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ABSTRACT

This paper considers the problem of identifying the best of a discrete set of alternatives for each of a set of
correlated problem instances. We assume that the instances can be described by a set of continuous features
and the performance of a particular alternative on a particular problem instance can only be estimated
from noisy samples. A possible application is in manufacturing, where we would like to identify the best
dispatching rule to be used depending on shop floor conditions, and performance is estimated via stochastic
simulation. We propose three myopic sequential sampling methods to collect information, and in particular
focus on an efficient estimation of the expected improvement which requires integration over the continuous
space of problem instances. Empirical tests show that our method of estimating expected improvement is
indeed more efficient than standard Monte Carlo integration, and that our method significantly outperforms
a recently published alternative sampling method.

1 INTRODUCTION

Ranking and selection is the problem of identifying the alternative with the best expected performance
from a set of alternatives, when the quality of an alternative can only be observed through expensive noisy
sampling. The problem we consider is an extension of the standard ranking and selection setting, where
there is a distribution of problem instances described by some continuous feature values, and the goal is
to identify the best alternative, a, depending on the problem instance, x. In other words, we are looking
for a mapping S(x) : X → A from problem instance features to alternative that maximizes the expected
performance over all instances, F =

∫
E[ f (S(x),x)] P[x]dx, where f (a,x) is the stochastic performance of

alternative a on problem instance x, and P[x] is the probability of encountering a particular problem instance
x. If there is only one x the problem reduces to traditional ranking and selection.

We assume that performance values are correlated over problem instances, i.e., that applying an
alternative a to two similar problem instances results in similar performance, but that the performances of
different alternatives are independent. To identify S, we can sequentially collect information by sampling
performances f (a,x), and we would like to allocate a given sampling budget N such that F is maximized.

In traditional ranking and selection under input uncertainty it is assumed the user aims to find the
single optimal a averaged over all inputs x. The problem we consider may also be viewed as ranking and
selection under Input Uncertainty where the user aims to find the optimal alternative a for each possible
input x distributed according P[x].

This setting has various real-world applications. For example in manufacturing, we may want to
understand which dispatching rule works best depending on the shop floor conditions, so that we can pick
the best rule in each condition encountered (Heger et al. 2016). Or in online advertising, we may want
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to understand which advert is most effective depending on some information on the viewer (such as their
search history).

We model the problem using Gaussian Processes and extend an earlier paper (Pearce and Branke 2017)
in which we have proposed an algorithm to identify the best alternatives for a discrete set of correlated
problem instances to the case of continuous instance distributions. In particular, we focus here on ways
to compute the expected improvement efficiently. We also demonstrate that our approach outperforms a
recently published alternative method on a synthetic benchmark problem.

The paper is structured as follows. Section 2 surveys previous work, in Section 3 we provide a problem
formulation, and our new sampling methods are proposed in Section 4. We evaluate the sampling methods
on a synthetic benchmark problem in Section 5 and conclude in Section 6.

2 LITERATURE REVIEW

The problem of identifying the best alternative when the performance of an alternative must be inferred
from noisy observations is usually called Ranking and Selection. Many methods have been proposed that
sequentially allocate sample observations to the different alternatives in order to maximize the probability
of correctly selecting the best alternative, or minimizing the expected opportunity cost. Branke, Chick,
and Schmidt (2007) provide a review and comparison of several ranking and selection methods, a more
recent survey focusing on algorithms derived under the Bayesian framework has been written by Chen et al.
(2015). Building on Gupta and Miescke (1996), the Knowledge Gradient policy of Frazier, Powell, and
Dayanik (2008) and the myopic sampling policy of Chick, Branke, and Schmidt (2010) allocate the next
sample where they myopically expect the largest improvement of performance in the next step. This method
was extended to the case when decision outcomes are correlated by Frazier, Powell, and Dayanik (2009)
where observing a high outcome from one alternative suggests similar alternatives would also perform well.

When the search space is continuous, a Gaussian Process, or Kriging, are often used as a statistical
model of the objective function given the data collected. This can then be used for optimization where a
user has limited data and new observations are expensive to collect, see Shahriari et al. (2016) for a review
of Bayesian Optimization methods. Possibly the most famous method in this category is the Efficient
Global Optimization algorithm (EGO) of Jones, Schonlau, and Welch (1998) that uses a Gaussian Process
Regression model and sequentially allocates samples by maximizing an expected improvement of a new
function evaluation over the current best evaluation. The Sequential Kriging Optimization method of Huang
et al. (2006) extends the EGO method to account for noise and Scott, Frazier, and Powell (2011) extend
the discrete Knowledge Gradient policy to the continuous case which is myopically optimal under certain
conditions.

When multiple finite Ranking and Selection problems have to be solved, correlations among these
problems may be exploited to speed up convergence. Pearce and Branke (2017) provide myopic methods
for allocating samples where there is correlation between tasks but they do not account for correlation
across decision alternatives. Hu and Ludkovsk (2017) consider the same problem as this work where the
range of tasks is continuous and provide a sampling method that maximizes the model’s prediction of the
upper bound.

A few papers extend the idea of Bayesian Optimization to the case where several related optimization
problems have to be solved sequentially. Morales-Enciso and Branke (2015) consider the optimization of
a changing objective function with EGO, and propose three different ways to re-use information gathered
on previous objective functions to speed up optimization of the current objective function: using the old
posterior mean as the new prior mean, treating old samples as noisy, and treating time as an extra input
dimension to the learned function. The latter idea is also used by Poloczek, Wang, and Frazier (2016) to
warm-start Bayesian Optimization, however with the Knowledge Gradient as the acquisition function for the
current optimization task. A similar problem has been much studied in the field of Contextual Multi-Arm
Bandits, an extension of the multi-armed bandit problem where the best arm depends on a context that is
randomly changing with time and sampling policies must aim to maximize cumulative reward, see Zhou
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(2015) for a survey. Krause and Ong (2011) use Gaussian Processes with inputs that are both decision
variables and context variables and propose an upper confidence bound acquisition function to find the best
arm for each context.

In this work we approach the same problem considered by Hu and Ludkovsk (2017), i.e., given a finite
set of independent response surfaces, one for each alternative, over a continuous domain, such as problem
features, the aim is to learn about the best surface/alternative for each point in the domain. We provide
three new algorithms that either perform equivalently or better than the best method proposed by Hu and
Ludkovsk (2017). We especially focus on how to efficiently estimate the expected improvement over a
continuous domain.

3 PROBLEM FORMULATION

There exists a continuous distribution of problem instances with features x ∈ X ⊂R
D, and the distribution

P[x] of instances in the feature space is known. There exists a discrete set of alternatives A. Executing a
given alternative a ∈ A on a given problem instance x ∈ X yields a stochastic performance measurement
Ya(x) = f (a,x) = θa(x)+ ε where θa(x) : RD → R is a deterministic latent function and ε ∼ N(0,σε,a) is
independent and identically distributed white noise with known variance (which in practice is measured).
The objective of the user is to find a classifier, or mapping, from problem instance to the best alternative
S(x) : X → A that approximates S∗(x) = argmaxaθa(x) given a finite budget of N performance measurements.
The aim is to find a mapping that maximizes the overall expected performance across all problem instances

True Performance = F =
∫

X
θS(x)(x)P[x]dx. (1)

Individual performance measurements may be collected sequentially so that after n measurements the
user may determine the alternative and problem instance for the (n+1)th sample.

If there was only a single problem instance, the problem reduces to finding the alternative a with the
highest θa, a standard ranking and selection problem. The formulation above extends ranking and selection
to a continuous range of correlated ranking and selection problems. The distribution of problems P[x]
ensures that frequent problems (high P[x]) contribute to performance more than rare problems (low P[x])
and as such a user would prefer to have a more accurate mapping S(x) for common problems. We refer to
P[x] as the problem instance density however, without loss of generality, any user defined weight function,
W (x), can be incorporated to give priority to particular instances x.

A practical application may be the algorithm selection problem where one would like to derive a
mapping that specifies the most suitable algorithm depending on some features of the problem instance.
In this case, x are the features of a given problem instance, P[x] is the distribution of problem instances
throughout the feature space. There is a set of A alternative algorithms and θa(x) is the average performance
of an algorithm a on instance with features x. A user aims to construct the mapping S(x) from problem
features to best algorithm.

4 SAMPLING METHODS

We propose to use independent Gaussian Process regression models for each a to predict expected performance
θa(x) given instance features x. Gaussian Process regression is a popular Bayesian regression method that
has been used successfully to optimize expensive black box functions where only abstract prior information
is known about the black box such as smoothness or periodicity.

Given a dataset of (instance, alternative, performance) triplets (x1,a1,y1), ..,(xn,an,yn), we define the
subset of (instance, performance) pairs associated with alternative a as Xn

a , Y n
a . We define the sigma algebra

generated by the data as F n that defines the sequence of filtrations used to condition the distributions of
θ1(x), ...,θA(x) on the data. For a single alternative a, a user defines prior mean and covariance functions
μ0

a (x), k0
a(x,x

′) that can be used to incorporate prior knowledge about the underlying performance θa(x),
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however there also exists common default settings such as zero mean and squared exponential kernel. After
observing data the posterior distribution of θa(x), the Gaussian Processes Regression, is given by

E[θa(x)|F n] = μ0
a (x)+ k0

a(x,X
n
a )
(
k0

a(X
n
a ,X

n
a )+ Iσ2

aε
)−1

(Y n
a −μ0(Xn

a )), (2)

Cov[θa(x),θa(x′)|F n] = k0
a(x,x

′)− k0
a(x,X

n
a )
(
k0

a(X
n
a ,X

n
a )+ Iσ2

aε
)−1k0

a(X
n
a ,x

′), (3)

where k0
a(X

n
a ,X

n
a ) is the n× n matrix with elements determined by evaluating the prior covariance

function between all possible pairs of elements in Xn
a and I is the n× n identity matrix. We can then

construct a mapping for any instance x by taking the alternative with the best predicted performance

S(x) = argmaxaμn
a (x)

and the model estimate of performance, Pn, of such a mapping is computed by

Pn =
∫

X
μn

S(x)(x)P[x]dx =
∫

X
max

a
μn

a (x)P[x]dx (4)

which we aim to optimize as a surrogate for optimizing F , however this cannot be written analytically for
arbitrary P[x]. To derive sampling methods we next consider the marginal improvement in the surrogate
objective. Given the next data point xn+1, an+1 and yn+1, the observed improvement due to the new sample
is

I((x,a,y)n+1) = Pn+1((x,a,y)n+1)−Pn =
∫

X

(
max

a
μn+1

a (x)−max
a′

μn
a′(x)

)
P[x]dx. (5)

After n samples, xn+1 and an+1 are chosen by the user and a random yn+1 is observed. Inspired by myopic
optimality we aim to allocate samples (x,a)n+1 to maximize the expectation of I over yn+1. For a given
(x,a)n+1 the Gaussian Process gives a predictive distribution of yn+1 thus the statistical distribution of
μn+1

a (x), Pn+1 and I can in theory be calculated, we next derive these distributions.
Given only the n samples and the user’s choice of (x,a)n+1, the prior predictive distribution of the next

observation is
yn+1 ∼ N(θa(xn+1),σ2

a,ε) = N(μn
a (x

n+1),kn
a(x

n+1,xn+1)+σ2
a,ε) (6)

Equation 2 gives the formula for the current posterior mean after n samples, the formula for the posterior
after one sample allocated to alternative a is

E[θa(x)|F 1] = μ0
a (x)+

k0
a(x,x

1
a)

k0
a(x1

a,x1
a)+σ2

aε
(y1

a −μ0(x1)). (7)

Replacing μ0
a (x) and μ1

a (x) with μn
a (x) and μn+1

a (x), and the same for covariances, yields a consistent
updating formula for the posterior mean. For each new observed yn+1, only the sampled alternative an+1

is changed,

E[θa(x)|F n+1] = μn+1
a (x) =

{
μn

a (x)+
kn

a(x,x
n+1
a )

kn
a(x

n+1
a ,xn+1

a )+σ2
aε
(yn+1

a −μn(xn+1)) a = an+1

μn
a (x) a �= an+1

(8)

Combining the distribution of yn+1 with the updating formula for the mean yields the predictive distribution

μn+1
a (x) = μn

a (x)+ σ̃n
a (x;xn+1)Z (9)

where Z ∼ N(0,1) is the stochastic z-score of yn+1 value on its predictive distribution and

σ̃n
a (x;xn+1) =

kn
a(x,x

n+1)√
kn

a(xn+1,xn+1)+σ2
a,ε
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is a deterministic function of x, parametrized by xn+1, that is an additive update to the posterior mean
caused by the new sample and the size of the update is scaled by the stochastic Z. The improvement I is
an integral over all x ∈ X . Next, we calculate the improvement for a single instance in the integral due to
the new sample yn+1. Given instance x, we define the best predicted alternative as maxa μa(x) = μn

(1)(x)
and for the following equation we drop (x). The expected improvement in estimated performance is given
by the integrand of Equation 5

E
[

max
a′

μn+1
a′ −μn

(1)

]
= E

[
max

{
max

a′ �=an+1
μn

a′ −μn
(1),μ

n
an+1 −μn

(1) +Zσ̃an+1

}]
(10)

=

{
E[max{Δa,Zσ̃a}] an+1 = (1)

E[max{0,Δa +Zσ̃a}] an+1 �= (1)
(11)

= ΔaΦ
(
Δa/σ̃a

)− σ̃φ
(
Δa/σ̃a

)
(12)

where Δa(x) =−|μn
a (x)−maxa�=an+1 μn

a (x)|, σ̃a = σ̃n
a (x,x

n+1) and φ(x) and Φ(x) are the standard normal
density and cumulative functions respectively. The above expected improvement for a single x is the
same as the well known expected improvement for the EGO algorithm which uses the prior predictive
distribution of a new sample to give expected improvement over past samples. Here it is measuring the
expected improvement in the mean of one Gaussian process over the mean of other independent Gaussian
Processes. Finally the expected improvement, EI, over all x ∈ X is the integral of the single x improvement

EI(x,a) = Eyn+1 [I(x,a,yn+1)] (13)

=
∫

x′∈X

(
Δa(x′)Φ

(
Δa(x′)/σ̃n

a (x
′,x)

)− σ̃n
a (x

′,x)φ
(
Δa(x′)/σ̃n

a (x
′,x)

))
P[x′]dx′ (14)

In the following subsections, we propose several sampling policies for determining xn+1 and an+1 based
on the above expected improvement calculation.

4.1 Local Expected Value of Improvement

As a cheap simple heuristic for maximizing EI(x,a) we propose the Local Expected Value of Improvement
(LEVI) procedure which determines the next (instance, alternative) pair to sample based on the improvement
that the sampled instance alone contributes to the global improvement EI(x,a). The LEVI method allocates
the sample to maximize the argument to the integral:

LEV I(x,a) = E
[

max
a′

μn+1
a′ (x)−max

a′′
μn

a′′(x)
]
P[x] (15)

=

(
Δa(x)Φ(Δa(x)/σ̃a(x;x))− σ̃a(x)φ(Δa(x)/σ̃a(x;x))

)
P[x] (16)

The LEVI method treats x as a single ranking and selection problem and samples the single problem that
has the joint largest improvement and probability P[x]. It tends to allocate a sample to (instance, alternative)
pairs for which the difference in prediction between the chosen alternative and the best alternative is small,
Δa(x) is small, where the possible change in prediction, σ̃a(x;x), is high and where the instance density,
P[x], is high. Each call to LEV I(x,a) requires a call to all posterior means μn

1 (x), ...,μ
n
A(x) which have

complexity O(n1), ..,O(nA) and one call to the posterior covariance kn
a(x,x) which has complexity O(n2

a)
where na is the number of the n samples so far allocated to alternative a. This leading complexity is
equivalent to one call for the EGO expected improvement, however for this problem the acquisition function
must be optimized once for each alternative in order to allocate a single sample. Optimization of LEV I(x,a)
can be done by many methods and in Section 5 we use the squared exponential kernel that gives smooth
predictions and Nelder-Mead algorithm with multiple starts.

The LEVI sampling method is asymptotically optimal meaning that given an infinite sampling budget
the true optimal mapping S∗(x) will be determined perfectly.
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4.2 Regional Expected Value of Improvement

The Regional Expected Value of Improvement (REVI) sampling procedure determines the next (instance,
alternative) pair to sample based on a Monte-Carlo estimate of the global improvement EI(x,a). By
replacing the continuous integral over all instances with a Monte-Carlo integral over a fixed set of NX
instances, XMC = {x1, ...,xNX}, that are randomly distributed according to P[x]. The integral becomes

EI(x,a)≈ ÊI(x,a) =
1

NX
∑

xi∈XMC

E
[

max
a

μn+1
a (xi)−max

a′
μn

a′(xi)
]

(17)

=
1

NX
∑

xi∈XMC

Δa(xi)Φ(Δa(xi)/σ̃a(xi;x))− σ̃a(xi;x)φ(Δa(xi)/σ̃a(xi;x)). (18)

The above integral ÊI(x,a) gives an estimate of the total improvement EI(x,a). LEV I(x,a) gives the single
point improvement therefore LEV I(x,a)VX is also an estimate of the overall improvement where VX =

∫
x dx

is the volume of the instance space. Combining these two estimates of improvement weighted according
their sample sizes yields

REV I(x,a) =
1

NX +1

(
NX ÊI(x,a)+LEV I(x,a)VX

)
. (19)

The REVI method allocates samples to (instance, alternative) pairs for which the difference between the
chosen alternative and the best remaining alternative is close across correlated instances, where the prediction
uncertainty is high across those instances and where the instance density is high across correlated instances.
After each new sample, the set of fixed points, XMC, are reproduced such that the mapping does not overfit
to a single discretization. NX may be seen a a parameter to be chosen by the user, and setting NX = 0
the REVI method becomes equivalent to LEVI method. In Section 5 we choose NX = n such that the
discretization density grows with the sample density.

A single call to REV I(x,a) requires one call to LEV I(x,a) and also the means of the XMC instances for
all alternatives and also all posterior covariances kn

a(XMC,x) to calculate σ̃n
a (XMC;x). The means for all NX

instances and alternatives can be precomputed and stored between REV I(x,a) calls. Also the final terms
of the matrix multiplication in Equation 3 for the posterior covariances may be precomputed reducing each
kn

a(xi,x) call from O(n2
a) to O(na). Therefore after the first call, each additional call to REV I(x,a) has

leading order complexity O(n2
a +NX na). Assuming NX = n ≈ Ana the leading complexity is O(n2

a) which
is equivalent to LEV I(x,a) and EGO. Again optimization of REV I(x,a) can be done by many methods
and in Section 5 we use the same Nelder-Mead algorithm with multiple starts.

If the instance distribution is discrete, X = {x1, ..} and P[xi] = pi, then limNx→∞ Î = EI(xi,a) may be
computed exactly by summing instances weighted according to their probabilities and the LEV I(x,a) term
may be dropped from REV I(x,a). If alll instances were equally likely pi = 1/|X |, the simplified REVI
method is equivalent to the REVI method given in (Pearce and Branke 2017) which is asymptotically and
myopically optimal and also has a suboptimality bound.

In Section 5 we show that the REVI method significantly outperforms LEVI and another method from
the literature in our tests.

4.3 Neighbors Only Regional Expected Value of Improvement

The Monte-Carlo integral ÊI with NX samples requires computing σ̃n
a (xi,x), the change in the predicted

performance of an instance xi ∈ XMC caused by the new sample at x, which requires computing kn
a(xi,x).

When covariance between xi and x is low, the instance expected improvement is very small. As a result
the summation in Equation 17 may be dominated by a few large terms and many small negligible terms.
To improve efficiency, one may use importance sampling, for example with a stationary kernel, setting
XMC focused around x would significantly reduce error in ÊI(x,a). However in our experiments this lead
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to slower computation, it’s not possible to precompute means and partial covariances, and the REV I(x,a)
is very rugged and not easily optimized.

Instead we propose the Neighbors Only Regional Expected Value of Improvement method (NREVI). The
Monte-Carlo instances, XMC, are generated as with REVI, however, only instances whose prior covariance
is above a threshold are included in the Monte-Carlo integral. By filtering points according to the cheaply
computed prior covariance, we can avoid the costly matrix multiplication in posterior covariance in Equation
3 for points that do not significantly contribute to ÊI. The expected improvement is given by

EI(x,a)≈ ÊIN(x,a) =
1

NX
∑

xi∈XMC

E
[

max
a

μn+1
a (xi)−max

a′
μn

a′(xi)
]
1{k0

a(xi,x)> δ} (20)

where 1{} is the indicator function returning unity if the argument is true. Otherwise the NREVI acquisition
function is the same as the REVI function

NREV I(x,a) =
1

NX +1

(
NX ÊIN(x,a)+VX LEV I(x,a)

)
(21)

After each new sample the XMC is randomly regenerated. This sampling method has the same advantages
as the LEVI and REVI methods however it gives a similarly accurate estimate of improvement to REVI
while significantly reducing computational cost. The N-REVI method has two parameters, NX and δ . When
using a stationary kernel, k0(x,x′) = h(|x−x′|), such as the Matern class of kernels or squared exponential,
points may be filtered according to |x− x′| < r and the two free parameters are NX and r. We show in
Section 5 that computation time of N-REVI is significantly less than REVI without any significant loss in
performance. By setting NX = 0 or δ = r = 0 the N-REVI method is equivalent to LEVI, also by setting
δ = ∞ or r = ∞ the N-REVI method is equivalent to REVI, therefore computational complexity is between
REVI and LEVI depending on the choice of parameters, the kernel and P[x].

5 NUMERICAL EXPERIMENTS

We apply our methods to a set of four (A = 4) synthetic functions sampled from a Gaussian process prior
with a squared exponential kernel, θ1(x), ...,θ4(x) ∼ G P(μ0(x) = 0,k0(x,x′) = exp(−0.5||x− x′||22/72).
The input domain is X = [0,100]2 and the output domain is real numbers. In practice, for each function, a
multivariate normal sample is produced from the prior evaluated at a discretized X and the sample is used
to condition the continuous prior, yielding a continuous posterior mean. The posterior mean functions are
used as synthetic functions θ1, . . . ,θ4 and plotted with the optimal mapping in Figures 1 (a) and (b). The
noise is set to σ2

a,ε = 0.12 for all alternatives. Given these four functions we use two instance distributions:
a) A uniform distribution (UNI) PU [x] = 1/10,000, so that we can compare directly with the Gap-SUR
method proposed by Hu and Ludkovsk (2017), and b) A ”Wedge” instance distribution, PW [x] = x1/5∗105,
linearly increasing only in the x1 direction.

To initialize sampling, a random design is used as described below with 10 samples per alternative, 40
samples in total, Figure 1 e) show one such the sample allocation for the wedge distribution. In practice
these samples would be used to learn hyperparameters for the Gaussian Processes however we treat them
as constant throughout sampling for all methods such that the only difference between all methods is the
acquisition function. Figures 1 c) and d) give the estimated performance functions and mapping after fitting
a GP to the initial 40 samples.

After the initialization, the sequential methods are then applied until 200 samples in total have been
allocated. Figure 1 f) shows the LEVI(x,a) after the initialization and it can be seen that LEVI prioritizes
high P[x], which is on the boundary of the domain. However REVI(x,a) shown in Figure 1 g) does not
prioritize the highest P[x] but is closer to the mean x where the regional benefit of a new sample is greater
as there are many instances surrounding the new sample.

To measure the quality of the mapping, for each budget size, N ∈ [40, ...,200], the mapping S(x) =
argmaxaμN

a (x) is evaluated for 1000 points in the space X and the total opportunity cost is recorded. The
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Figure 1: In all plots: x and y axis are instance features, each color represents an alternative. (a),(b) the

true performance functions and the true optimal mapping. (c)(d) the predicted functions and mapping after

the initial 40 samples when using the wedge distribution. (e) the allocation of the 40 samples. (f) the

LEVI(x,a) and (g) REVI(x,a), note how LEVI(x,a) is greatly influenced by the P[x] and peaks on the edge

of the domain, whereas REVI(x,a) is smoother and peaks further within the domain where more instances

can benefit from a new measurement.

1000 test instances, XT , are distributed according to PU [x] and PW [x] for uniform and wedge respectively.
For each distribution they are generated once and the same instances are used to measure opportunity cost
for all experiments. They are never used for the random sampling method nor in XMC, it is a left-out test
set.

Opportunity Cost = ∑
xi∈XT

max
a

θa(xi)−θS(xi)(xi). (22)

Each sampling method is applied 400 times with different initial samples and noise values. For the REVI
methods we run experiments for NX ∈ {0.5n,n,2n,4n}, and r ∈ {1lX ,2lX ,3lX ,∞} where lX = 7 is the kernel
length scale. In order to investigate the influence of the varying sample size NX and overfitting, we also run
experiments with REVI where the Monte-Carlo sample size is constant: NX = 100 and NX = 200 and where
the MC samples are fixed for all time or randomized at each time step which we refer to as ”jittering”.
We compare the final opportunity cost of these methods with original REVI where the MC sample size
grows as the budget is consumed.

To measure the computational cost of the methods, the time taken to optimize the acquisition function
is measured, all parameters for the Nelder-Mead algorithm are kept constant across all experiments α = 1,
β = 0.5, γ = 2 with 15 random restarts seeded by points sampled from the appropriate P[x].

2168



Pearce and Branke

5.1 Alternative Methods

5.1.1 Random Sampling

Given a budget of N samples, N instances are chosen by Latin Hypercube (uniform case) and by sampling
PW [x] (wedge case). The points are randomly divided into A groups whose sizes differ by at most 1.
For all (instance,alternative) pairs performance, f (x,a), is measured and a Gaussian Process is fitted to
the resulting dataset. This method represents the naive approach that does not exploit past evaluations to
inform new ones.

5.1.2 Gap-SUR

Hu and Ludkovsk (2017) consider the same problem with a uniform instance distribution. The proposed
method allocates samples to the (instance, alternative) pair that maximizes the reduction in the upper bound
of the highest performing alternative:

Gap−SUR(x,a) =
(
E[max

a′
θa′(x)|F n]−E[max

a′
θa′(x)|F n+1]

)
P[x]

where θa ∼ N(μn(a),kn
a(x,x)) and F n+1 is the next filtration constructed by assuming the new sample

will be equal to the current mean (xn+1,an+1,yn+1) = (x,a,μn
a (x)). The maximum of multiple Gaussian

random variables is calculated by approximating the maximum of any two Gaussian random variables as
another Gaussian, for which first and second moments are known, and iterating over A. One evaluation
of GAP−SUR(x,a) requires one call each to kn

1(x,x), ..,k
n
A(x,x), however once the posterior variances are

known, evaluating Gap−SUR(x,a) for all a with the same x is relatively cheap. Therefore we optimize
the acquisition function over x once using Nelder-Mead with the same parameters as other methods and
for each x, Gap−SUR(x,a) is optimized over a by inspection, thereby reducing the number of posterior
covariance calls.

5.2 Results

First we have examined the influence of the REVI parameters NX (Monte Carlo sample size) and r (filtering
radius) on the opportunity cost. Figure 2 shows the results for (a) the uniform distribution and (b) the wedge
distribution. Clearly, increasing the NX parameter significantly improves performance in all cases, and
the improvement is larger for the wedge distribution than for the uniform distribution. Apparently larger
NX improves accuracy of the estimate of improvement more in a more complicated instance distribution.
Varying r from r = 1 to r = ∞ does not provide significant performance benefit but a using a smaller
r allows for a very large reduction in computation time. Computation times are presented in Figure 3.
As can be seen, LEVI is fastest, followed by Gap−SUR. REVI still scales linearly with the number of
samples, but the slope is steeper than for the other methods. Standard REVI with r = ∞,NX = n has about
the same runtime curve as NREVI with r = 1,NX = 4n. But as we have seen earlier in Figure 2, the latter
version performs much better in terms of opportunity cost. Thus, for our final comparison with the other
benchmark methods, we limit ourselves to NREVI with r = 1,NX = 4n.

Figure 4 displays how the opportunity cost decreases with the number of samples, for the different
sampling methods. As expected, random sampling is significantly worse than all sequential methods for
both instance distributions. LEVI performs as good as or better than Gap-SUR, and as seen in Figure 3
is slightly faster to optimize in this implementation. In all benchmarks, NREVI is significantly better
than the local methods, LEVI and Gap-SUR, suggesting that even the simplest accounting of correlated
instances, NX = 4n, r = lX , does yield a significant performance benefit for increased computational cost.
For most real world simulation applications the running time is dominated by the simulation, here we see
that REV I improves performance and yet scales poorly to large sampling budgets N. Whereas NREV I, in
our experiments, has the performance benefits of REV I and scales to larger sampling budgets without the
risk of consuming running time.
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Figure 2: Opportunity cost of REVI depending on NX and r at the end of the 200 samples taken.
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Figure 3: Optimization time in seconds per iteration for different sample sizes. Green is Gap− SUR,

black is LEVI. REVI with r values increasing from light to dark.

The difference between the REVI and local methods is larger for the wedge distribution. The local
methods prioritize the mode of P[x], which is at x1 = 100 in the wedge case. The REVI methods prioritize
where there are many correlating instances, which will not be at x1 = 100 due to lack of XMC points to
contribute to ÊI for a sample near a boundary. Therefore REVI methods outperform LEVI even in the
uniform case as LEVI is not disincentivized from sampling near a boundary that yield marginal global
improvement.

Finally, results comparing standard REVI (NX = n/2) with REVI where XMC is fixed and where XMC
is jittered (both NX = 100) are given in Figure 5 a). Standard REVI performs worst presumably due to the
small NX for small budgets. This is followed by the fixed samples and then jittered samples suggesting the
mapping S(x) was overfitting to the fixed XMC and therefore jittering is necessary. When the XMC set is
equal to the sampling budget of 200, Figure 5, there is no significant difference between the three versions,
presumably there are not enough samples allocated to overfit, this may not be the case for larger budgets.
Although not shown the standard REVI requires less computation while the sample size is still small.

6 CONCLUSION

We have considered the problem of finding the best or near best alternative from a set of alternatives
for each point across a problem instance domain described by continuous features. We have proposed
new myopic sampling methods that allow to efficiently derive an accurate mapping from problem instance
features to the best alternative. In two synthetic benchmark problems, our methods show significantly better
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Figure 4: Opportunity cost over the course of the sampling, pink is random sampling, green is Gap−SUR,
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performance than random sampling as well as a state-of-the-art algorithm from the literature. Furthermore,
we have compared various ways of numerically integrating the expected improvement over the problem
instance domain, and found that using a large sample size, but only taking into account samples with
correlation yields the best results at lower computational cost. Future work includes applying the method
to a real world problem, and applying the same adaptation to the case where there is correlation between
the performance of different alternatives for a given problem instance.
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