(n) curve. Since SPSA
uses the simulation budget as an input, we reran the algorithm with different budgets to produce each point
of the Z̄(n) curve. We also calculated 95% normal confidence intervals around Z̄(n). When the results in
the Z̄(n) plots require further explanation, we also show plots of the median performance and the first and
third quartiles of the 30 (macroreplication) samples of Z(n). We organize our discussion into groupings of
problems with similar patterns in their Z̄(n) plots.

CtsNews, MM1, ParameterEstimation, and QueueGG1

All algorithms work well on these low-dimensional problems, quickly converging to good solutions as
illustrated in Figure 1 for the problem CtsNews. The plotted quantiles show that the performances
of Nelder-Mead and STRONGstg1 are initially more variable than is suggested by the confidence
intervals. We also see that SPSA’s performance has a large variance for small budgets, as reflected in
the width of the confidence intervals. The high variance is not seen in the corresponding quantile plot,
suggesting that SPSA has occasional very poor performance that shows up only in the below-0.25 quantiles
(the worst quarter of the macroreplications).

2210

Dong, Eckman, Poloczek, Zhao and Henderson

Budget
0 5000 10000 15000

O
bj

ec
tiv

e
va

lu
e

-5

-4

-3

-2

-1

0

maximize Problem: CtsNews

Random Search
Nelder-Mead
Gradient Search RS
SPSA
STRONG
STRONG-StageI

Budget
0 5000 10000 15000

O
bj

ec
tiv

e
va

lu
e

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
maximize Problem: CtsNews - Quantiles

Random Search
Nelder-Mead
Gradient Search RS
SPSA
STRONG
STRONG-StageI

Figure 1: CtsNews: (a) Average Performance, (b) Performance Quantiles.

For the problem MM1, we noticed that the performance of SPSA was highly variable and worse
than those of the other algorithms, as shown in Figure 2. However, the median performance of SPSA
is competitive with those of the other algorithms. SPSA may be sensitive to the initial solution and
occasionally can fail to make progress. This aspect of SPSA’s performance appeared in other problems;
see the discussion of POMDPController.

Budget
0 5000 10000 15000

O
bj

ec
tiv

e
va

lu
e

0

10

20

30

40

50

60

70

80
minimize Problem: MM1

Random Search
Nelder-Mead
Gradient Search RS
SPSA
STRONG
STRONG-StageI

Budget
0 5000 10000 15000

O
bj

ec
tiv

e
va

lu
e

0

10

20

30

40

50

60

70

80

90
minimize Problem: MM1 - Quantiles

Random Search
Nelder-Mead
Gradient Search RS
SPSA
STRONG
STRONG-StageI

Figure 2: MM1: (a) Average Performance, (b) Performance Quantiles.

EOQ, DualSourcing

Our preliminary results for the problems EOQ and Dual Sourcing indicated that all of the algorithms had
similar performance, quickly finding good solutions and then not improving further, as shown in Figure 3.
We determined that the generated initial solutions were already near optimal for these two problems, as
seen in the vertical scales on those plots. To induce differences in the performances across algorithms, we
reran the algorithms, intentionally generating poor initial solutions; see Figures 4 and 5.

In Figure 4, all algorithms except GradSearch perform better than RandomSearch. GradSearch
appears to fail due to the shape of the objective function—the function slope is steep to the left of the
minimum but very flat to the right. Thus, when starting from a relatively small initial solution, the algorithm
can first take a large step to a solution in the flat-slope area. Afterwards, GradSearch takes very small

2211

Dong, Eckman, Poloczek, Zhao and Henderson

Budget
0 5000 10000 15000

O
bj

ec
tiv

e
va

lu
e

�104

1.56

1.57

1.58

1.59

1.6

1.61

minimize Problem: EOQ

Random Search
Nelder-Mead
Gradient Search RS
SPSA
STRONG
STRONG-StageI

Budget �104
0 2 4 6

O
bj

ec
tiv

e
va

lu
e

3200

3250

3300

3350

3400

3450

3500

minimize Problem: DualSourcing

Random Search
Nelder-Mead
Gradient Search RS
SPSA
STRONG
STRONG-StageI

Figure 3: (a) EOQ: Average Performance, (b) DualSourcing: Average Performance.

steps back towards the optimal solution. The performance of RandomSearch is highly dependent on the
sampling distribution, which in these examples is not well calibrated, leading to poor performance.

Budget
0 5000 10000 15000

O
bj

ec
tiv

e
va

lu
e

�104

1.6

1.65

1.7

1.75

1.8

1.85

1.9

minimize Problem: EOQ10

Random Search
Nelder-Mead
Gradient Search RS
SPSA
STRONG
STRONG-StageI

Solution
0 100 200 300 400 500

F
un

ct
io

n
va

lu
e

�104

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2
EOQ Function Shape Demonstration

Figure 4: EOQ: (a) Average Performance w/ Bad Initial Solutions, (b) The Objective Function.

For the problem DualSourcing (Figure 5), the extremely bad performance of RandomSearch can again
be explained by the poorly-claibrated distribution for generating solutions. SPSA performs particularly
poorly. The relatively weak performance of Nelder-Mead on this problem is the result of a few
macroreplications on which the algorithm failed to find the optimal solution.

MultiModal, POMDPController, Rosenbrock, Toll Network

For these problems, most algorithms make rapid early progress and then stagnate.
MultiModal is a 2-dimensional problem with 25 widely spaced local optima (Figure 6). Therefore,

the local-search algorithms quickly improve on the initial solution, but then fail to make further progress.
Meanwhile, the algorithms with restart, namely RandomSearch and GradSearch, manage to identify
better solutions. Compared to RandomSearch, GradSearch is less efficient because it only employs
random restarts once it fails to make progress, so it has fewer opportunities to restart. It only finds the
global optimum around half of the time, which helps to explain the high variance of its performance in
the results.

2212

Dong, Eckman, Poloczek, Zhao and Henderson

Budget �104
0 2 4 6

O
bj

ec
tiv

e
va

lu
e

4000

6000

8000

10000

12000

14000

minimize Problem: DualSourcing57

Random Search
Nelder-Mead
Gradient Search RS
SPSA
STRONG
STRONG-StageI

60

DualSourcing Function Shape Demonstration

Solution X 1
50

4070

Solution X
2

80

3500

3400

3300

3200
90

F
un

ct
io

n
va

lu
e

Figure 5: DualSourcing: (a) Average Performance w/ Bad Init., (b) Meshplot of the Objective Function.

Budget �105
0 0.5 1 1.5 2 2.5 3

O
bj

ec
tiv

e
va

lu
e

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4
minimize Problem: MultiModal

Random Search
Nelder-Mead
Gradient Search RS
SPSA
STRONG
STRONG-StageI

100

MultiModal Function Shape Demonstration

Solution X 1
50

00

Solution X
2

50

0.5

0

-0.5

-1

-1.5

-2
100

F
un

ct
io

n
va

lu
e

Figure 6: Multimodal: (a) Average Performance, (b) Meshplot of the Objective Function.

We observed that the problem POMDPController was hard for most algorithms to solve (see Figure 7).
A plot of the objective function for the case d = 2 shows that the objective function is made up of two
plateaus with a narrow valley running through one of the plateaus. The valley in which the optimal solution
lies is hard to find because it is such a small region in the domain. In higher dimensions, such as the case
d = 10 that we tested, it is likely that good solutions are located in an even smaller region of the domain.
In addition, gradient-based methods struggle because estimates of the gradient on the plateaus are close to
zero and therefore dominated by noise. This helps explain why RandomSearch outperforms the other
methods. The mean performance of SPSA is dominated by a few macroreplications on which it performed
very poorly.

The Rosenbrock problem has the highest dimension of all our problems. As expected, RandomSearch
performs poorly in searching a high-dimensional space (Figure 7). Nelder-Mead performs exceptionally
well. Occasionally, GradSearch reaches the boundary of the feasible region and the estimated gradient
indicates a search direction outside the boundary. We do not use a projected-gradient algorithm, instead
simply pinning solutions back to the boundary, so GradSearch can stall on this problem. The two
trust-region algorithms appear to struggle, perhaps for the same reason that GradSearch struggles. As
expected, SPSA performs very well in this high-dimensional problem, owing to its cheap gradient estimates.

2213

Dong, Eckman, Poloczek, Zhao and Henderson

Budget �104
0 0.5 1 1.5 2 2.5 3

O
bj

ec
tiv

e
va

lu
e

136

137

138

139

140

141

142

143

minimize Problem: POMDPController

Random Search
Nelder-Mead
Gradient Search RS
SPSA
STRONG
STRONG-StageI

Budget �104
0 2 4 6 8 10 12

O
bj

ec
tiv

e
va

lu
e

�106

0.5

1

1.5

2

2.5

3

3.5

4

4.5
minimize Problem: Rosenbrock

Random Search
Nelder-Mead
Gradient Search RS
SPSA
STRONG
STRONG-StageI

Figure 7: (a) POMDPController: Average Performance, (b) Rosenbrock: Average Performance.

For the TollNetwork problem, GradSearch struggled relative to the other algorithms (Figure 8). We
do not have an explanation for why GradSearch performs so poorly on this problem.

Budget �104
0 1 2 3 4 5

O
bj

ec
tiv

e
va

lu
e

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

maximize Problem: TollNetwork

Random Search
Nelder-Mead
Gradient Search RS
SPSA
STRONG
STRONG-StageI

Figure 8: TollNetwork: Average Performance

Ambulance, FacilityLocation, ProductionLine, RoutePrices, SAN

The algorithms have highly varied performance on these five problems.
The problems Ambulance and FacilityLocation have similar problem structure, and the plots exhibit

similar trends (Figure 9). Nelder-Mead is the stand-out performer, and interestingly RandomSearch
performs almost as well. STRONG probably struggles due to the computational expense of Stage II iterations.

For the problem ProductionLine, all algorithms perform much as they did on the Ambulance problem,
with the exception of SPSA which is excluded from Figure 10 due to numerical problems in some
macroreplications. The RoutePrices problem has dimension d = 12, and accordingly RandomSearch
performs poorly. Nelder-Mead, STRONG and STRONGstg1 all perform well on this problem. Of these
three algorithms, Nelder-Mead is the most consistent performer across macroreplications as suggested by
the narrow confidence intervals, but both trust region methods appear to identify a slightly better objective
function values for the maximal budget. We do not have an explanation for the poor performance of
GradSearch and SPSA on this problem.

2214

Dong, Eckman, Poloczek, Zhao and Henderson

Budget �104
0 0.5 1 1.5 2 2.5 3

O
bj

ec
tiv

e
va

lu
e

0.14

0.15

0.16

0.17

0.18

0.19

0.2
minimize Problem: Ambulance

Random Search
Nelder-Mead
Gradient Search RS
SPSA
STRONG
STRONG-StageI

Budget �104
0 0.5 1 1.5 2 2.5 3

O
bj

ec
tiv

e
va

lu
e

0.15

0.2

0.25

0.3

0.35

maximize Problem: FacilityLocation

Random Search
Nelder-Mead
Gradient Search RS
SPSA
STRONG
STRONG-StageI

Figure 9: (a) Ambulance: Average Performance, (b) FacilityLocation: Average Performance.

Budget
0 2000 4000 6000 8000 10000

O
bj

ec
tiv

e
va

lu
e

-200

-150

-100

-50

0

50

100
maximize Problem: ProductionLine

Random Search
Nelder-Mead
Gradient Search RS
STRONG
STRONG-StageI

Budget �104
0 1 2 3 4 5

O
bj

ec
tiv

e
va

lu
e

600

700

800

900

1000

1100

1200

1300
maximize Problem: RoutePrices

Random Search
Nelder-Mead
Gradient Search RS
SPSA
STRONG
STRONG-StageI

Figure 10: (a) ProductionLine: Average Performance, (b) RoutePrices: Average Performance.

For the problem SAN (Figure 11), the strongest performers are Nelder-Mead and STRONGstg1.
This problem is convex, so we would expect all algorithms to do reasonably well. Nevertheless, STRONG
struggles, perhaps due to the computational effort in Stage II. GradSearch also struggles, perhaps because
its test for when to perform a restart is too lenient, leading to many unproductive restarts. SPSA performs
particularly poorly on this problem.

5 CONCLUSIONS

Perhaps the most important observation in our results is the robust performance of Nelder-Mead
across almost all problems. It is highly deserving of further study. Interestingly, STRONGstg1 either
compares similarly to, or outperforms, STRONG, calling into question the computationally expensive
Stage II of STRONG. RandomSearch performed better than expected, though its performance suffers on
higher-dimensional problems or on problems where the sampling distribution is poorly calibrated. SPSA
performed very well on our highest-dimensional problem (in 40 dimensions), but for most problems it
struggled relative to the other algorithms, including problems in dimensions 10–13. Our implementation
of GradSearch performed moderately well, especially with its use of random restarts and may be worth
further development.

2215

Dong, Eckman, Poloczek, Zhao and Henderson

Budget �104
0 2 4 6 8 10

O
bj

ec
tiv

e
va

lu
e

19

20

21

22

23

24

25

26
minimize Problem: SAN

Random Search
Nelder-Mead
Gradient Search RS
SPSA
STRONG
STRONG-StageI

Figure 11: SAN: Average Performance

More generally, our sense is that low-dimensional problems are over-represented in the SimOpt library.
It is certainly conceivable that our observations above could change for higher-dimensional problems. The
number of problems was small enough that we could present detailed results for a single problem at a time,
leading to several insights. If we were to study many more problems, then this presentation would be too
cumbersome and a more succinct approach would be necessary. To that end, further research on how to
adapt performance profiles to simulation optimization is needed.

In this study we only tackled continuous-variable problems that are either unconstrained or box
constrained (with upper and lower bounds on the variables). In future research, we would like to compare
algorithms designed for discrete or integer-ordered variables, like COMPASS (Hong and Nelson 2006) and
R-SPLINE (Wang, Pasupathy, and Schmeiser 2013).

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under grant no. CMMI-
1537394, CMMI-1254298, CMMI-1536895, and IIS-1247696, by the Air Force Office of Scientific Research
under grant no. FA9550-12-1-0200, FA9550-15-1-0038, and FA9550-16-1-0046 and by the Army Research
Office under grant no. W911NF-17-1-0094.

REFERENCES

Ali, M. M., C. Khompatraporn, and Z. B. Zabinsky. 2005. “A numerical evaluation of several stochastic
algorithms on selected continuous global optimization test problems”. Journal of Global Optimization 31
(4): 635–672.

Amaran, S., N. V. Sahinidis, B. Sharda, and S. J. Bury. 2016. “Simulation optimization: a review of
algorithms and applications”. Annals of Operations Research 240 (1): 351–380.

Barton, R. R., and J. S. Ivey Jr.. 1996. “Nelder-Mead simplex modifications for simulation optimization”.
Management Science 42 (7): 954–973.

Bitbucket 2017. “FiniteTimeSimOpt”. https://bitbucket.org/poloczek/finitetimesimopt.
Chang, K.-H., L. J. Hong, and H. Wan. 2013. “Stochastic trust-region response-surface method (STRONG)—

A new response-surface framework for simulation optimization”. INFORMS Journal on Computing 25
(2): 230–243.

Dolan, E. D., and J. J. Moré. 2002. “Benchmarking optimization software with performance profiles”.
Mathematical Programming Series A 91 (2): 201–213.

Hong, J. L., and B. L. Nelson. 2006. “Discrete optimization via simulation using COMPASS”. Operations
Research 54 (1): 115–129.

2216

Dong, Eckman, Poloczek, Zhao and Henderson

Nelder, J. A., and R. Mead. 1965. “A simplex method for function minimization”. The computer journal 7
(4): 308–313.

Pasupathy, R., and S. G. Henderson. 2006. “A testbed of simulation-optimization problems”. In Proceedings
of the 2006 Winter Simulation Conference, edited by L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson,
D. M. Nicol, and R. M. Fujimoto, 255–263. Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc.

Pasupathy, R., and S. G. Henderson. 2011. “SimOpt: A library of simulation optimization problems”. In
Proceedings of the 2011 Winter Simulation Conference, edited by S. Jain, R. R. Creasey, J. Himmelspach,
K. P. White, and M. Fu, 4075–4085. Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers, Inc.

Rios, L. M., and N. V. Sahinidis. 2013. “Derivative-free optimization: A review of algorithms and comparison
of software implementations”. Journal of Global Optimization 56 (3): 1247–1293.

SimOpt Library 2011. “Simulation Optimization (SimOpt) Library”. http://www.simopt.org.
Spall, J. C. 1992. “Multivariate stochastic approximation using a simultaneous perturbation gradient ap-

proximation”. IEEE Transactions on Automatic Control 37 (3): 332–341.
Spall, J. C. 1998. “Implementation of simultaneous perturbation algorithm for stochastic optimization”.

IEEE Transactions on Aerospace and Electronic Systems 34 (3): 817–823.
Spall, J. C. 2001. “Simultaneous Perturbation Stochastic Approximation (SPSA)”. http://www.jhuapl.edu/

SPSA/.
Wang, H., R. Pasupathy, and B. W. Schmeiser. 2013. “Integer-ordered simulation optimization using R-

SPLINE: Retrospective search with piecewise-linear interpolation and neighborhood enumeration”.
ACM Transactions on Modeling and Computer Simulation (TOMACS) 23 (3): 17:1–24.

AUTHOR BIOGRAPHIES

NAIJIA (ANNA) DONG is a senior student in the School of Operations Research and Information Engi-
neering at Cornell University. Her research interests include simulation optimization, networks, queueing
theory and data mining. Her email address is nd2562@columbia.edu.

DAVID J. ECKMAN is a Ph.D. candidate in the School of Operations Research and Information Engi-
neering at Cornell University. His research interests deal with simulation optimization with a focus on
ranking-and-selection and exploratory multi-armed bandits. His email address is dje88@cornell.edu.

MATTHIAS POLOCZEK is an assistant professor in the Department of Systems and Industrial Engi-
neering at the University of Arizona. His research focuses on algorithms with performance guarantees in
optimization under uncertainty and combinatorial optimization, in particular for applications in simulation
optimization, machine learning, and engineering. This research was done while he visited Cornell. His
email address is poloczek@email.arizona.edu.

XUEQI ZHAO has graduated from Cornell’s ORIE MEng program in December 2016 and will begin her
doctoral study in the Department of Industrial and Manufacturing Engineering at Penn State University
from September 2017. Her research interests focus on data science and simulation optimization algorithms.
Her email address is xuz206@psu.edu.

SHANE G. HENDERSON is a professor in the School of Operations Research and Information Engineering
at Cornell University. His research interests include discrete-event simulation and simulation optimization,
and he has worked for some time with emergency services and bike sharing applications. He co-edited the Pro-
ceedings of the 2007 Winter Simulation Conference. His web page is http://people.orie.cornell.edu/∼shane.

2217

