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ABSTRACT

This study formulates and solves the design problem for a master-worker architecture dedicated to the
implementation of a parallelized simulation optimization algorithm. Such a formulation does not assume any
specific characteristic of the optimization problem being solved, but the way the algorithm is parallelized.
In particular, we refer to the master-worker paradigm, where the master makes sampling decisions while
the workers receive solutions to evaluate. We identify two metrics to be optimized: the throughput of the
workers in terms of the number of evaluations per time unit, and the lack of synchronization between the
master and the workers. We identify several design parameters: number of workers (n), the buffer size for
each worker and for the master and the sample size m, i.e., the number of solutions used by the master for
sampling decisions at each iteration. Numerical experiments show optimal designs over randomly generated
simulation optimization algorithm instances.

1 INTRODUCTION

For large-scale and complex industrial systems, simulation-based optimization (sim-opt) is an effective way
to identify the optimal design or configurations. In a typical sim-opt framework, candidate designs (i.e.,
solutions) are generated by the optimization algorithm (i.e., the optimizer), and passed to the simulation
model (i.e., the simulator) for evaluating their performance. The evaluated performance is returned to the
optimizer, for guiding the generation of the next sample of solutions.

Due to the computational complexity of executing the simulation model, it is time-consuming to deploy
a sim-opt solver in a real-time. As a result, sim-opt has been largely applied in off-line environments.

Nevertheless, the development of high-performance computing infrastructures gives an opportunity for
parallelization of sim-opt procedures opening the possibility to use this technique in real-time. The parallel
computing infrastructure we refer to includes a multi-core workstation, computer cluster/grid, and cloud
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computing. The performance of this architecture varies based on the number of nodes, the execution rate
of each node, and communication time between the nodes.

Several contributions have been proposed to exploit the advantage of parallel architectures. Mühlenbein
(1989), Pierreval and Paris (2000), propose a genetic algorithm where each processing node keeps a local
population that evolves with limited communication with other nodes. In such an approach, the computational
effort of the optimization algorithm is distributed to the multiple processors. The approach is effective,
but the way the parallelization is implemented highly depends upon the specific optimizer (e.g., genetic
algorithms with the concept of local population).

Algorithms implemented following the general master-worker parallelization have been proposed as
well (Figure 1). Different from decentralized approaches, the optimization algorithm is dedicated to the
master node that is in charge of generating the candidate designs to be evaluated, whereas the worker nodes
are responsible for executing the simulation (evaluation task) and returning the results to the master. As an
example, Luo et al. (2000) illustrates the parallel implementation of a ranking & selection procedure that
identifies an optimal solution with optimal computing budget allocation (OCBA) to choose the allocation
of simulation replications; Laganá et al. (2006) illustrates an example of applying grid computing to solve
a large-scale sim-opt problem with simulated annealing and Rinott’s procedure. (Luo, Hong, Nelson, and
Wu 2015) proposes a fully sequential procedures for large-scale ranking-and-selection problems in parallel
computing environments. Ni et al. (2017) provides fundamental results while considering the statistical
issues in implementing such parallelization.

The objective of this paper is to formulate the design of the architecture in Figure 1 as a stochastic
multi-objective simulation optimization problem, regardless of the specific optimization problem (e.g.,
continuous/discrete, ordered/categorical) algorithm or simulation model.

2 THE MASTER-WORKER ARCHITECTURE

In this section, we present the adopted architecture in order to highlight the parameters, decision variables
and the objective function for the optimization of the execution of a parallelized simulation-optimization
algorithm in a master-worker environment.

In this paper, similar to the Ranking & Selection literature such as Nelson et al. (2001), the number
of measurements is one of the main consideration, as it is assumed that the simulation evaluation is the
most computational expensive. Nevertheless, as in the distributed algorithms literature, we also consider
that the time required by the optimizer to sample new solutions is not negligible. This can be particularly
true when the number of workers becomes large. The resulting infrastructure is illustrated in Figure 1. The
master is dedicated to the optimizer, and workers are for simulation purposes. Figure 2 illustrates several
deployments of the master-worker architecture, both in stand-alone machines such as multi-core PCs and
workstations, and through an intranet and the Internet.

We consider the following factors as having effect over the performance of the parallel algorithm, some
of which can be controlled:

• Uncontrollable Factors:
– Sampling Time ts: the time required by the optimizer to sample a new batch of solutions. It

is a random variable with moments as functions of the size of the sampled solutions m;
– Simulation Time te: the time required for completing a single run simulation. It is a random

variable and it depends on the complexity of the solution being sampled (Ni et al. 2017) and
the processor;

– Transmission Time tτ : the time required to exchange design and performance values between
master and workers for simulation. This is a random variable depends on the computing
infrastructure, e.g., network condition;

• Controllable Factors:
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Figure 1: The Master-Worker Architecture for Parallelized Simulation based Optimization.

– Number of Workers n: the number of worker nodes for simulation evaluation in parallel, i.e.,
the number of cores;

– Buffer Size βm,βw: the number of designs sampled but not yet processed. It occurs at master
level (βm) to store designs sampled but yet to be transmitted to workers; and at worker level
(βw), where designs are received but yet to be evaluated.

– Sample Size m: the number of evaluated designs required to generate a sampling decision at
each iteration. Note that according to the sampling algorithms of the optimizer, m could be a
function of search iteration. But in this paper, we assume it remains as a constant throughout
the search, i.e., the master need to collect the same number of evaluations before triggering
the optimizer to sample for the next batch.

These factors affect the performance of the whole parallel sim-opt procedure. In particular, in this
paper, we consider two performance measures: the (1) Throughput of Evaluation ( f1), as the number of
simulation replications performed at each iteration of the master; the (2) Age of Information ( f2) as the
number of simulation replications that have been sampled and assigned to the workers, but not evaluated
at each iteration.

Intuitively, f1 is positively affected by the number of nodes and the buffer size, but negatively affected
by the variation of simulation time, and it is bounded by the sampling speed. It can be argued that a low
f2 is generally preferred (the algorithm is working with updated information) and it is positively affected
by the number of workers, and the buffer size.

In this work, we analyze the relationship between the controllable factors and provide empirical support
for how to design a high-efficiency master/worker framework with general (simulator, optimizer) pair. The
problem becomes:

min
n,βm,βw,m

{− f1 (n,βm,βw,m) , f2 (n,βm,βw,m)} . (1)

Where both functions can be estimated with noise by running a simulation model which emulates the
behavior of the optimization algorithm. It is apparent that this is a stochastic simulation optimization
problem with multiple objectives. In order to clarify the proposed approach, we describe how we derived
the emulator of the algorithm in Section 3.
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(a) 4-Core PC (b) 16-Core Workstation with GPU

(c) Cluster connected by an intranet (d) Cloud / crowdsourced computers via Internet

Figure 2: Illustration of Master/Worker Sim-Opt framework on different computing infrastructure.

3 A SIM-OPT METHOD FOR OPTIMAL ARCHITECTURE DESIGN

In this section, we illustrate the simulation optimization algorithm designed to solve problem (1). Section
3.1 illustrates the simulation model for the optimization architecture, while section 3.5 presents the search
algorithm to optimize the parameters identified in section 2 against the objectives f1 and f2.

3.1 Simulating the Parallel Framework

The O2DES framework (Li et al. 2015) is adopted for constructing the simulation model. In addition,
complying with the DEVS (discrete event system specification) formalism (Zeigler 1987, Zeigler et al.
2000), the proposed system is modularized as a coupling of three atomic components, i.e., the master,
worker, and transmission.

Note that in a primitive O2DES simulation, the model is defined by three elements, i.e., the static
properties that describe the configuration of the system to be simulated, the dynamic properties which
provide the snapshot of the system state in runtime, and the events that describe the change of the state at
discrete times. With the modularization suggested by DEVS, both static and dynamic properties are defined
in the hierarchy, i.e., the properties of the coupled component consist of the properties from the subs. Only
at the atomic level, events can be specified in the way to update the dynamic properties or trigger another
event to be scheduled in future time. At the level of coupled system, only connections among input and
output events are to be formed.

For the proposed master-worker Sim-Opt structure, the coupled system is specified in Figure 3. Both
static and dynamic properties at each component level, as well the coupling relationships are reported in
the figure. Note that, the static properties are label as green, whereas the dynamic properties are in orange.
The red labels indicates both input events that trigger the state change of components, and the output events
that are triggered by the components. Zooming to the component level, Figure 4 shows the event diagram
at atomic levels, which connects from the input to the output events for each of the components.

2186



Li, Pedrielli, Lee, Fu, and Yin

Figure 3: The O2DES model with coupling of three atomic components.

(a) Master (b) Worker

(c) Transmission

Figure 4: Event diagrams at the level atomic components.

In the following, we provide a precise definition for all static, dynamic properties and events for each
atomic component. Note that across all description, i is the index that denotes a worker, and k refers to
the evaluation task.

3.2 Master

Statics The static properties of the master define the settings of the master node, namely:

m - sample size. We assume the optimizer receives m evaluations before performing any sampling
decision.

βm - buffer size. The maximum number of solutions to be sampled and that the optimizer can store
waiting to be assigned to workers.

Ts (m) - the random variable that describes the time required for the master to sample a new batch of
tasks. It is reasonable to assume that the random variable is a function of the sample size m, and
the expected time increases slower-than-linear, due to the scale of economy in the implementation
of the sampling algorithm.

Dynamics The following variables denote the dynamic properties that define the runtime state of
the master.

M - the set of indices for incoming solutions, ordered by the time of receiving. It contains all tasks
that have been received at the master, but have not been passed to the optimizer for updating and
sampling, ‖M‖ ≤ m.
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A - the set of indices for outgoing solutions, ordered by the time of sampling. It contains all tasks that
have been sampled by the optimizer, but not been sent to workers for evaluation. Constrained by
the specified buffer size, at any time ‖A‖ ≤ βm.

O - the “backlog” list for workers, ordered by the time of logging. It contains the indices of the workers
which have returned and are currently waiting for further candidates. The set allows duplicated
items (i.e., a worker is waiting for multiple tasks to be sent to).

P - a binary variable, indicates if the optimizer is sampling (i.e., 1 for sampling, 0 for idle).
C - the total number of tasks that have been sampled.
R - the number of tasks to be returned. It is the difference between C and the total number of tasks

that have been returned back to the optimizer. This variable is used mainly for calculating the age
of information.

Events The following describes how dynamic properties are updated at each event. Refer to Figure
4(a) for the general triggering relationships.

Em0 ({1, . . . ,w}) - Initialization event, given a set of index of workers where w indicates the number
workers. The event sets M← /0 and O← /0, and proceeds with the immediate execution of Em4 (i,k)
for all workers i in the following set:

i ∈ {1, . . . ,w} and k ∈

{
i−1

∑
i′=1

βi′+ i, . . . ,
i−1

∑
i′=1

βi′+ i+βi

}
, (2)

which sends just-sufficient tasks to fill all workers with their respective buffers. Subsequently, it
sets A← {∑w

i=1 βi +1, . . . ,∑w
i=1 βi +βm}, that fills the outgoing buffer; R← maxi∈A i, C← R+ 1,

and P← 0.
Em1 (i,k) - the event of receiving task k from worker i. It firstly updates M←M

⋃
{k}, and triggers

an immediate execution of Em2. If ‖A‖ > 0, remove the first element from A as k′, and execute
Em4 (i,k′); otherwise, set O← O

⋃
{i}.

Em2 - the event that attempts to start the sampling. The event proceeds only when ‖M‖ ≥m and P = 0,
otherwise no updating is incurred. It removes the first m elements from M, set P← 1, R← R−m,
and schedule a new event Em3 after time ts sampled from ts ∼ Ts (m).

Em3 - the event to finish the sampling. Let δ = min(m,‖O‖). Then for the first δ elements i ∈ O,
iteratively execute Em4 (i,C), update C←C+1, and remove i from O. In the case where δ < m,
set A← A

⋃
{C, . . . ,C+m−δ}. Then, execute Em2 to attempt starting a new sampling.

Em4 (i,k) - the event of sending the task k to worker i. It is an output event which does not incur any
updating at the atomic component level.

3.3 Worker

Statics The static properties of a worker i includes the following.

Te (i) - the random variable that describes the time required for the worker i to evaluate a given task.
It is assumed that the evaluation time is independent of the tasks, where it can differ from other
workers.

βw (i) - buffer size. The maximum number of tasks allowed to be received and temporarily store at the
worker i before evaluation. The buffer is used to mitigate the time delay for the transmission and
sampling.

Dynamics And the dynamic properties of worker i include
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B(i) - the set of indices for incoming tasks received by worker i and waiting to be evaluated, ordered
by the time of receiving.

q(i) - the index of the task currently being evaluated at worker i. It is set to 0 if no task is being
evaluated.

Events For the events related to worker i, we have

Ew1 (i,k) - receive the task k at the worker i. It update B(i)← B(i)
⋃
{k}, following with execution of

Ew2 (i).
Ew2 (i) - attempt to start evaluation at worker i. It proceeds only if q(i) = 0 and ‖B(i)‖> 0. Remove

the first element from B(i) as k′, set q(i)← k′, and schedule a new event Ew3 after te sampled from
te ∼ Te (i).

Ew3 (i) - finish evaluating current task. It reset q(i)← 0 and triggers an execution of Ew2 (i). This also
serves as an output event for the worker component.

3.4 Transmission

Statics There is only one static property to define the transmission between the master and servers.

Tτ - the random variable that describes the time delay in the transmission. It is assumed to he homogeneous
independent of workers, tasks, and the direction.

Dynamics Correspondingly, two dynamic properties are required.

S1 - set of tasks transmitting from the master to servers. It consists of (i,k) index pairs that specified
the task and the worker it is sent to.

S2 - set of tasks transmitting from servers to the master. It consists of (i,k) index pairs that specified
the task and the worker it is sent from.

Events The events related to the transmission are defined as following.

Er1 (i,k) - the event to send the task k to worker i from the master. It updates S1← S1
⋃
{(i,k)}, and

schedules Er2 (i,k) after tτ sampled from tτ ∼ Tτ .
Er2 (i,k) - the event of receiving the task k at the worker i, it removes (i,k) from S1 and serve as the

output event of the transmission.
Er3 (i,k) - the event to send the task k from worker i to the master. It updates S2← S2

⋃
{(i,k)}, and

schedules Er4 (i,k) after tτ sampled from tτ ∼ Tτ .
Er4 (i,k) - the event of receiving the task k at the master from worker i, it removes (i,k) from S2 and

serve as the output event of the transmission.

Note that, the connection among the three type of atomic components are specified in Figure 3. At
the level of coupled system, the static parameter n is used to defined the number workers in the system.
And the coupled system is initialized by executing the event Em0 ({1, . . . ,w}) of the master where w = n.

3.5 Searching improved architecture parameters

Algorithm 1 illustrates a simple heuristic procedure that attempts to explore Pareto configurations aiming
for balanced throughput rates between master and workers, as well as to exploit the utilization of the
workers. In the specified algorithm, let nmax to be the maximum number of workers to be explored.

Alternatively, we could also apply existing multi-objective sim-opt algorithms in the literature, e.g.,
MO-COMPASS (Li et al. 2015), to search for the Pareto configurations. Indeed, the numerical experiments
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Algorithm 1: Exploring Pareto Configuration for Parallel Sim-Opt Deployment

1 Initialize the set of candidate configurations Θ← /0;
2 forall the n ∈ {1, . . . ,nmax} do
3 Let m the minimum sample size that enable the master to reach the target throughput rate of

the workers, i.e., 1/E [Ts (m)]≥ ∑
n
i=1 1/E [Te (i)];

4 Set βm← 0, and βw (i)← 0,∀i ∈ {1, . . . ,n};
5 while true do
6 Record the candidate configuration x = [n,m,βm,βw (i)] as Θ←Θ

⋃
{x}, and evlauate

corresponding f1 (x) and f2 (x);
7 Observe the average utilizaiton µ of all workers, i.e., the proportion of time that q(i) 6= 0,

break the loop if µ exceeds a threshold µ0, e.g., µ0 = 0.99;
8 Increase either βm or βw (i) by a unit, whichever results in a greater ∆ f1 observed from the

simulation evaluation;
9 end

10 Identify the Pareto configuration Π⊆Θ;
11 end

in Section 4 shows that MO-COMPASS algorithm is able to achieve a better set of configurations compared
with the results from the simple heuristic rule.

4 NUMERICAL EXPERIMENTS

To test the proposed framework, we apply the developed simulation model to evaluate a scenario specified by
assuming that the sampling time, evaluation time, and transmission time follow truncated normal distributions
(take only the positive part) with respective means and variance, specifically, Ts←Norm(2+0.1×m,0.1)+,
Tτ ← Norm(2,0.3)+, and Te← Norm(1,0.2)+. Note that, the model is flexible enough to tackle various
distributions. In practice these can be observed from computational experiments with specific optimizers,
simulators and computing infrastructure.
We set the number of workers to be n = 4. This is due to the fact that we are given the workers based
on the architecture we can use. The decision variables are the sample size m, master and workers buffer
sizes βm, and βw. We allow each of these parameters to vary in the range {1, . . . ,20}, thus obtaining 203

possible configurations.
The gray color “scatter points” in Figure 5 shows the performance for possible configuration, which

provide an overview of how the solutions are distributed in the objective space, as well as to form a “true”
global Pareto front. This is possible since there is no true simulation model running in this experiment.
Nevertheless, in reality, this figure cannot be obtained, due to the fact that the evaluation task is really
expensive. As a result, we need to be able to identify promising designs with far less evaluations.

Also, from the figures we can observe that in general a larger throughput rate translates into larger
age of information, therefore a trade-off needs to be managed. To quickly identify a set of Pareto-efficient
configurations, the heuristic rule as proposed in Algorithm 1 is applied, from which the results in shown on
Figure 5 with the “circles”. The result shows that the algorithm only works well towards the higher-end,
where the workers are highly utilized. For comparison, we adopt the MO-COMPASS (Li et al. 2015)
algorithm that is aiming to identify the optimal Pareto configurations. As shown by the “solid line” in the
figure, with 360 sample points, the algorithm is able to identify a solution set that is close to the true Pareto
front in terms of both dominance and spread.

In reality, the number of workers is usually a primary constraint due to physical and financial limitation,
and thus a critical decision variable needs to be determined. Therefore, we extend our study to the case
where the number of workers n varies.
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Figure 5: Performance of various configurations for parallel sim-opt with 4 workers, and comparison of
optimization results.

We firstly apply the heuristic rule proposed in Algorithm 1 for n varying from 1 to 9 (as the maximum
throughput is constrained at the master as below 600 per minute which corresponding to the capacity of
maximum 9 workers). The performance of all candidate configurations explored by the heuristic rule is
indicated as “circles” in Figure 6.

In addition to the heuristic algorithm, MO-COMPASS is applied with the number of workers n
constrained at different levels, i.e., 4, 8, and 16 respectively. As different from the heuristic rule, we do not
pursue the exploited utilization of the workers, but leave it to the search algorithm to explore the optimal
configuration. The result is promising as the Pareto front identified from MO-COMPASS dominates the
heuristic results.

Moreover, we identify that relaxing of the constraint on n helps to achieve a more efficient Pareto front.
However, in practice, it may imply a higher cost. Therefore, this study provides evidence to show how
much improvement in both criteria can be achieved by the additional investment in the number of workers.

On the other hand, from the comparison of experiment results, we also observe that ensuring the high
utilization of workers is not always the best choice, as it comes with a cost of wasting the time value of
the information.

5 CONCLUSION

In this study, we formulate and solves the design problem for a master-worker architecture dedicated
to the implementation of a parallelized simulation optimization algorithm. In particular, we refer to the
master-workers paradigm and identify as key performance indicators the throughput regarding the number
of evaluations and the age of information. Also, we list the decision variables which characterize the design
of the master-worker architecture.

To analyze the proposed paradigm, a discrete-event simulation model is constructed to mimic the
execution of the simulation optimization algorithm over in a parallel master-worker environment. Alternative
optimization procedures are proposed to identify the Pareto configurations under a specified scenario and
constrained computational resources. As a result, the problem of optimal design of a parallelized sim-opt
method is formulated as a simulation based optimization algorithm. Numerical experiments show that the
problem is solved effectively with the suggested approach.
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Figure 6: Comparison of optimized configurations for parallel sim-opt in the example scenario.

Future study will be directed to both the modeling of such execution according to stochastic processes
as well as the analysis of the effect of dynamic parameters settings.
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