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ABSTRACT

We consider a ranking and selection problem where sampling of two alternatives at once is required for
learning about the true performances of the individual alternatives. The true performance of an alternative
is defined as its average probability of outperforming the other alternatives. We derive and numerically
compare four different solution approaches. Two Knowledge Gradient sampling policies are compared with
a pure exploration policy and with a knockout tournament. The knockout tournament serves as a natural
benchmarking approach with respect to pairwise comparisons, and determines the sampling budget provided
to the other approaches. Our numerical results show that the Knowledge Gradient policies outperform both
knockout tournament and pure exploration, and that they lead to significant improvements already at a very
small number of pairwise comparisons. In particular we find that a nonstationary Knowledge Gradient
policy is the best of the considered approaches for ranking and selection with pairwise comparisons.

1 INTRODUCTION

In this work, we consider a Bayesian ranking and selection (R&S) problem, where each sample observation
involves a pair of alternatives. We distinguish between the two general cases of (a) R&S with pairwise
comparisons, and (b) R&S with pairwise sampling. In the former case, observing two alternatives at the
same time is essential for being able to gain information about the alternatives’ performances. In the
latter case observing pairs is not essential, i.e., two alternatives are observed although it is possible to gain
information by individual observation. Pairwise sampling can be useful, e.g., for reducing the overall time
required for an experiment, or for eliciting learning advantages due to correlations between alternatives.

Pairwise comparisons naturally occur in settings where two opposing alternatives are competing against
each other, e.g., in military training and sports. However, there are far more cases where relying on pairwise
comparisons is appropriate. Qualitative pairwise comparisons provide a straightforward assessment approach
whenever the performances of alternatives must be judged with respect to a (possibly large) number of
criteria, as well as whenever the performances can only be judged subjectively. As an example, consider
virtual prototyping (Wang 2003) for the purpose of getting customer feedback on a number of design
alternatives for a future product. Quantitative pairwise comparisons (where we observe that one alternative
performs a certain number of times better than the other) occur for example in settings where a pair of
alternatives is sampled in parallel under similar conditions that cannot be restored in the future. Examples
include A/B testing (Siroker and Koomen 2013) of alternative designs with human-in-the-loop simulations
(Narayanan and Kidambi 2011).

The approach proposed in this work could be applied to R&S with quantitative comparisons and with
pairwise sampling, provided that sample observations are interpreted as qualitative performance observations.
However, the approach is tailored to R&S with qualitative pairwise comparisons, i.e., to R&S problems
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where two alternatives must necessarily be observed at once in order to gain information, and where one
can merely observe which of two alternatives performs better. The fact that precisely one pair out of the
set of alternatives must be observed distinguishes our problem from multinomial selection problems (see,
e.g., Vieira Jr, Kienitz, and Belderrain (2010), and Tollefson et al. (2014)) with more than two alternatives.

Our approach differs from prior works on Bayesian R&S problems mainly in two interdependent
respects: integration of pairwise comparisons, and the chosen performance model. We propose sampling
policies for deciding which pair of alternatives to compare next. Note that in Bayesian learning (see, e.g.,
de Groot (1970)) sampling policies are typically designed for deciding which single alternative to evaluate
next. We define the true performance of an alternative in terms of its unknown winning probabilities,
i.e. in terms of the probabilities of outperforming each of the other alternatives in a pairwise comparison.
We assign a Bernoulli distribution with a beta prior for the unknown winning probability to each pair of
alternatives. Note that, in contrast, previous works on Bayesian R&S typically model the average true
performances of the alternatives as means of normal distributions with normal priors.

By introducing pairwise comparisons in the context of Bayesian R&S, our work is positioned between
the method of paired comparisons (see, e.g., David (1988) for an introductory overview) and classic Bayesian
R&S (see, e.g., Powell and Ryzhov (2012), Ch.4). The method of paired comparisons (originating from
psychometrics) aims either at obtaining a ranking of all alternatives, or at the general study of preferences
(Kendall and Smith 1940) based on (a subset of) all possible pairwise comparisons between alternatives.
In contrast to R&S, the method does not primarily aim at finding the best alternative with an efficient
sampling policy.

In this work we adapt two Bayesian R&S sampling policies to pairwise comparisons, that were originally
designed for choosing single alternatives. In particular, we propose a variation of the Knowledge Gradient
(KG) policy introduced by Frazier, Powell, and Dayanik (2008) as an extension of the work of Gupta and
Miescke (1996), and we propose a variation of the KG* policy introduced by Chick and Frazier (2009) as
well as by Frazier and Powell (2010). KG policies are based on the value of information, i.e., sampling
decisions are made such that the expected value of the gained information is maximized. Most works
on KG policies assume normally distributed sample observations and normal beliefs about the unknown
performances of alternatives, which leads to R&S problems with a normal-normal conjugate prior model.

The normal-normal model can be adapted to pairwise sampling (referred to as case (b) earlier). A KG
policy allowing for both pairwise sampling and sampling of single alternatives is proposed by Frazier, Xie,
and Chick (2011) and extended by Xie, Frazier, and Chick (2016). In these works, the value of information
regarding two alternatives is calculated under the assumption that a quantitative pairwise comparison is
made. However, the actual observation, is given in terms of pairwise sampling and results in a sample from
a multivariate normal distribution. More precisely, if the two chosen alternatives have a negative sampling
correlation, they are sampled independently, whereas in case of positive correlation the alternatives are
sampled using common random numbers.

In our Bayesian R&S problem, however, each sample observation results from a qualitative pairwise
comparison. As a consequence, it is clearly inappropriate to assume a normal sampling distribution and
a normal-normal conjugate prior. Instead we assume that a qualitative pairwise comparison results in a
sample from a Bernoulli distribution. This leads to the question of how to define the interrelationship
between the true performance of an alternative and its winning probabilities. Two modeling approaches
exist:

The first approach (widely adapted in the context of the method of paired comparisons) describes the
true performances of the alternatives as unknown parameters, i.e., as normal expectations, and defines
the winning probabilities as a function of these parameters. Popular examples for this approach are the
Thurstone-Mosteller model (Thurstone 1927, Mosteller 1951) and the Bradley-Terry model (Bradley and
Terry 1952). In a Bayesian context, this modeling approach implies a departure from the classic conjugate
prior model and raises the need for approximate Bayesian analysis.
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In the second modeling approach (adapted in this work, and referred to as the multibinomial model), the
winning probabilities are the unknown parameters and the alternatives’ performances must be defined with
these probabilities. In our work, an alternative’s performance is given in terms of its average probability
of outperforming another alternative. The beliefs are given in terms of beta distributions, resulting in a
Bernoulli-beta conjugate prior model with the standard recursive updating equations.

To the best of our knowledge, this work is the first to consider pairwise comparisons with the
multibinomial model in the context of Bayesian R&S. A number of related works exist outside of the scope
of R&S. These works propose sequential procedures adapting (variations of) the Bradley-Terry model for
competitive sports or online gaming. However, their aim is to develop player rating systems, rather than
efficient identification of the best alternative, i.e., the focus lies on learning the unknown skills of players
without any sampling decisions to be made. Glickman (1999) is the first to propose a Bayesian approach
to this problem by establishing a solid statistical foundation for the well-known Elo chess rating system
(Elo 1978). Motivated by multiplayer online gaming, Glickmann’s approach has later been extended to
settings with performance observations resulting from games with more than two players or teams of players
(Herbrich, Minka, and Graepel (2006), Dangauthier et al. (2007)).

Ryzhov, Awais, and Powell (2011) introduce a variation of the R&S problem with pairwise comparisons,
referred to as the match-making problem. Motivated by the work of Herbrich, Minka, and Graepel (2006),
the problem is modeled from the point of view of one fixed player. At each sampling stage an appropriate
opponent has to be selected in order to guarantee a satisfying game for the fixed player. More precisely, the
objective is to maximize the expected probabilities of a draw across all stages, and pairwise comparisons are
made with one fixed alternative and another alternative which has to be selected. The proposed sampling
policy also is a KG policy. However, besides the departures from our approach regarding the objective and
the model, at each sampling stage only one alternative has to be selected instead of two.

In contrast to the works discussed above we propose a ranking and selection problem with pairwise
comparisons. The performance of an alternative is modeled as the the average probability of outperforming
another alternative in a pairwise comparison. We solve the problem with variations of two KG sampling
policies, as well as with a pure exploration policy. As a natural benchmark for these three Bayesian policies
we consider a straightforward knockout tournament approach (Vu, Altman, and Shoham 2009).

The remainder of this paper is structured as follows. In Section 2 we provide a formal problem
statement. In Section 3 we introduce the sampling policies that we apply to the problem and that we
compare numerically. Section 4 first describes our experimental setup including the knockout tournament
approach used as benchmark, and then discusses numerical results. Section 5 concludes the paper.

2 PROBLEM FORMULATION

Recall that in our R&S problem pairwise comparisons are mandatory for gaining qualitative information about
the alternatives’ performances. While many applications in military training and sports naturally enforce
the need for pairwise comparisons, there are other applications where the need for pairwise comparisons
is introduced deliberately. As an example, consider virtual prototyping (Wang 2003) for getting customer
feedback on product design alternatives. In this application, adopting the method of pairwise comparisons
from psychometrics (e.g., by presenting a pair of alternative designs to each customer that logs in to the
company website) can serve the purpose of receiving accurate feedback about the customers’ preferences.
Selecting the pair to be presented to the customer that logs in next is key for identifying the customers’
preferred design as quickly as possible.

Against this background we now provide a formal statement of the considered R&S problem. We
introduce the definition of the true performance of an alternative in terms of its winning probabilities (Section
2.1), we formulate the Bayesian updating equations for our beliefs about the alternatives’ performances
after each observation (Section 2.2), and we formulate the criterion an optimal sampling policy must meet
(Section 2.3).
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2.1 Performance of an Alternative

Suppose there are M distinct alternatives. For each alternative i∈M we define a vector pi = (pi1, pi2, . . . , piM)
of unknown probabilities, such that the winning of alternative i over j follows the Bernoulli distribution
with a success probability pi j. For the sake of notational simplicity and without loss of generality, for all
i ∈M we may set pii = 0.5. As the events ‘i wins over j’ and ‘ j wins over i’ are mutually exclusive, the
equation pi j + p ji = 1 is always satisfied for all i, j ∈M.

For each alternative we define the average win probability

p̄i =
1
M

M

∑
j=1

pi j.

We make the assumption that the best alternative i∗ is defined as the alternative with the largest average
win probability, i.e.,

i∗ ∈ argmax
i∈M

p̄i. (1)

Note that given an R&S problem with pairwise comparisons the choice of performance measure depends on
the specific application under consideration. In the virtual prototyping example discussed earlier, looking
for an alternative with a high average win probability may be interpreted as looking for an alternative that
represents the mainstream customer preference.

As a consequence of the unknown success probabilities, the true average win probabilities are also
unknown, and it is not possible to obtain the optimal value of (1). Instead we learn and improve our estimates
of the unknown winning probabilities by making N sequential observations of individual alternative pairs.
At each time 0 ≤ n < N, we choose an alternative pair (i, j)n for a pairwise comparison and observe
a binary value W n+1

i j ∼ Br(pi j), which equals 1 if i wins over j, and 0 otherwise. Due to the obvious
symmetry of pairs, without loss of generality alternative pairs considered for sampling are given by the
set M̃ = {(i, j) | i ∈M, i < j ≤M}. Thus, the number of possible alternative pairs to sample from amounts
to |M̃| = (M2−M)/2. After the sequential sampling procedure has been completed, we will make the
implementation decision by choosing the alternative that we believe is the best.

2.2 Bayesian Updating of Beliefs

At each stage n of the sequential sampling procedure, our beliefs are given in terms of probability distributions.
In particular, at any time 0≤ n≤ N our beliefs about the winning probabilities pi j are beta distributed with
parameters αn

i j and β n
i j,

pi j ∼ Beta(αn
i j,β

n
i j),

and the symmetry yields p ji = (1− pi j).
Without loss of generality, for all i ∈M we set pii ∼ Beta(1,1). We write Sn := (αn,β n) for the state

of knowledge at time n, where αn = (αi j)M×M and β n = (βi j)M×M. If at time n we choose to sample
alternative pair (i, j)n, our state of knowledge evolves according to the Bayesian updating equations, which,
for all pairs (i, j) satisfying j > i, are given by

α
n+1
i j =

{
αn

i j +W n+1
i j if (i, j)n = (i, j)

αn
i j otherwise,

β
n+1
i j =

{
β n

i j +(1−W n+1
i j ) if (i, j)n = (i, j)

β n
i j otherwise.

Our beliefs regarding the remaining pairs are updated using the symmetry, and the values αn
ii and β n

ii equal
constantly one.
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2.3 Criterion for an Optimal Policy

We write En to indicate expectations taken with respect to distributions induced by our beliefs at time n.
With this notation our expected average win probability of an alternative i at time n is given by

En[p̄i] =
1
M

M

∑
j=1

En[pi j] =
1
M

M

∑
j=1

αn
i j

αn
i j +β n

i j
.

Consequently, the implementation decision at time N is given by

max
i∈M

EN [p̄i] = max
i∈M

1
M

M

∑
j=1

αN
i j

αN
i j +β N

i j
.

And, letting Π be the set of all possible selection policies π = ((i, j)0, . . . ,(i, j)N−1), an optimal policy
must satisfy

sup
π∈Π

Eπ

[
max
i∈M

1
M

M

∑
j=1

αN
i j

αN
i j +β N

i j

]
, (2)

where Eπ denotes the expectation induced by a policy π . Since calculating the exact distribution of
maxi∈M EN [p̄i] given a policy π in (2) is computationally infeasible, we rely on sampling policies that only
represent approximations to the optimal policy solving (2).

3 SAMPLING POLICIES

In this section we briefly describe the three sampling policies used in the computational experiments of
Section 4.

3.1 Pure Exploration Policy

At each step n the pure exploration policy selects a pair of alternatives (i, j)n = (i, j) with probability 1/M̃.
The policy does neither take into account the current beliefs nor the information collected from previous
pairwise comparisons for selecting a pair. The two policies introduced in Sections 3.2 and 3.3 partly rely
on pure exploration. However, they also take into account the current state of knowledge and consider the
expected information value of making a pairwise comparison between any two alternatives for making a
sampling decision.

3.2 Knowledge Gradient Policy

The KG policy (Frazier, Powell, and Dayanik 2008) selects at each step n the pair of alternatives that
maximizes the so called KG factor. The KG factor of an alternative pair (i, j) looks one sampling step
into the future and captures the expected value of making a pairwise comparison between i and j. For an
alternative pair (i, j) the KG factor is given by

ν
KG,n
i j = En

[
max

x

1
M

M

∑
y=1

αn+1
xy

α
n+1
xy +β

n+1
xy
−max

x

1
M

M

∑
y=1

αn
xy

αn
xy +β n

xy

]
, (3)

and the KG decision rule for a given knowledge state is

XKG(Sn) = argmax
(i, j)∈M̃

ν
KG,n
i j .

2153



Priekule and Meisel

At time n, the predictive distribution of the parameters (αn+1
i j , β

n+1
i j ) is discrete, where the corresponding

probabilities are given by

P(αn+1
i j = α

n
i j +1, β

n+1
i j = β

n
i j) =

αn
i j

αn
i j +β n

i j
,

P(αn+1
i j = α

n
i j, β

n+1
i j = β

n
i j +1) =

β n
i j

αn
i j +β n

i j
.

And, setting Cn
i j = maxx 6=i, j p̄n

x , the expectation in (3) can be reformulated as

νi j
KG,n =

αn
i j

αn
i j +β n

i j
max

{
Cn

i j , p̄n
i +

β n
i j

(αn
i j +β n

i j)(α
n
i j +β n

i j +1)
, p̄n

j −
β n

i j

(αn
i j +β n

i j)(α
n
i j +β n

i j +1)

}

+
β n

i j

αn
i j +β n

i j
max

{
Cn

i j , p̄n
i −

αn
i j

(αn
i j +β n

i j)(α
n
i j +β n

i j +1)
, p̄n

j +
αn

i j

(αn
i j +β n

i j)(α
n
i j +β n

i j +1)

}
−max

x
p̄n

x .

(4)

A case study of (4) reveals, that the KG factor depends on the absolute values of the pairwise differences
between p̄n

i , p̄n
j and Cn

i j. In order for the KG factor not to be equal to zero, the absolute values of these
differences should not exceed thresholds that are dominated by the values of αn

i j/(α
n
i j +β n

i j)(α
n
i j +β n

i j +1)
and β n

i j/(α
n
i j +β n

i j)(α
n
i j +β n

i j +1). Obviously, with growing alphas and betas these thresholds get very small
quickly, and once all factors equal zero, there is no value of sampling according to the KG factor.

As a possible circumvention of this issue, we propose a modified KG policy, which, for a given sampling
budget N, makes decisions like the original KG policy as long as the maximal KG factor is greater than
zero, and chooses an alternative for a pairwise comparison randomly otherwise. Thus, it is a hybrid between
KG and the pure exploration policy described in the previous subsection.

3.3 KG* Policy

In contrast to the KG policy, the KG* policy (Frazier and Powell 2010) looks several sampling steps ahead
into the future and considers a number of subsequent observations for each alternative pair. Let νKG,n(ni j)
denote the KG factor if we were to perform ni j pairwise comparisons with an alternative pair (i, j). In this
case, we have the following probabilities describing the discrete predictive distribution of (αn+1

i j ,β n+1
i j ),

P(αn+1
i j = α

n
i j + k, β

n+1
i j = β

n
i j +ni j− k) =

(
ni j

k

)(
αn

i j

αn
i j +β n

i j

)k(
β n

i j

αn
i j +β n

i j

)ni j−k

k = 0, . . . ,ni j.

And the KG factor as in (3) can be reformulated as

ν
KG,n(ni j) =

ni j

∑
k=0

(
ni j

k

)(
αn

i j

αn
i j +β n

i j

)k(
β n

i j

αn
i j +β n

i j

)ni j−k

·

·max

{
Cn

i j , p̄n
i +

αn
i j(k−ni j)+ kβ n

i j

(αn
i j +β n

i j)(α
n
i j +β n

i j +ni j)
, p̄n

j +
αn

i j(ni j− k)+ kβ n
i j

(αn
i j +β n

i j)(α
n
i j +β n

i j +ni j)

}
−max

x
p̄n

x

The KG* decision rule for a given state Sn and fixed sampling budget N is then given by

XKG∗,n(Sn) = argmax
(i, j)∈M̃

max
0<ni j≤N−n

νKG
i j (ni j)

ni j
.
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As in case of the Knowledge Gradient policy, we also modify the KG* policy such that an alternative
pair is selected by pure exploration if all KG factors are equal to zero. Note that the KG* policy is not
stationary, and that it depends not only on the current state, but also on the number of sample observations
left.

4 COMPUTATIONAL EXPERIMENTS

In Section 4.1 we introduce the problem instances and the performance measures used in our computational
experiments. Moreover, we explain the knockout tournament approach that serves as a benchmarking
approach for the sampling policies, and that determines the sampling budget that the policies are provided
with. In Section 4.2 we compare the sampling policies and the benchmarking approach numerically.

4.1 Experimental Setup

In order to compare the performances of the pure exploration policy and the Knowledge Gradient policies,
we do experiments with 5, 10 and 20 individual alternatives, i.e., with M ∈ {5,10,20}. The corresponding
number of alternative pairs M̃ are 10, 105 and 190, respectively. For each M ∈ {5,10,20} we randomly
generate 25 problem instances. In particular, 5 different initial beliefs are generated, where the entries of
the initial prior parameters α0 and β 0 (except α0

ii and β 0
ii ) are random samples from a uniform discrete

distribution on the set {1,2,3,4,5}. The purpose of using such a set, is to emulate the state of having initial
priors that give a rather small amount of information with the precision not being too high. Subsequently, 5
different truths with pi j ∼ Beta(α0

i j,β
0
i j) are sampled per initial belief. This represents a situation in which

our prior beliefs provide a reasonably good idea about the true winning probabilities.
We consider the winner of a knockout tournament (Schwenk 2000) as benchmark for the sampling

policies on each problem instance. Similar to a typical tennis tournament, a knockout tournament (KOT)
consists of stages in which the alternatives compete pairwise against each other with the losers being
eliminated and the winners progressing to the next stage until only one alternative is left. Since the initial
number of alternative pairs not always is a perfect power of two, one randomly selected alternative advances
to the next stage, if there is a stage with an uneven number of alternatives (“wildcard”). We choose KOT as
benchmark for the sampling policies, because it represents a straightforward method that directly applies
to problems where pairwise comparisons are mandatory. The following two KOT versions are considered:

We first apply a basic knockout tournament by setting the alternative pairs randomly in each stage
without taking into account the possibility of a non-random seeding. (Note that the tournament designs
introduced in the literature require at least partly known success probabilities or even certain monotonicity
of the success probabilities (Horen and Riezman 1985, Vu, Altman, and Shoham 2009).) We then extend
the the basic knockout tournament approach by allowing for a fixed number nKOT of comparisons per pair
in every stage. If the results (in terms of wins of the alternatives) of nKOT comparisons of a pair are tied,
one of the two alternatives is chosen randomly for passing to the next stage. With this extension the number
of pairwise comparisons needed for a knockout tournament to yield a winner is then determined by the
values of M and nKOT .

In our experiments with M alternatives, the sampling budget N the policies are provided with is set
equal to the number of pairwise comparisons required by a knockout tournament with nKOT . We are then
able to compare the performances of the sampling policies with a straightforward procedure that yields a
winner without requiring any kind of prior information regarding the alternatives.

Many authors in the Bayesian sampling literature use as a standard performance measure for sampling
policies the opportunity cost of the believed best alternative with respect to the true value (in our problem
given by maxi∈M p̄i− p̄argmaxi∈M EN [p̄i]). However, since we use the KOT approach as benchmark, and since
in KOT the assumption is common that the alternatives can only be ranked qualitatively from best to worst,
we prefer to evaluate in terms of the true ranks of both the tournament winners and the believed best
alternatives of the policies. To each alternative i, we assign its true rank ri in the following way: The
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alternative with the highest true average win probability has rank one, the alternative with the second best
value has rank two, etc.. In order to estimate the expected true rank of the believed best alternative at each
step of the sampling process we average the results of the sampling policies and of KOT over 103 different
sample paths for each problem instance, and over the 25 instances.

4.2 Results
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Figure 1: Evolution of the true rank of the believed best alternative by the hybrid KG, KG* and pure
exploration policies during the sampling process given the true rank of the winner of a standard knockout
tournament with nKOT = 1 as a benchmark.

Figure 1 illustrates the evolution of the average true rank of the believed best alternative during the
sampling processes of each of the policies of Section 3, with 5 alternatives (Figure 1a), 10 alternatives
(Figure 1b) and 20 alternatives (Figure 1c). We compare the policies with the standard knockout tournament,
given in terms of nKOT = 1. Thus, the benchmark is given by the average true rank of the winner of a
standard knockout tournament and the number of observations N amounts to 4, 9 and 19 concerning the
cases of 5, 10 and 20 alternatives, respectively. Note that the resulting budget N for each M covers only a
small fraction of the number of alternative pairs taken into consideration (approx. 24%, 8 % and 10%). The
value of the benchmark produced by the knockout tournament and the time of its realization are marked
by the black pentagon. Dashed lines highlight the benchmark throughout the policies’ sampling processes.

We observe that on average the initially best believed alternative lies around the lower bound of the
top third of the alternatives and, in the cases M = 5 and M = 10, already trumps the average winner of
the knockout tournament, as do all the following best believed alternatives. In the 20 alternatives case,
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the initially believed best alternative is ranked lower than the tournament winner by approximately 0.9.
However, with the Knowledge Gradient policies, the best believed alternative overtakes the tournament
winner in the course of a few observations, in particular, at four observations with KG and already at two
observations with KG*. By contrast, the pure exploration policy never reaches the benchmark, as it selects
alternative pairs randomly without a specific selection criterion. This competitive disadvantage to both of
the Knowledge Gradient policies grows with the number of alternatives if the budget of observations is
proportionally small. None of the sampling policies comes close to the best alternative within the given
budgets of observations. However, the KG* policy outperforms all other policies, and in case of M = 20 the
rank improves on average by almost 2 over the sampling process, despite the low budget of observations.
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Figure 2: Comparison of the KG and KG* values for a setting with M = 20 and nKOT = 1.

Comparing the two Knowledge Gradient policies, we observe that in general the KG* policy performs
clearly better than the KG policy. This is due to the fact that KG* explores the alternative pairs more
efficiently than KG. In Figure 2, showing M = 20 and nKOT = 1, we illustrate the natural logarithm of
the average KG and KG* values at each measurement step. The figure illustrates that the average KG*
values are always higher than the corresponding KG values. This obviously results from the fact that the
observations we make are binary, and, as discussed in Section 3.2, the KG value quickly drops to zero
under certain conditions. As a consequence of our modifications to the KG policy, it behaves like pure
exploration if the KG value is zero, and therefore doesn’t take into account any value of information at
this point. Here the KG* policy has an advantage, since it looks several steps ahead into the future and
calculates the maximal average value of information, which mostly still results in very low values, that
are, however, greater than zero.
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Figure 3: Evolution of the true rank of the best believed alternative.
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As pointed out earlier, letting nKOT = 1 results in a very small budget of observations compared with
the number of possible pairs of alternatives. As a consequence the sampling policies’ task to find the truly
best alternative is particularly hard, unless the initial priors precisely match the truth. One would expect
the policies to find lower ranked best believed alternatives, as the budget of observations grows at fixed
M. Figure 3a shows the same comparison as Figure 1c, but with a higher observation budget of N = 38
due to nKOT = 2. Compared with the number of possible pairs, the budget is still low, but at least it now
amounts to 20% of the number of possible pairs. The figure shows that with the higher budget the average
true rank of the knockout tournament winner is even slightly lower than before. Our experiments show that
the knockout tournament with multiple comparisons yields a higher ranked winner only in settings with
wide ranged true average win probabilities p̄i. However, if these probabilities have rather similar values,
a knockout tournament with slightly higher nKOT does not necessarily yield a better result on average.

In contrast, the sampling policies benefit from the larger budget and the true rank of the final best
believed alternatives increases as expected. With both the KG policy and pure exploration, the knowledge
state at time n does not depend on the actual budget of observations. As a consequence, the policies’
average learning curves in Figure 3a appear as mere extensions of their learning curves illustrated in Figure
1c.

The case is different for the KG* policy, since given a higher budget N this policy is able to look
ahead into a more distant future. As shown in Figure 3b, the higher sampling budget leads to more efficient
learning in early stages of the sampling process. Here, the low budget (nKOT = 1) learning curve ends
at n = 19 and the line extends the curve at the constant value of the achieved average rank. Figure 3b
illustrates that the high budget (nKOT = 2) learning curve is located below the low budget curve, and, thus,
indicates that the learning efficiency grows as the budget of observations increases.

5 CONCLUSIONS

We have considered a ranking and selection problem that requires pairwise comparisons of alternatives for
being able to gain information about the alternatives’ performances. We adapt the multibinomial model
and assume that the unknown true performance of an alternative is given in terms of its average probability
of outperforming the other alternatives in a pairwise comparison. We numerically compare three sampling
policies for the ranking and selection problem: a variation of the Knowledge Gradient Policy, a variation
of the KG* policy, as well as a pure exploration policy.

We consider the true rank of the final believed best alternative as performance measure for a policy. As
a natural benchmark for the sampling policies we use the true rank of the winner of a knockout tournament,
where the policies’ sampling budgets of observations is set equal to the number of pairwise comparisons
required for the tournament to determine a winner. Our numerical results show that KG* is the best of
the considered approaches, yielding the best believed alternative with the highest rank on average. The
pure exploration policy, on contrary, shows slow learning performance. The Knowledge Gradient policy
performs significantly better than pure exploration. However, it shows a disadvantage compared to the
KG* policy due to its myopic nature in combination with binary observations.

Many avenues for future work exist. The next steps will include thorough analyses of the impacts of
different types of prior-truth relationships and of an increasing sampling budget. Moreover, more advanced
policies that exploit correlations between pairs of alternatives will be developed.
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