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ABSTRACT

We consider a new ranking and selection problem in which the performance of each alternative depends
on some observable random covariates. The best alternative is thus not constant but depends on the values
of the covariates. Assuming a linear model that relates the mean performance of an alternative and the
covariates, we design selection procedures producing policies that represent the best alternative as a function
in the covariates. We prove that the selection procedures can provide certain statistical guarantee, which
is defined via a nontrivial generalization of the concept of probability of correct selection that is widely
used in the conventional ranking and selection setting.

1 INTRODUCTION

Ranking and selection (R&S) is a classic research problem in the simulation literature over the past decades.
It represents a broad class of decision-making problems in practice that involve a finite set of competing
alternatives whose performances are unknown but can be estimated via simulation. The goal in general is
to design a selection procedure that selects the best alternative eventually with certain statistical guarantee;
see Kim and Nelson (2006) for a review on the subject.

In this paper, however, we introduce a new R&S problem in which the performance of an alternative
depends on some observable random covariates. Hence, the best alternative is not constant but varies
as a function in the covariates. A motivation for us to consider this new problem stems from recent
advances in customization of decision-making in various areas such as online advertising and healthcare.
It is conceivable that by leveraging personal information as covariates, more informative decisions can be
made, even tailored to each individual customer or patient. For example, it is found in marketing research
that companies can boost both profits and customer satisfaction by sending customers advertisements or
promotions that are highly customized based on their demographic and transactional characteristics; see
Arora et al. (2008). As another example, it is demonstrated in Yap, Carden, and Kaye (2009) and Kim et al.
(2011) that the efficacy of chemotherapy treatments depends on biometrics of the patients such as gene
expression and cancer biomarker, and thus personalizing the treatment regimen can improve the treatment
outcome significantly.
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In the new setting, what a selection procedure produces eventually is a policy that relates the covariates
with the best alternative. Like the conventional R&S, this new problem of R&S with covariates is still
offline, in contrast to those online problems like multi-armed bandit. Once such decision policy is produced,
it can be applied subsequently to select the best alternative after observing the values of the covariates. The
new R&S problem reflects a shift in viewpoint regarding the role of simulation in decision-making. We
now view simulation as a tool for system control, instead of a tool for system design as in the conventional
R&S setting. Such a change in perspective is discussed extensively in the recent article of Nelson (2016)
to motivate the so-called simulation analytics.

We assume that the mean performance of an alternative is linear in the covariates and that the variance of
the simulation errors may depend on the covariates. A formally similar linear model is adopted in Negoescu,
Frazier, and Powell (2011) to solve a R&S problem in the context of drug discovery. In particular, the
linear model in their work forms a linear projection from the space of alternatives to the space of attributes.
By doing so, the unknown quantities to estimate become the coefficients of the attributes instead of the
mean performances of the alternatives. The number of unknown quantities and thus the computational
complexity can be reduced dramatically if the number of attributes is much smaller than the number of
of alternatives. However, the constituents in their linear model do not vary in the way that the covariates
do in our setting. Hence, their R&S problem is still in the conventional sense. The selection procedure
designed there produces the best alternative as a static decision rather than the kind of decision policy that
we seek.

There are two main approaches to solve a R&S problem, i.e. the frequentist approach and the Bayesian
approach; see Branke, Chick, and Schmidt (2007) for comparisons among various selection procedures
following either approach. We follow the frequentist approach in this paper and define statistical guarantee
via probability of correct selection (PCS). Nevertheless, the presence of covariates complicates the definition
of PCS. Specifically, the concept of correct selection in the presence of covariates is a conditional event
given the values of the covariates, thereby suggesting a conditional PCS. We then define two forms of
unconditional PCS, one by taking expectation with respect to the distribution of the covariates, whereas the
other by taking the minimum over the support of the covariates. The latter is obviously more conservative
than the former. Due to the possible dependence of the simulation errors on the covariates, we design
selection procedures separately depending on whether such dependence does exist. The procedures are
two-stage procedures in a similar form of the Rinott’s procedure (Rinott 1978).

The remaining of the paper is organized as follows. In Section 2, we formulate the new R&S problem
with covariates and define two forms of PCS accordingly. In Section 3, we present a selection procedure
assuming that the simulation errors are independent of the covariates and establish its statistical validity. In
Section 4, we address the more general case in which the variances of the simulation errors are not constant
but dependent on the covariates. In Section 5, we discuss the so-called least-favorable configuration that
generalizes the same concept in the conventional R&S setting. We present the numerical experiments in
Section 6 and conclude in Section 7.

2 PROBLEM FORMULATION

Consider a collection of k distinctive simulated alternatives. Suppose that the performance of each alternative
depends on XXXc = (X1, · · · ,Xd)

ᵀ, a vector of observable random covariates with arbitrary multivariate
distribution and support Θc ⊆ Rd . For notation simplicity, let XXX := (1,X1, · · · ,Xd)

ᵀ be the degenerate
random vector with support Θ := {1}×Θc. For each i = 1, · · · ,k, let Yi` denote the `th sample from
alternative i, `≥ 1. Let xxx be the realization of XXX , and we write Yi`(xxx) throughout the paper to emphasize
the dependence on xxx. We assume the following linear model.
Assumption 1 For each i = 1, · · · ,k and `= 1,2, · · · , conditioning on XXX = xxx,

Yi`(xxx) = xxxᵀβββ i + εi`(xxx), (1)
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where βββ i = (βi0,βi1, · · · ,βid)
ᵀ ∈Rd+1 is a vector of unknown parameters and εi`(xxx) is normally distributed

with mean 0 and variance σ2
i (xxx); moreover, εi`(xxx) is independent of εi′`′(xxx′) for any (i, `,xxx) 6= (i′, `′,xxx′).

Our goal is to select the alternative with the largest mean conditioning on XXX , i.e., to find

i∗(XXX) := argmax
1≤i≤k

{XXXᵀ
βββ i|XXX} .

Let î∗(XXX) denote the selected alternative based on a selection procedure. Clearly, there is no guarantee that
î∗(XXX) = i∗(XXX) with certainty given a finite computational budget, due to the random simulation errors. We
therefore adopt an indifference-zone (IZ) formulation as follows. Let δ > 0 be a prespecified IZ parameter
and define the event of correct selection (CS) as

{
XXXᵀ

βββ i∗(XXX)−XXXᵀ
βββ î∗(XXX) < δ

∣∣∣XXX}. However, the presence
of covariates in our formulation complicates the definition of PCS. We first define the conditional PCS

PCS(XXX) := Pr
{

XXXᵀ
βββ i∗(XXX)−XXXᵀ

βββ î∗(XXX) < δ

∣∣∣XXX} , (2)

where the probability is taken with respect to the distribution of the samples that are used by the selection
procedure to produce î∗(XXX). Then, we introduce two forms of unconditional PCS that may be of interest
under different circumstances, namely

PCSE := E [PCS(XXX)] , (3)

where the expectation is taken with respect to the distribution of XXX , and

PCSmin := min
xxx∈Θ

PCS(xxx). (4)

With the unconditional PCS defined, we aim to design selection procedures that guarantee PCSE ≥ 1−α

or PCSmin ≥ 1−α for some user-specified 1/k < 1−α < 1.
Remark 1 PCSmin represents a more conservative criterion than PCSE since PCSE ≥ PCSmin by definition.
Hereafter, when PCSmin is desired we additionally assume that Θ is a compact set. In practice when the
distribution of XXX is known or can be credibly estimated from the historical data, one is able to use PCSE.
When the distribution is totally unknown and there is no historical data at all except knowing that XXX varies in
some bounded range, one may consider to use PCSmin as risk protection. In another more realistic situation
where only limited data of XXX are available, it seems more reasonable to use the estimated distribution while
taking the input uncertainly in account when calculating PCSE. This is certainly an interesting topic for
future study.
Remark 2 In the conventional R&S setting, we would have considered the best alternative to be i†, where
i† := argmax1≤i≤k {E[XXX ]ᵀβββ i}, regardless of the realized value of XXX . Consider the conceptual situation
where the true answers of i† and i∗(XXX) are exactly known to us and used to guide the selection. Notice
that E

[
XXXᵀ

βββ i∗(XXX)

]
≥ E [XXXᵀ

βββ i† ] = E[XXX ]ᵀβββ i† . This suggests that in the presence of covariates, selecting an
alternative after observing their values is deemed to be better than making such a decision before the
observation (or, ignoring the covariates), demonstrating the advantage of the new R&S setting.

As a first attempt to address R&S with covariates, we consider the fixed design setting as follows. We
choose and fix m design points xxx1, · · · ,xxxm ∈ Θ. Let X = (xxx1, · · · ,xxxm)

ᵀ. We assume that we can simulate
alternative i at design point xxx j as many times as we want, for each i = 1, · · · ,k and j = 1, · · · ,m. It is
worth emphasizing that such fixed design setting is suitable in the simulation context, while in the context
of statistical learning, it may not be applicable and instead some random design approach is required. We
further make the following technical assumption throughout the remaining of the paper.
Assumption 2 X has full column rank, i.e. X ᵀX is nonsingular.
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To reveal the practical use of the proposed setting of R&S with covariates under fixed design, we
now describe an example of personalized medicine in the treatment of Barrett’s esophagus, a precursor to
esophageal cancer. Here the different alternatives represent the different treatment regimens. The covariates
represent each individual’s attributes such as age, grade of dysplasia, response to drugs, etc. Since there
is a simulation model developed by Choi et al. (2014) to be used to characterize the development of
esophageal cancer, we can fix some design matrix of covariates and then run simulations on each point for
each alternative. When the simulation is completed offline, we hope to obtain a decision policy which can
be executed online, i.e., for any real patient arriving with specific attributes, the policy suggests the best
treatment regimen for him.

It turns out that in order to achieve the statistical guarantee defined via PCSE or PCSmin, selection
procedures need to be designed separately depending on whether the variances of the simulation errors
are constants relative to the covariates. We therefore differentiate the case of homoscedastic errors and
that of heteroscedastic errors. Notice that this analogizes the difference between the ordinary least squares
method and the generalized least squares method in linear regression models.

3 PROCEDURE WITH HOMOSCEDASTIC ERRORS

Assumption 3 σ2
i (xxx)≡ σ2

i < ∞ for xxx ∈Θ and i = 1, · · · ,k.

3.1 The Procedure

We develop a two-stage procedure for fixed design under homoscedastic errors, denoted as Procedure
FDHom. The goal of the procedure is that, once finished, it produces a policy to select the best alternative
given the realized values of covariates with certain PCS guarantee. It is described as follows:

Step 0. Specify the IZ parameter δ > 0 and PCS requirement 1−α . Determine the number of design
points m and the appropriate design matrix X . Determine n0, the number of batches in the first stage.
Calculate the critical constant h. h = hE if PCSE ≥ 1−α is required or h = hmin if PCSmin ≥ 1−α

is required, which satisfies

E


∫

∞

0

[∫
∞

0
Φ

(
1√

1/y+1/x

hE√
(n0m−1−d)XXXᵀ(X ᵀX )−1XXX

)
f (x)dx

]k−1

f (y)dy

= 1−α,

(5)
or,

min
xxx∈Θ


∫

∞

0

[∫
∞

0
Φ

(
1√

1/y+1/x

hmin√
(n0m−1−d)xxxᵀ(X ᵀX )−1xxx

)
f (x)dx

]k−1

f (y)dy

= 1−α,

(6)
where Φ(·) is the standard normal cumulative distribution function (cdf), f (·) is the probability
density function (pdf) of the chi-squared random variable with n0m− 1− d degrees of freedom,
and the expectation is taken with respect to the distribution of the covariates XXX .

Step 1. For all i = 1, · · · ,k, take n0 batches of observations on the fixed design matrix X and denote
them as YYY i1 = (Yi1(xxx1), · · · ,Yi1(xxxm))

ᵀ, · · · ,YYY in0 = (Yin0(xxx1), · · · ,Yin0(xxxm))
ᵀ. For all i = 1, · · · ,k, let

β̂ββ i(n0) =
1
n0
(X ᵀX )−1X ᵀ

∑
n0
`=1YYY i`, and S2

i = 1
n0m−1−d ∑

n0
`=1(YYY i`−X β̂ββ i(n0))

ᵀ(YYY i`−X β̂ββ i(n0)).
Furthermore, let

Ni = max
{⌈

h2S2
i

δ 2

⌉
,n0

}
. (7)
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Step 2. For all i = 1, · · · ,k, take Ni− n0 batches of observations on the fixed design matrix X and
denote them as YYY i,n0+1, · · · ,YYY iNi . For all i = 1, · · · ,k, let β̂ββ i =

1
Ni
(X ᵀX )−1X ᵀ

∑
Ni
`=1YYY i`. Then, the

selected alternative conditioning on XXX is given by î∗(XXX) = argmax1≤i≤k{XXXᵀ
β̂ββ i|XXX}.

3.2 Statistical Validity

We have the following statistical validity of the Procedure FDHom:
Theorem 1 Under Assumptions 1, 2, and 3, the Procedure FDHom ensures that the PCSE defined in (3)
or the PCSmin defined in (4) is at least 1−α , i.e., PCSE ≥ 1−α or PCSmin ≥ 1−α .

Theorem 1 can be proved based on the following Lemma 1 and Lemma 2. Lemma 1 is an extension
from a result in Stein (1945), which is the foundation of the traditional R&S procedures for unknown
variances (see also Kim and Nelson (2006, §3.1)). Lemma 2 is due to Slepian (1962).
Lemma 1 Suppose that YYY = X βββ + εεε , where X ∈ Rm×d is a fixed known matrix, βββ ∈ Rd is a fixed but
unknown vector, and εεε is a m×1 random vector such that εεε ∼N (000m,σ

2Im), where 000m is a m×1 vector
with all 0’s, and Im is an identity matrix of size m. YYY 1, · · · ,YYY n,YYY n+1,YYY n+2, · · · , are independent samples
of YYY . Suppose T is a set of random variables and T is independent of ∑

n
`=1YYY ` and of YYY n+1,YYY n+2, · · · .

Suppose N ≥ n is an integer valued function only of T . Define β̂ββ = 1
N (X

ᵀX )−1X ᵀ
∑

N
`=1YYY `.

(i) For any given vector xxx ∈ Rd , conditioning on T ,

xxxᵀβ̂ββ ∼N

(
xxxᵀβββ ,

σ2

N
xxxᵀ(X ᵀX )−1xxx

)
.

(ii) For any given vector xxx ∈ Rd ,

V :=
√

N
xxxᵀβ̂ββ − xxxᵀβββ

σ
√

xxxᵀ(X ᵀX )−1xxx
,

is independent of T , and furthermore V ∼N (0,1).

Lemma 2 (Slepian 1962) Let (Z1, · · · ,Zk) have a k-variate normal distribution with finite mean vector
and covariance matrix whose (i, j)th element is ρi j for i, j = 1, · · · ,k. Let c1, · · · ,ck be some constants. If
ρi j ≥ 0 for all i, j = 1, · · · ,k and i 6= j, then

Pr

{
k⋂

i=1

(Zi ≥ ci)

}
≥

k

∏
i=1

Pr{Zi ≥ ci}.

Here we provide a sketch of the proof of Theorem 1, which briefly shows how Lemma 1 and Lemma 2
facilitate the proof and where equations (5) and (6) arise from. Conditioning on XXX , without loss of generality,
we denote the best alternative as alternative 1, i.e., i∗(XXX) = 1, and Ω(XXX) := {i = 2, · · · ,k : XXXᵀ

βββ 1−XXXᵀ
βββ i ≥

δ |XXX}. By the result (i) of Lemma 1 and Ni defined in (7), we can have for any i ∈Ω(XXX),

Pr
{

XXXᵀ
β̂ββ 1−XXXᵀ

β̂ββ i > 0
∣∣∣XXX ,S2

1,S
2
i

}
≥Φ

 1√
σ2

1 /S2
1 +σ2

i /S2
i

h√
XXXᵀ(X ᵀX )−1XXX

 .

Then by applying Lemma 2, we will have

PCS(XXX)≥ E

 ∏
i∈Ω(XXX)

Φ

 1√
σ2

1 /S2
1 +σ2

i /S2
i

h√
XXXᵀ(X ᵀX )−1XXX

∣∣∣∣∣∣XXX
 .
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Notice that (n0m− 1− d)S2
i /σ2

i , for i ∈ {1,Ω(XXX)}, are independent chi-squared random variables with
n0m−1−d degrees of freedom, and the cardinality of Ω(XXX) is at most k−1. Hence, we can obtain that

PCS(XXX)≥
∫

∞

0

[∫
∞

0
Φ

(
1√

1/y+1/x

h√
(n0m−1−d)XXXᵀ(X ᵀX )−1XXX

)
f (x)dx

]k−1

f (y)dy.

Finally, PCSE ≥ 1−α or PCSmin ≥ 1−α is guaranteed due to (5) or (6).

4 PROCEDURE WITH HETEROSCEDASTIC ERRORS

Assumption 4 σ2
i (xxx)< ∞, for xxx ∈Θ and i = 1, · · · ,k.

4.1 The Procedure

We develop a two-stage procedure for fixed design under heteroscedastic errors, denoted as Procedure
FDHet. The goal of the procedure is that, once finished, it produces a policy to select the best alternative
given the realized values of covariates with certain PCS guarantee. It is described as follows:

Step 0. Specify the IZ parameter δ > 0 and PCS requirement 1−α . Determine the number of design
points m and the appropriate design matrix X . Determine n0, the number of batches in the first stage.
Calculate the critical constant h. h = hE if PCSE ≥ 1−α is required or h = hmin if PCSmin ≥ 1−α

is required, which satisfies

E


∫

∞

0

[∫
∞

0
Φ

(
1√

1/y+1/x

hE√
(n0−1)XXXᵀ(X ᵀX )−1XXX

)
f(1)(x)dx

]k−1

f(1)(y)dy

= 1−α,

(8)
or,

min
xxx∈Θ


∫

∞

0

[∫
∞

0
Φ

(
1√

1/y+1/x

hmin√
(n0−1)xxxᵀ(X ᵀX )−1xxx

)
f(1)(x)dx

]k−1

f(1)(y)dy

= 1−α,

(9)
where f(1)(·) is the pdf of the smallest order statistic of m independently and identically distributed
(i.i.d.) chi-squared random variables with n0−1 degrees of freedom, i.e.,

f(1)(t) = m f (t)(1−F(t))m−1,

with f (·) and F(·) here denoting the pdf and cdf of the chi-squared random variable with n0−1
degrees of freedom, and the expectation is taken with respect to the distribution of the covariates
XXX .

Step 1. For all i = 1, · · · ,k, take n0 batches of observations on the fixed design matrix X and denote
them as Yi1(xxx1), · · · ,Yi1(xxxm), · · · ,Yin0(xxx1), · · · ,Yin0(xxxm). For all i = 1, · · · ,k, let

Y i1 =
1
n0

n0

∑
`=1

Yi`(xxx1), · · · ,Y im =
1
n0

n0

∑
`=1

Yi`(xxxm),

S2
i1 =

1
n0−1

n0

∑
`=1

(
Yi`(xxx1)−Y i1

)2
, · · · ,S2

im =
1

n0−1

n0

∑
`=1

(
Yi`(xxxm)−Y im

)2
.

Furthermore, let

Ni1 = max
{⌈

h2S2
i1

δ 2

⌉
,n0

}
, · · · ,Nim = max

{⌈
h2S2

im

δ 2

⌉
,n0

}
. (10)
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Step 2. For all i = 1, · · · ,k, take Ni1− n0 observations on the design point xxx1 and denote them as
Yi,n0+1(xxx1), · · · ,YiNi1(xxx1); · · · ; take Nim−n0 observations on the design point xxxm and denote them as
Yi,n0+1(xxxm), · · · ,YiNim(xxxm). For all i = 1, · · · ,k, let Ŷi1 =

1
Ni1

∑
Ni1
`=1Yi`(xxx1), · · · ,Ŷim = 1

Nim
∑

Nim
`=1Yi`(xxxm),

and ŶYY i = (Ŷi1, · · · ,Ŷim)
ᵀ. Furthermore, let β̂ββ i = (X ᵀX )−1X ᵀŶYY i. Then, the selected alternative

conditioning on XXX is given by î∗(XXX) = argmax1≤i≤k{XXXᵀ
β̂ββ i|XXX}.

4.2 Statistical Validity

We have the following statistical validity of the Procedure FDHet:
Theorem 2 Under Assumptions 1, 2, and 4, the Procedure FDHet ensures that the PCSE defined in (3)
or the PCSmin defined in (4) is at least 1−α , i.e., PCSE ≥ 1−α or PCSmin ≥ 1−α .

Theorem 2 can be proved based on the Lemma 2 and the following Lemma 3, which is an extension
(a more general version) of Lemma 1.
Lemma 3 Suppose that

Y (xxx1) = xxxᵀ1βββ + ε(xxx1), · · · ,Y (xxxm) = xxxᵀmβββ + ε(xxxm),

where xxx1, · · · ,xxxm ∈ Rd are m fixed known vectors, βββ ∈ Rd is a fixed but unknown vector. Suppose
ε(xxx1), · · · ,ε(xxxm) are independent random variables, and ε(xxx1)∼N (0,σ2

1 ), · · · , ε(xxxm)∼N (0,σ2
m). Y1(xxx j),

· · · , Yn(xxx j), Yn+1(xxx j),Yn+2(xxx j), · · · , are independent samples of Y (xxx j), for all j = 1, · · · ,m. Suppose T is
a set of random variables and T is independent of ∑

n
`=1Y`(xxx j) and of Yn+1(xxx j),Yn+2(xxx j), · · · , for all

j = 1, · · · ,m. Suppose N1, · · · ,Nm ≥ n are all integer valued functions only of T . Let Ŷj =
1

N j
∑

N j
`=1Y`(xxx j),

for all j = 1, · · · ,m. Let ŶYY = (Ŷ1, · · · ,Ŷm)
ᵀ, and X = (xxx1, · · · ,xxxm)

ᵀ. Define β̂ββ = (X ᵀX )−1X ᵀŶYY , and
Σ = Diag

{
σ2

1 /N1, · · · ,σ2
m/Nm

}
.

(i) For any given vector xxx ∈ Rd , conditioning on T ,

xxxᵀβ̂ββ ∼N (xxxᵀβββ ,xxxᵀ(X ᵀX )−1X ᵀ
ΣX (X ᵀX )−1xxx).

(ii) For any given vector xxx ∈ Rd ,

V :=
xxxᵀβ̂ββ − xxxᵀβββ√

xxxᵀ(X ᵀX )−1X ᵀΣX (X ᵀX )−1xxx
,

is independent of T , and furthermore V ∼N (0,1).

The proof of Theorem 2 shares the similar steps as in the proof of Theorem 1, but the covariance
matrix on the design points is now a general diagonal matrix. With the help of Lemma 2, Lemma 3 and the
introduced smallest order statistics, similar result of PCS(XXX) as in the proof of Theorem 1 can be obtained.
Finally, PCSE ≥ 1−α or PCSmin ≥ 1−α is guaranteed due to (8) or (9).

4.3 Implementation Guide

In Procedure FDHom (or FDHet), hE and hmin can only be determined by solving (5) (or (8)) and (6) (or
(9)) numerically. In our implementation, the integration (including the expectation) is computed by the
MATLAB built-in numerical integration functions integral and trapz, and the hE and hmin are solved
by the MATLAB built-in root finding function fzero. It is worth mentioning that the trapezoidal method
based numerical integration such as integral and trapz will suffer from the curse of dimensionality.
So if the dimension of covariates, d, is high, it is certainly preferable to use Monte Carlo method to
approximate the expectation.
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When solving the minimization problem in (6) and (9), actually only the extreme points of the convex
hull of Θ need to be checked. For example, when Θc is some (continuous or discrete) hyper-rectangle with
dimension d, only the 2d corner points need to be compared.

Like in the linear regression, the homoscedasticity assumption simplifies the mathematical and com-
putational treatment, but may often be violated in reality. When the Procedure FDHom is misused in the
heteroscedastic errors case, the targeted PCS may fail to be guaranteed. This is because the aggregated
sample variance may underestimate the variance at some design points, leading to insufficient sample
allocation on those points. On the other hand, if the Procedure FDHet is used in the homoscedastic errors
case, the resulting sample size will be over-conservative. The intuitive explanation is that when the errors are
indeed homoscedastic, the samples on all different design points can be aggregated to calculate the sample
variance, which is a better estimator (i.e., with smaller variance) of the common variance of homoscedastic
errors than the separately computed sample variance on each design point. These trade-off effects will be
well reflected in the later numerical experiments in Section 6.

The above discussion provides us a simple guiding principle of choosing procedure in practice. When
the realistic problem we are facing is very close to the homoscedastic errors case, or not that close but
we can tolerate small amount of deviation below the designed PCS, we may consider to apply Procedure
FDHom. If the errors are notably heteroscedastic and we are very strict on the designed PCS, we had
better choose Procedure FDHet.

5 LEAST-FAVORABLE CONFIGURATION

For traditional R&S problem, there is a concept called least-favorable configuration (LFC), which is a
set of alternative configurations where the designed PCS is the most difficult to deliver. When talking
about (and searching for) the LFC, people usually focus specifically on the mean configuration, and the
other configurations such as variances are kept the same. To many procedures, for example, the two-stage
procedures like Rinott’s procedure (Rinott 1978), and the sequential procedures like KN family procedures
(Kim and Nelson 2001, Hong 2006), it is well known that given k and variance configuration, the LFC is
the slippage configuration (SC), i.e., µ1−δ = µi, for i = 2,3, · · · ,k, where µi is the mean of alternative i
for i = 1, · · · ,k.

While in the case of R&S with covariates, each alternative is no longer a single population, but the
idea of SC can be easily extended to this case. We define some configuration which is analogous to SC
and call it the generalized slippage configuration (GSC):

β10−δ = βi0, β1 j = βi j, for j = 1, · · · ,d and i = 2,3, · · · ,k. (11)

We can see that when all βi j = 0 for j = 1, · · · ,d and i = 1, · · · ,k, the GSC reduces to SC. Not surprisingly,
we find that the GSC is the LFC of R&S with covariates to many possible procedures (including ours), as
stated in the following Theorem 3.
Theorem 3 For R&S with covariates defined under Assumption 1, GSC is the LFC for a selection
procedure on fixed design matrix X with the following features:

(i) On the design point xxx j at alternative i, only the average of Ni j observations, which is denoted as
Ŷi j for j = 1, · · · ,m and i = 1, · · · ,k, is used when finally selecting the alternative.

(ii) Ni j is independent of the mean configuration. Moreover, conditioning on all Ni j, Ŷi j is independent

of each other and Ŷi j ∼N
(

xxxᵀj βββ i,σ
2
i (xxx j)/Ni j

)
, for j = 1, · · · ,m and i = 1, · · · ,k.

(iii) Let ŶYY i = (Ŷi1, · · · ,Ŷim)
ᵀ and β̂ββ i = (X >X )−1X ᵀŶYY i for i = 1, · · · ,k. The selected alternative

conditioning on XXX is given by î∗(XXX) = argmax1≤i≤k
{

XXXᵀ
β̂ββ i

∣∣XXX}.

Obviously the proposed procedures FDHom and FDHet possess those features specified in Theorem
3, so we have the following Corollary 4 immediately.
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Corollary 4 GSC is the LFC for the Procedure FDHom and Procedure FDHet.

6 NUMERICAL EXPERIMENTS

In this section we show the results of extensive numerical evaluations of Procedures FDHom and FDHet.
To avoid the overly large number of cases arising from the full factorial combinations of various factors,
such as the dimension, number of alternatives, mean configuration, variance configuration, etc., we create
a benchmark case, and then investigate the effect of each factor by varying that factor while keeping others
unchanged.

First we introduce the configuration of the benchmark case. Notice that some configurations are defined
in a generic way, which means later they will change accordingly in the comparing cases. We let d = 3
and k = 5 in the benchmark case. They will vary later in other cases. The covariates, X1, · · · ,Xd , are i.i.d.
Unif[0,1] random variables. For the fixed design, we apply the factorial sampling on (X1, · · · ,Xd)

ᵀ by taking
m = 2d design points in the set {0,0.5}× ·· ·×{0,0.5}, which is a Cartesian product of d identical set
{0,0.5}. For the mean configuration, the GSC is used. For the variance configuration, we let σ2

i (xxx)≡ σ2
i ,

which is the case of homoscedastic errors inside the alternative. Besides, we let σ1 = · · ·= σk = 10, which
means there are equal variances among alternatives.

Then we design 8 comparing cases. They are all based on the benchmark case, and each time only one
factor deviates from the benchmark. The details are as follows: (1) Set k = 2. (2) Set k = 8. (3) We no
longer consider the GSC for the mean configuration, instead we randomly generate all components of βββ i
from Unif[0,5], for i = 1, · · · ,5. (4) Consider the increasing variances (IV) among alternatives, i.e., σ1 = 5,
σ2 = 7.5, σ3 = 10, σ4 = 12.5, σ5 = 15. (5) Consider the decreasing variances (DV) among alternatives,
i.e., σ1 = 15, σ2 = 12.5, σ3 = 10, σ4 = 7.5, σ5 = 5. (6) Consider the case of heteroscedastic errors inside
the alternative, i.e., let σ2

i (xxx) = 100(xxxᵀβββ i)
2, for i = 1, · · · ,5. (7) Set d = 1. (8) Set d = 5. Notice that

Cases (1) and (2) only change the number of alternatives. In Cases (3)-(6) the configuration of alternatives
is changed, where the Case (3) changes the mean configuration and the Cases (4)-(6) change the variance
configuration. It is worth noting that the Cases (4) and (5) only change the variances of errors among
the alternatives, while the errors for individual alternatives are still homoscedastic. The Cases (7) and (8)
change the dimensionality of covariates.

In all cases including the benchmark case and the 8 comparing cases, we set α = 0.05 (i.e., PCS=95%),
δ = 1 and n0 = 50. Here we also consider the two different forms of PCS, i.e., the PCSE and PCSmin.
No matter when which form of PCS is designed for, we evaluate both the real PCSE and real PCSmin for
reference. For each form of PCS and each case, 104 macro replications are carried out for Procedures
FDHom and FDHet respectively. To evaluate the real PCSE, since all random components of XXX are i.i.d.
Unif[0,1] random variables, 105 samples of XXX are uniformly drawn and the proportion of correct selections
is calculated. Then the proportions over 104 macro replications are averaged as the real PCSE. To evaluate
the real PCSmin, only the selection result on the “worst point” matters. So the proportion of correct selections
on the worst point over 104 macro replications is calculated as the real PCSmin. We also report the averaged
total sample size in each case using each procedure. The results are shown in Tables 1 and 2.

Overall, the results show that the Procedure FDHom can deliver the designed PCSE or PCSmin in all
cases where the errors are homoscedastic, and the Procedure FDHet can always deliver the designed PCSE
or PCSmin in any case. But when the Procedure FDHom is misused in the heteroscedastic errors case (Case
(6)), the designed PCS is not achieved. On the other hand, when the Procedure FDHet is misused in the
homoscedastic errors case (all cases except Case (6)), it will be over-conservative. It is reflected in the
larger sample size (which is determined by the larger h) and larger real PCS than those in the Procedure
FDHom. Even for the Procedure FDHom in the homoscedastic errors case, the real PCS is also larger than
the designed PCS, especially when the mean configuration is not GSC (Case (3)). It means the procedure
requires more samples than necessary. This conservativeness is a common drawback of almost all the
traditional R&S procedures developed under the IZ formulation.
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Table 1: Results when PCSE is designed to be 95%.

Procedure FDHom Procedure FDHet

Case hE Sample PCSE PCSmin hE Sample PCSE PCSmin

(0) Benchmark 3.423 46865 0.9610 0.7439 4.034 65138 0.9801 0.8080

(1) k = 2 2.363 8947 0.9501 0.8084 2.781 12380 0.9702 0.8517
(2) k = 8 3.822 93542 0.9650 0.7246 4.510 130200 0.9842 0.8052

(3) Non-GSC 3.423 46865 0.9987 0.9410 4.034 65138 0.9994 0.9615
(4) IV 3.423 52698 0.9618 0.7549 4.034 73265 0.9807 0.8147
(5) DV 3.423 52720 0.9614 0.7501 4.034 73246 0.9806 0.8114
(6) Het 3.423 58626 0.9232 0.6336 4.034 81555 0.9846 0.8591

(7) d = 1 4.612 21288 0.9593 0.7941 4.924 24266 0.9662 0.8223
(8) d = 5 2.141 73428 0.9656 0.7446 2.710 117630 0.9895 0.8379

Table 2: Results when PCSmin is designed to be 95%.

Procedure FDHom Procedure FDHet

Case hmin Sample PCSE PCSmin hmin Sample PCSE PCSmin

(0) Benchmark 5.927 140540 0.9989 0.9594 6.990 195340 0.9997 0.9825

(1) k = 2 4.362 30447 0.9958 0.9466 5.132 42164 0.9987 0.9701
(2) k = 8 6.481 268750 0.9993 0.9642 7.651 374720 0.9999 0.9849

(3) Non-GSC 5.927 140540 1.0000 0.9958 6.990 195340 1.0000 0.9981
(4) IV 5.927 158140 0.9989 0.9574 6.990 219870 0.9998 0.9862
(5) DV 5.927 158100 0.9990 0.9617 6.990 219740 0.9998 0.9826
(6) Het 5.927 175700 0.9952 0.8999 6.990 244490 0.9999 0.9899

(7) d = 1 7.155 51161 0.9954 0.9600 7.648 58493 0.9971 0.9708
(8) d = 5 3.792 230220 0.9994 0.9539 4.804 369310 1.0000 0.9907

When the number of alternative increases, we can see the sample size (even when averaged to each
alternative) gets larger, which is caused by the larger value of h. For the effect of dimensionality, nothing
much can be concluded because the number of design points is also increasing with the dimensionality. But
at least we can find that the real PCS increases not too fast when the dimensionality increases, which tells
that the two procedures may still work properly for moderately large dimensions of covariates. Another
observation from comparing Tables 1 and 2 is that, when the PCSmin is designed, the sample size is about
three times of what is required if the PCSE is designed. Besides, when the PCSmin is designed, the real
PCSE is almost 1 for every case. This suggests that in practice the PCSmin criterion may be too conservative
to apply unless when it is indeed necessary.

7 CONCLUSIONS

In this paper we introduce and formulate the R&S problem with covariates by assuming a linear model.
After defining the unconditional PCS, we design Procedure FDHom and Procedure FDHet, which are
statistical valid under the homoscedastic errors and heteroscedastic errors respectively. The LFC for the
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R&S with covariates is also investigated. The numerical experiments demonstrate the validity of the two
designed selection procedures and also show their differences.
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