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ABSTRACT

Expected improvement (EI) is a leading algorithmic approach to simulation-based optimization. However,
it was recently proved that, in the context of ranking and selection, some of the most well-known EI-type
methods cause the probability of incorrect selection to converge at suboptimal rates. We investigate a more
recent variant of EI (known as “complete EI”) that was proposed by Salemi, Nelson, and Staum (2014), and
summarize results showing that, with some minor modifications, complete EI can be made to achieve the
optimal convergence rate in ranking and selection with independent Gaussian noise. This is the strongest
theoretical guarantee available for any EI-type method.

1 INTRODUCTION

In simulation optimization (Fu 2015), the role of simulation is to provide information about a complex
stochastic system, and the role of optimization is to use this information to improve decision-making.
Often, simulations are expensive and time-consuming, which makes it necessary to pick and choose which
information we want to acquire. For example, given a limited number of replications, we may wish to
allocate most of them to a small number of “promising” decisions. This gives rise to several fundamental
problems: we need to 1) characterize the impact of information on the quality of the ensuing decisions;
2) develop a metric for comparing different allocation strategies; 3) design optimal strategies (or at least
good ones) with respect to this metric.

The ranking and selection (R&S) problem provides a stylized mathematical framework that allows us
to precisely answer each of these questions. Numerous surveys and tutorials are available on simulation
optimization in general and R&S in particular; some examples from previous WSC proceedings include
Hong and Nelson (2009), Chau et al. (2014), and Jian and Henderson (2015). In R&S, there is a finite
number of “alternatives,” each of which has an unknown “value,” and the optimization problem is to select
the highest-valued alternative. A single simulation replication provides a noisy observation of the value
of one alternative of our choosing. The relative simplicity of this problem allows for a much richer and
more detailed theoretical characterization of optimal information collection than might be possible for more
complex problems.

Consider a particularly simple version of R&S in which the simulation output is independent and
normally distributed, and a sample of one alternative provides no information about any others. For this
problem, Glynn and Juneja (2004) derived an explicit characterization of the optimal allocation strategy,
expressed in terms of the proportions of the total budget assigned to each of the alternatives. If these
proportions satisfy certain conditions, then the probability of incorrect selection (which occurs when a
suboptimal alternative has a better sample mean than the optimal one) will converge to zero at an exponential
rate, with the best possible exponent, as the total budget increases to infinity.

Although the optimal solution to this problem has been known for some time, it is difficult to implement
in practice since the optimal proportions are themselves functions of the unknown values. For this reason,
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researchers have preferred to focus on heuristic methods that are easier to implement, such as optimal
computing budget allocation (Chen and Lee 2010), Thompson sampling (Russo and Van Roy 2014),
indifference-zone selection (Hong and Nelson 2005), or other approaches surveyed in Powell and Ryzhov
(2012). In this paper, we focus specifically on the expected improvement (EI) class of methods (Jones,
Schonlau, and Welch 1998, Chick, Branke, and Schmidt 2010, Powell and Ryzhov 2012). EI is a Bayesian
approach to R&S (Chick 2006) that allocates simulations in a sequential manner: every new sample is
used to update posterior distributions of the values, and the so-called “value of information” criterion is
used to assign the next sample to the alternative that appears to have the most potential to improve the
most recent estimate of the best value.

There is no single agreed-upon definition for the value of information. The literature has experimented
with many variants, such as the classic EI criterion of Jones, Schonlau, and Welch (1998), the knowledge
gradient criterion (Powell and Ryzhov 2012), the LL1 criterion (Chick, Branke, and Schmidt 2010) and
others. EI is a flexible concept that can be adapted to many problem classes in simulation optimization
(Scott, Powell, and Simão 2010, Han, Ryzhov, and Defourny 2016) and often performs very well in practice
(Branke, Chick, and Schmidt 2007). At the same time, Ryzhov (2016) showed that three of the most
well-known variants of EI all produce suboptimal asymptotic allocations (i.e., none of them satisfies the
optimality conditions of Glynn and Juneja 2004).

Recently, Salemi, Nelson, and Staum (2014) proposed a novel variant of EI, called “complete expected
improvement” (CEI). Under the CEI criterion, the value of information for a seemingly-suboptimal alternative
includes our uncertainty about the estimated best value, whereas classic EI uses only a point estimate of
this quantity. Salemi, Nelson, and Staum (2014) derived the CEI criterion in the context of Gaussian
Markov random fields, a powerful Bayesian learning model that allows a sample of one alternative to
provide information about all others. This model is much more scalable than the simple version of R&S
considered in the present paper, but it is also much more difficult to study (for example, the convergence
rate analysis of Glynn and Juneja 2004 does not handle Gaussian Markov structure).

In this paper, we translate the CEI criterion to our simpler R&S model, which allows us to study its
asymptotic behaviour theoretically. Our main result, proved rigorously in Chen and Ryzhov (2017) and
summarized in this paper, is that CEI achieves the optimal convergence rate, with a minor modification
to the method as originally presented in Salemi, Nelson, and Staum (2014). This is one of the strongest
optimality results for any R&S heuristic to date, with the caveat that we are considering a relatively simple
version of R&S. For instance, Russo (2017) develops a new class of heuristics for the same problem that can
provably achieve rate-optimality, but this requires tuning of a parameter, whereas CEI is entirely tuning-free.
Peng and Fu (2017) shows that the optimal allocation may also be recovered by reverse-engineering the
computational form of EI, but one first requires an approximate solution to the optimality conditions,
whereas CEI requires no additional computational effort over classic EI, and also has a more intuitive
interpretation in our opinion.

The contribution of this result to the simulation literature is twofold. First, our work complements
Salemi, Nelson, and Staum (2014) and provides new theoretical evidence in support of the CEI concept,
even though our results are not directly applicable to the Gaussian Markov model considered in that paper.
Second, our work strengthens the body of theoretical support for EI-type methods in general, helping to
close the gap between the purely theoretical analysis of Glynn and Juneja (2004) and the more practical
issues that drove the development of EI-type methods in the first place.

2 PRELIMINARIES

Let there be M alternatives, and let µx be the unknown value of alternative x ∈ {1, ...,M}. The best
alternative x∗ = argmaxx µx is assumed to be unique. Let {xn}∞

n=0 be a sequence of alternatives chosen
for sampling. For every xn, we observe W n+1

xn ∼N
(
µxn ,λ 2

xn

)
, where the variances λ 2

x > 0 are assumed
to be known for simplicity. Define F n to be the sigma-algebra generated by x0,W 1

x0 , ...,xn−1,W n
xn−1 . This
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definition allows xn to be a random variable adapted to past information; thus, the sequence {xn} may be
obtained from an adaptive allocation rule (in fact, under most such rules, each xn is also F n-measurable).

Let Nn
x = ∑

n−1
m=0 1{xm=x} be the number of replications assigned to alternative x up to time n, taking

N0
x = 0 by convention. Denote by

θ
n
x =

1
Nn

x

n−1

∑
m=0

1{xm=x}W
m+1
xm , (1)

σ
n
x =

λx√
Nn

x
(2)

the sample mean (for alternative x) and its standard deviation. By convention, θ 0
x may be any arbitrary

value (representing some prior guess of µx).
Let xn

∗ = argmaxx θ n
x be the alternative with the highest estimated mean after n replications have been

expended. We assume that, if no additional simulations can be conducted, xn
∗ will be the “selected”

alternative, i.e., the one reported as being the best. We say that “correct selection” occurs at time n if
xn
∗ = x∗, i.e., the selected alternative is also the best one. The probability of correct selection (PCS), written

as P(xn
∗ = x∗), depends on the allocation rule used to assign the simulation budget (i.e., on the law of the

sequence {xn}); we denote a generic allocation rule by π .
Suppose that, under allocation π , the limit αx = limn→∞

Nn
x

n exists a.s. and is non-zero for every x. If
the observations W n+1

xn are mutually independent, Glynn and Juneja (2004) proves that the limit

Γ
α =− lim

n→∞

1
n

logP(xn
∗ 6= x∗)

exists and can be expressed in terms of the proportions α = (α1, ...,αM). In words, the probability of
incorrect selection converges to zero at an exponential rate where the exponent contains a constant multiplier
Γα that depends on the limiting allocation α . The theoretical optimal allocation is the vector

α
∗ = arg max

α∈RM
++,∑x αx=1

Γ
α ,

which makes the probability of incorrect selection vanish as quickly as possible.
Under the additional assumption of normally distributed observations, Glynn and Juneja (2004) gives

a complete characterization of the optimal proportions α∗x in the form of the conditions(
α∗x∗
λx∗

)2

= ∑
x 6=x∗

(
α∗x
λx

)2

, (3)

(µx−µx∗)
2

λ 2
x

α∗x
+

λ 2
x∗

α∗x∗

=
(µy−µx∗)

2

λ 2
y

α∗y
+

λ 2
x∗

α∗x∗

, for all x,y 6= x∗. (4)

Clearly, (3)-(4) depend on the unknown performance values and cannot be known in advance to the decision-
maker. One possible approach, widely adopted in the optimal computing budget allocation (OCBA) literature
(Chen and Lee 2010), is to periodically substitute sample means in place of µx and solve the resulting
approximations of (3)-(4). Even then, most modern work on OCBA-type methods prefers to introduce
additional approximations to make the optimality conditions easier to solve; for instance, Pasupathy et al.
(2014) gives a principled approach for constructing such approximations.

Since we focus on the EI class of methods, the remainder of this section briefly introduces the EI concept.
EI adopts a Bayesian view of R&S; thus, to derive the method, we assume that µx ∼N

(
θ 0

x ,
(
σ0

x
)2
)

, and
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that µx and µy are independent for x 6= y. The parameters
(
θ 0

x ,σ
0
x
)

characterize our prior beliefs about
the unknown value µx. For simplicity, let us suppose that σ0

x = ∞, indicating a non-informative prior; in
that case, it is well-known (DeGroot 1970) that the posterior distribution of µx given F n is normal with
parameters (θ n

x ,σ
n
x ) given by (1)-(2) above. Thus, under the Bayesian setting, estimation occurs exactly

as in the frequentist setting, but allocation will be based on the purely Bayesian idea of uncertain beliefs.
One of the first EI methods, and arguably the best-known, was proposed by Jones, Schonlau, and

Welch (1998). In the context of our R&S problem with independent normal priors, this method assigns
xn = argmaxx vn

x , where

vn
x = E

(
max

{
µx−θ

n
xn
∗
,0
}
|F n

)
(5)

= σ
n
x f

−
∣∣∣θ n

x −θ n
xn
∗

∣∣∣
σn

x

 (6)

and f (z) = zΦ(z)+φ (z) with φ ,Φ being the standard normal pdf and cdf, respectively. From (5), we see
that the EI criterion vn

x may be viewed as a measure of the potential of the unknown value µx to improve
over the current point estimate of the best value. The criterion is adapted to F n and may be efficiently
recomputed after each new observation using the closed-form expression in (6).

Ryzhov (2016) provided the first explicit characterization of the limiting allocation under EI, given by

lim
n→∞

Nn
x∗
n

= 1, (7)

lim
n→∞

Nn
x

Nn
y

=
λ 2

x (µy−µx∗)
2

λ 2
y (µx−µx∗)

2 , for all x,y 6= x∗. (8)

It is easy to see that (7)-(8) do not match (3)-(4) except in the limiting case where α∗x∗ → 1. However, this
limiting case does not arise for any finite M, meaning that, under EI, the probability of incorrect selection
will not converge at an exponential rate. Ryzhov (2016) also derives the limiting allocations for two other
EI-type methods; however, although one of these does achieve an exponential rate, that rate is not the best
possible.

3 ALGORITHM AND MAIN RESULTS

Section 3.1 provides background on the complete expected improvement criterion and explains our modifi-
cations to the procedure. Section 3.2 states our main results and sketches out the argument (the full details
are omitted due to space considerations, but can be found in Chen and Ryzhov 2017).

3.1 Complete Expected Improvement

Recently, Salemi, Nelson, and Staum (2014) proposed a new variant of EI, called “complete EI” or CEI,
in which (5) is replaced by

vn
x = E

(
max

{
µx−µxn

∗ ,0
}
|F n) , (9)

and (6) can be replaced by

vn
x =

√
(σn

x )
2 +
(

σn
xn
∗

)2
f

−
∣∣∣θ n

x −θ n
xn
∗

∣∣∣√
(σn

x )
2 +
(

σn
xn
∗

)2

 (10)

for x 6= xn
∗. The advantage of CEI over classic EI is that it incorporates additional uncertainty about the best

value. Salemi, Nelson, and Staum (2014) developed this criterion for a more general Gaussian Markov
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Step 0: Initialize n = 0 and Nn
x = 0, θ n

x = 0, σn
x = ∞ for all x.

Step 1: Check whether (Nn
xn
∗

λxn
∗

)2

< ∑
x 6=xn

∗

(
Nn

x

λx

)2

. (11)

Step 2: If (11) holds, assign xn = xn
∗. Otherwise, assign

xn = argmax
x 6=xn

∗

√
(σn

x )
2 +
(

σn
xn
∗

)2
f

−
∣∣∣θ n

x −θ n
xn
∗

∣∣∣√
(σn

x )
2 +
(

σn
xn
∗

)2

 .

Step 3: Collect new information W n+1
xn , update posterior parameters using (1)-(2). Increment n by 1

and return to step 1.

Figure 1: Description of modified CEI (mCEI) procedure.

model with prior correlations between values, so the original presentation of CEI also included the posterior
covariance between µx and µxn

∗ in the calculation. In (10) we give a simpler version of CEI adapted to our
R&S model with independent priors and observations.

The definition (9) implies that vn
xn
∗
= 0 for all n. For this reason, our analysis makes an additional

modification to the method. Essentially, we introduce a new condition to determine whether the next
replication should be assigned to xn

∗; if this condition is not met, we then assign xn = argmaxx 6=xn
∗ vn

x where
vn

x is computed using (10). As far as we can tell, Salemi, Nelson, and Staum (2014) does not explicitly
comment on the issue of assigning replications to xn

∗. However, in the broader literature, this is acknowledged
as a difficult problem. For example, Russo (2017) observes that the popular Thompson sampling algorithm
(Russo and Van Roy 2014), if applied to R&S, will sample xn

∗ too often. Russo (2017) then proposes a
correction which essentially assigns a pre-specified proportion β of the budget to xn

∗, and uses Thompson
sampling (or an equivalent criterion) to choose between the remaining alternatives in all other cases. It
follows that the optimal convergence rate can be achieved, but only if β is tuned properly. In light of this
issue, it is especially interesting that the modified version of CEI achieves the optimal rate without any
tuning.

Figure 1 states the procedure; the modification consists of condition (11), which is trivial to implement.
It is easy to see that mCEI does not involve any tunable parameters. We begin our analysis by proving a
basic consistency result for the mCEI procedure.
Theorem 1 Under mCEI, Nn

x → ∞ a.s. for all x.

Proof. Fix a sample path ω and define A = {x |Nn
x (ω)→ ∞}. It is obvious that A is non-empty. Suppose

that Ac is also non-empty and that x ∈ Ac; then, the time

K1 = sup{n |xn (ω) = x}

is finite. There must also exist a finite time K2 ≥ K1 such that, for all n ≥ K2, we have xn
∗ (ω) 6= x; if

this were not the case, we would be able to find some n > K1 for which xn
∗ (ω) = x and (11) would hold,

implying that xn (ω) = x and contradicting the definition of K1.
Since this analysis applies to any x ∈ Ac and there are only finitely many such x, it follows that there

exists K3 ≥ K2 such that both xn (ω) ∈ A and xn
∗ (ω) ∈ A for all n≥ K3. Consequently, for n≥ K3, we can
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write
σ

n
xn
∗(ω) (ω)≤max

x∈A
σ

n
x (ω) . (12)

The RHS of (12) vanishes to zero as n→ ∞ due to (2) and the definition of A. Therefore, σn
xn
∗(ω) (ω)→ 0.

Since the CEI criterion satisfies

vn
x ≤

1√
2π
·
√

(σn
x )

2 +
(

σn
xn
∗

)2
,

it follows that, for any x ∈ A, we have vn
x (ω)→ 0. On the other hand, for any x ∈ Ac, limn→∞ σn

x (ω)> 0
and it straightforwardly follows that liminfn→∞ vn

x (ω)> 0.
It is obvious that there are infinitely many n for which condition (11) does not hold. From here, it is

straightforward to show that we can find large enough n≥ K3 for which (11) does not hold and

max
x∈A

vn
x (ω)< min

x∈Ac
vn

x (ω) ,

which would imply that xn (ω) ∈ Ac, contradicting the definition of K3. We conclude that Ac = /0.

3.2 Main Results and Proof Sketch

We first introduce some additional notation. Let αn
x = Nn

x
n be the proportion of the first n replications

assigned to alternative x, and let

tn
x =

(µx−µx∗)
2

λ 2
x

Nn
x
+

λ 2
x∗

Nn
x∗

for x 6= x∗. We now state our main results, which essentially show that conditions (3)-(4) are achieved in
the limit by the mCEI procedure.
Theorem 2 (First optimality condition.) Under mCEI,

lim
n→∞

(
αn

x∗
λx∗

)2

− ∑
x 6=x∗

(
αn

x

λx

)2

= 0,

almost surely.
Theorem 3 (Second optimality condition.) Under mCEI,

lim
n→∞

tn
x

tn
y
= 1

almost surely for any x,y 6= x∗.
The proofs of these results are highly technical and outside the scope of the present paper; we refer

readers to Chen and Ryzhov (2017) for the details. Below, we sketch the structure of the proof (particularly
focusing on Theorem 3, which is more difficult).

First, our analysis of the procedure is frequentist, viewing µx as a fixed constant. To some degree, the
frequentist and Bayesian versions of the R&S problem considered in this paper are interchangeable, since
they both use (1)-(2) for estimation. Moreover, although Bayesian arguments are used to derive the CEI
criterion, one could easily apply the closed-form expression in (10) in a frequentist setting. Since we prove
almost sure convergence, and the value of µx is always fixed on a given sample path, this is not a major
issue.

Second, by the arguments given in Section 4.1 of Ryzhov (2016), it is sufficient to prove Theorems
2-3 for a simplified version of mCEI with (11) replaced by(

Nn
x∗

λx∗

)2

< ∑
x 6=x∗

(
Nn

x

λx

)2

,
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and (10) replaced by

vn
x =

√
(σn

x )
2 +
(
σn

x∗

)2 f

− |µx−µx∗ |√
(σn

x )
2 +
(
σn

x∗

)2

 . (13)

That is, we replace xn
∗ by its limit x∗, and similarly replace the posterior means by the true values. This

version of mCEI cannot be implemented in practice, but it has the same asymptotic behaviour (on a fixed
sample path) as the procedure in Figure 1; by the arguments in Ryzhov (2016), the error in the sample
means does not substantially affect the tail behaviour of the function f .

From this point on, however, the analysis requires considerable new content over Ryzhov (2016): even
after the simplification in (13), the CEI criterion does not decline independently across alternatives, as it
would for classic EI. The difficulty comes from the fact that the ratio vn

x
vn

y
, for x,y 6= x∗, can now change when

x∗ is sampled. To handle this problem, it is necessary to bound the number of samples of x∗ in between
two samples of x. The discussion below will summarize the bound while omitting the technical details.

By applying the Mills ratio (Ruben 1962), one can derive the expansion

logvn
x

logvn
y
=

tn
x

tn
y
·

(
1+O

(
log tn

x
tn
x

))
(

1+O
(

log tn
y

tn
y

)) . (14)

Then, if the LHS of (14) can be shown to converge to 1, Theorem 3 will follow because tn
x →∞ by Theorem

1. Since vn
x → 0 for all x, the LHS of (14) is equal to the ratio |logvn

x |
|logvn

y| of the absolute values for large

enough n. When either x or x∗ is sampled, the absolute value |logvn
x | will increase, which may affect the

ratio of the absolute values. When y is sampled, the ratio will decrease, and when any other alternative z
not equal to x, y or x∗ is sampled, the LHS of (14) will be unaffected.

Thus, we consider a period of time in between two samples of x and bound the growth of |logvn
x |

|logvn
y| during

this period. Formally, suppose that xn = x and let m = min
{
` > 0 |xn+` = x

}
; then, the period of interest

is between times n and n+m. During this period, x is measured exactly twice (at the endpoints), and we
prove in Chen and Ryzhov (2017) that

n+m

∑
k=n

1{xn=x∗} = O (logn) . (15)

The RHS of (15) is an upper bound; it is possible for the LHS to be zero for some periods between two
samples of x.

It can also be proved that, for each sample of x∗ occurring between times n and n+m, the increase in

the ratio |logvk
x|

|logvk
y| is at most of order O

(1
n

)
. Therefore, the total growth of the ratio during this period is of

order O
(

logn
n

)
, which vanishes to zero as n→ ∞. Furthermore, since |logvn

x |
|logvn

y| ≤ 1 at the start of the period

(by the definition of n), and since limsupn→∞

|logvn
x |

|logvn
y| ≥ 1 because both x and y will be sampled infinitely

often, we are able to conclude that limsupn→∞

|logvn
x |

|logvn
y| = 1. Applying a symmetry argument to the reciprocal

of the ratio, we find that the LHS of (14) converges to 1.

4 NUMERICAL EXAMPLE

We present a numerical illustration of the mCEI method on a small synthetic problem. Two additional
benchmarks were implemented. The first of these is the classic EI method from Jones, Schonlau, and
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(a) Probability of incorrect selection. (b) Simulation allocations after 5000 samples.

Figure 2: Comparison between mCEI and benchmark methods on the example problem.

Welch (1998), given in (6). From (7)-(8), we do not expect this method to perform optimally in the long
term; however, we include it because it is the fundamental procedure in the EI class of methods and thus
a natural benchmark for mCEI. We also implemented the TTPS (“top-two probability sampling”) method
from Russo (2017). This method assigns a fixed proportion β of the sampling budget to alternative xn

∗ and
allocates the rest based on a Thompson sampling-like criterion. TTPS is an important benchmark since it
can be made to achieve the optimal convergence rate if β is chosen correctly; however, since tuning β may
be time-consuming in practice, Russo (2017) explicitly recommends setting β = 0.5 and derives a bound
on the gap between the resulting convergence rate and the optimal one. We follow this recommendation
in order to briefly comment on the tuning issue.

The synthetic example has five alternatives with true values µ = (0.5,0.4,0.3,0.2,0.1), standard
deviations λ = (1,0.6,0.6,1,1), the initial prior means θ 0

x ≡ 0, and a budget of 5000 samples. Figure 2(a)
shows the trajectory of the probability of incorrect selection, averaged over 100 macro-replications. Thus,
the best alternative is x∗ = 1, but the noise is greater for alternative 1 than for alternatives 2 and 3, which
makes correct selection a bit more difficult.

By (7), we know that EI will not be able to achieve an exponential convergence rate, so it is unsurprising
that it is eventually outperformed by TTPS; however, EI performs relatively well in the early stages. On
the other hand, mCEI lags slightly behind EI during the first 200 replications, but subsequently discovers
the best alternative very quickly. After 2500 samples, the empirical probability of incorrect selection is
virtually zero under mCEI.

Figure 2(b) compares the allocations made by each method (also averaged over 100 macro-replications)
to the optimal allocation, obtained by solving (3)-(4). As expected from (7), the EI allocation is far from
optimal since it assigns most of the budget to the best alternative. The optimal proportion to assign to
alternative 1 is slightly larger than 0.5; as a result, TTPS is not tuned optimally and thus consistently makes
errors in all of the proportions. The allocation made by mCEI is very close to optimal.

Note that, even in this small problem, alternatives 3, 4 and 5 receive only about 10% of the budget under
the optimal allocation. This suggests that, in some situations, the size of the problem may not necessarily
determine its difficulty (aside from increasing the computational effort required to run a procedure), as
many or even most of the alternatives may be similarly “irrelevant.” Identifying characteristics that make
problems more “difficult” may be an interesting subject for future work. At present, however, we only
wish to illustrate the potential of mCEI to produce very close approximations of the optimal allocation,
without any tuning, in a relatively small number of samples.
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5 CONCLUSION

We have presented the first theoretical guarantee of rate-optimality for a method belonging to the EI class,
in the context of ranking and selection with independent normal samples. The method in question is a
modified version of the CEI criterion, first proposed by Salemi, Nelson, and Staum (2014); we show that
it achieves the rate-optimality conditions of Glynn and Juneja (2004) asymptotically without the need for
any tuning. This provides new theoretical support for EI-type methods in general and CEI in particular.

Our results raise several questions for further study. First, one wonders whether analogous results may
be obtained for the more powerful Gaussian Markov framework of Salemi, Nelson, and Staum (2014),
for which CEI was originally proposed. Unfortunately, such models do not fit the framework of Glynn
and Juneja (2004), and so more fundamental questions about convergence rates under these models should
first be addressed. A second, related question is whether CEI can retain its optimality properties under
non-Gaussian sampling distributions; Ding and Ryzhov (2016) showed that some EI-type methods may not
even be consistent in these settings, so some additional modifications or considerations may be necessary.

Finally, while this paper was under review, a new preprint by Qin, Klabjan, and Russo (2017) appeared
on arXiv. This work also provides rate-optimality guarantees for CEI using a different theoretical technique.
However, these authors use a tunable parameter to control the assignment of replications to xn

∗, exactly as
in the TTPS algorithm. The mCEI procedure described in our paper addresses this problem in a different
way that avoids the need for tuning.
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