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ABSTRACT

In a Ranking and Selection problem, the objective of allocation is vital in deriving the rule. However, most
of these objectives do not have a closed form. Due to the high cost of a direct approximation, several
cheap but biased substitutes were applied to simplify the problem. These simplifications however could
potentially affect the optimality of efficiency and therefore influence its finite performance. Fortunately,
due to the increasing accessibility of parallel hardware (e.g. GPU), a direct approximation is becoming
more tractable. Thus, we want to test the performance of an allocation rule based on an unbiased and
direct approximation, expecting an acceleration on the performance. In this paper, we target on one of the
famous objectives, the Probability of Correct Selection (PCS). Numerical experiments were done, showing
a considerable improvement in finite performance of our algorithm comparing to a traditional one.

1 INTRODUCTION

Simulation optimization (sim-opt) seeks an efficient scheme to allocate limited computing budget to a
finite or infinite number of solutions in order to find the best set of solution. Due to the stochastic feature
of simulation, multiple trials are deployed to estimate the performance of each system. However, only a
limited amount of computing budgets is at hand. How to allocate the total budget effectively becomes the
core issue. Specifically, when the selection pool is a finite set and applying simulations to all solutions
is possible, the problem becomes a Ranking and Selection (R&S) problem. Usually, due to the complex
structure of its mathematical form, people are forced to apply approximation technique to solve the problem.
These approximated forms are often cheaper to calculate. However, due to the existence of biases, these
approximations may not approach the true optimality of efficiency. A direct approximation was considered
before (Chen and Lee 2011) but was regarded as intractable in sequential processing. Fortunately, due to
the increasing accessibility and decreasing cost of parallel hardware, such as GPU, applying Monte Carlo
Method (MCM) to directly approximate the original problem becomes possible (Xu et al. 2015). With the
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power of parallelizing, one can now rely on MCM to achieve an unbiased approximation (e.g. the Sample
Average Approximation (SAA)) .

In this paper, we limit our scope within one of the allocation objective, namely, the Probability of
Correct Selection (PCS). It is one of the most important objectives of budget allocation but was often
automatically converted to Approximated PCS (APCS) (Chen, He, and Fu 2006, and LaPorte, Branke, and
Chen 2012, for Optimal Computing Budget Allocation method; Chick et al. 2001 and Chick, Branke, and
Schmidt 2007 for Expected Value of Improvement method; Kim and Nelson 2001 and Luo et al. 2015,
for Indifference Zone method) derived by Bonferroni inequality for simplification. Frazier (2014) pushed
forward this limit in Indifference Zone (IZ) method and decreased the total budget needed by applying a
Bayes-inspired IZ to avoid using such a simplification. Similarly, we want to develop a new allocation rule
based on a direct approximation avoiding using Bonferroni inequality. The efficiency gap between using
APCS and a direct approximated PCS is our main stress.

2 BACKGROUND INFORMATION

2.1 Problem statement

Suppose we have k systems indexed by i = 1,2, . . . ,k and a measure J to describe their performance. The
task is to select the system b with the optimal (e.g. the smallest) Ji. However, for each system, its Ji can
only be observed by multi-times simulation. The simulation result J̃i can be regarded as a random variable.
Here we assume that J̃i ∼N (Ji,σi). We thus have the definition of the optimal system:

b ∆
= argmin

i
{Ji}= argmin

i

{
E[J̃i]

}
with b unknown ahead. A reasonable selecting strategy is to select the solution with the best average
performance after multiple simulations. For ith system, its jth independent observation is denoted as Ji, j.
Therefore, when simulating ith system for Ni times, the sample mean of simulation results J̄i ∼N (Ji,

σi√
Ni
).

The solution with the optimal sample mean is indexed as:

s = argmin
i
{J̄i}.

Based on the above setting, a Correct Selection is defined as:

CS ∆
= {∩i6=bJ̄b < J̄i}= {J̄b < min

i 6=b
{J̄i}}= {s = b}.

Our goal is to maximize the probability of achieving Correct Selection. Let us first suppose that Ji and σi
are known ahead. In this circumstances, when a limited amount of total budget is considered, we need an
optimal allocation of ~N = (N1,N2, . . . ,Nk) that can maximize the Probability of Correct Selection (PCS) as
possible. Therefore, the problem is formulated as:

max
~N�0

PCS ∆
= P{J̄b < min

i6=b
{J̄i}}

s.t.
k

∑
i

Ni = T.
(1)

2.2 Limitation of APCS

We shall briefly introduce how APCS is derived and then illustrate its limitation.
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The difficulty of optimizing PCS is that PCS does not have a closed form. Even with the hypothesis
that Ji, j are i.i.d. normal, still, it is hard to calculate its value and gradient. This solid obstacle makes
a direct manipulation on PCS difficult. The usual practice to tackle this is to instead optimize its lower
bound, APCS. I is derived by Bonferroni inequality and is a lower bound to the real PCS:

APCS-B = 1−∑
i6=b

P{J̄b ≥ J̄i} ≤ 1−P{∩i6=bJ̄b ≥ J̄i}= PCS.

If we directly optimize this APCS-B by solving:

max
~N�0

APCS-B

s.t.
k

∑
i=0

Ni = T
(2)

then we get the Optimal Computing Budget Allocation (OCBA) (Chick, Branke, and Schmidt 2010). There
is a technical simplification which makes the rule an asymptotic one: Nb�Ni ∀i. On this asymptotic basis,
the programming system has an explicit solution:

δb,i = Jb− Ji

Ni

N j
=
(

σi/δb,i

σ j/δb, j

)2
∀i, j 6= b

Nb = σb

√
∑
i6=b

N2
i

σ2
i
.

The asymptotic feature points out that when the total budget T approaches infinity, the above allocation
will be the best static ratio to increase the PCS. Its asymptotic optimality can also be proved by the theorem
of Large Deviation (LD) (Glynn and Juneja 2004).

OCBA is inexpensive to calculate. However, certain limitations of such a rule cannot be ignored. First
of all APCS-B ignores the correlation among multiple comparisons. It is clear that

P{J̄b ≥ J̄i|J̄b ≥ J̄ j}P{J̄b ≥ J̄ j} 6= P{J̄b ≥ J̄i}P{J̄b ≥ J̄ j}.

Although the impact caused by ignoring the correlation between the event {J̄b ≥ J̄i} and the event {J̄b ≥ J̄ j}
will be eased when more observations are received. However, in reality, the computing budget is usually
scarce and making the early stage decision more important than the late stage. Such a distortion in the early
stage may affect the increasing rate of inexplicit PCS, which makes an asymptotic rule far from enough.
Secondly, since the approximation is biased and not tight on early stage, it can not be taken as an indicator
of the current progress when the total budget is limited. Especially at the very beginning, APCS-B can be
a negative number which has no meaning.

In general, the APCS has its limitation in representing the current progress. It is a biased approximation,
which causes the information lost and could potentially deteriorate the finite performance when T is small.

3 METHODOLOGY

As mentioned, APCS has limitations in both measuring and optimizing the budget allocation. To push
the limit forward, we apply a new Monte Carlo method. In this method, the PCS will be estimated
by an unbiased approximation. When the approximation is accurate, the allocation that maximizes the
approximated PCS is the one that maximizes the real PCS. Due to the computational intensity, parallel
power will be adopted to make computation tractable.
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3.1 Sample Average Approximation

First of all, we want to establish an unbiased approximation to the theoretical PCS. Be noticed that CS is
an event. Since for any event A

P(A ) = E[1{A }]

meaning that the probability equals the expected frequency of the event occurrence, this frequency can be
treated as an unbiased approximation of the probability. Multiple independent experiments will be executed
to observed the frequency of occurrence and decrease the estimation error. According to the Law of Large
Number, this frequency will converge to P(A ) a.s.. In an practical sense, this means when the Monte
Carlo sample size is huge, this portion can be regarded as an accurate representation of the real P(A ). By
this rationale, such a frequency can be taken as a valid unbiased approximation to the probability. Since
the average number is used, it is called Sample Average Approximation (SAA).

Since CS = {J̄b < mini 6=b{J̄i}} and the distribution of J̄i is known, we can execute M number of
independent experiments and calculate the frequency of CS occurrence to derive our approximation. For
example, in jth experiment, we sample mi, j ∼N (Ji,

σi√
Ni
) once for each i. According to the definition of

CS, the CS of the jth experiment is defined as:

CS j =
{

mb, j < min
i 6=b
{mi, j}

}
.

Then we derive our SAA approximation:

S̃ ∆
=

∑
M
j=11{CS j}

M
.

1(·) is the indicator function. When CS occurs, it takes the value of 1. Otherwise, it is zero.
The calculation of the above quantity is time consuming. However, samplings are mutually independent.

This is quite different from the simulation model where each observation is computed by multi-stage
dependent calculation. This characteristic leads us to the application of parallel to bring the calculation
tractable.

3.2 Optimal Computing Budget Allocation based on SAA

Now that the approximation is established, an optimal allocation can be derived by maximizing this
approximation. For each valid allocation ~N, its correspondent PCS can be estimated by S̃. Thus for each
~N, we first estimate their respective PCS, then selecting the allocation that has the maximum S̃ value. If
we denote S~N as the realized SAA of PCS under the allocation of ~N, accordingly, we have the following
optimization problem:

max
~N

S~N

s.t.
〈
~N,1

〉
= T

~N ∈Nk.

(3)

Our goal is to select the optimal ~N∗ with the biggest SAA value. As we see, this problem is itself a Ranking
and Selection problem:

~N∗ = argmax
~N

E[S̃~N ].

Yet, it is different from a traditional R&S in that the budget limit here is no longer a fixed number of total
observations. As we plan to apply MCM on a GPU, each sampling of a specific configuration is equivalent
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to one observation of the original problem. When S̃~N for different ~N are computed in parallel, the total
amount of time depends on the S̃~N that costs the longest time. Usually, given the same size of sampling
for each S̃~N (e.g. the same M), the time cost should not vary much. This means that for calculation of
S̃~N for different ~N, it is optimal to execute the same M number of experiments in S̃~N calculation. Due to
this unique feature of the parallel computing, we only need to keep the time cost of finishing M samplings
within an acceptable range while letting M be as huge as possible.

Applying common random number is suggested. For each experiment of estimating a specific ~N, we
can first generate multiple independent standard normal results and do affine transformation to create a
realization value of Monte Carlo sampling. We denote wi, j as our standard normal realization:

mi, j = Ji +
wi, jσi√

Ni
.

Thus, the CS j is specified as

CS j =
{

Jb +
wb, jσb√

Nb
< min

i6=b
{Ji +

wi, jσi√
Ni
}
}
.

We shall launch M (large, e.g.1000) number of this independent trial and calculate the frequency of the
occurrence of CS. We have the following form of SAA by plugging in the redefined CS:

S̃~N =
1
M

M

∑
j=1
1

{
Jb +

wb, jσb√
Nb

< min
i 6=b
{Ji +

wi, jσi√
Ni
}
}
.

Since M is the same, Wk×M = {wi, j} are reused for different ~N. This application of common random
number can not only save the total computation, but also increase the probability of selecting the optimal
allocation. Therefore, we derive the following form:

max
~N�0

M

∑
j=1
1

{
min
i6=b
{Ji +

wi, jσi√
Ni
}> Jb +

wb, jσb√
Nb

}
s.t.

〈
~N,1

〉
= T

~N ∈Nk.

(4)

The last issue is the estimation of parameters. In reality, Ji, σi and b are all unknown. Instead, we rely
on their estimators to derive the allocation rule. The b index is unknown, we take s as its representation.
Such substitution is valid because as Ni approaches infinity, J̄i will converge to Ji a.s. (according to the Law
of Large Number), making s = b eventually. Similarly, Ji and σi are unknown, we use J̄i and Si instead.
They will be arbitrarily accurate when we have a decent number of simulations.

A frequentist view of inference is adopted. We suppose that at a specific time point, the ith solution has
been simulated for NEi times. The distribution of ˜̄Ji, which is the sample mean after allocating further ∆Ni
budget to ith solution, can be derived. Based on a frequentist inference, each newly planed to be observed
Ji, j ∼N (J̄i,Si). Therefore, ˜̄Ji ∼N (J̄i,

Si√
NEi+∆Ni

). The final optimal allocation adopted in our algorithm is
the solution of the following programming system:

max
~∆N

M

∑
j=1
1

{
min
i6=s
{J̄i +

wi, jSi√
NEi +∆Ni

}> J̄b +
wb, jSb√

NEb +∆Nb

}
s.t.

〈
~∆N,1

〉
= ∆T

~∆N ∈Nk

(5)
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where ∆T denotes a portion of the total budget T and NEi denotes the already allocated budgets to the
solution i. After allocation, we simulate according to it and update J̃i and Si after getting new simulation
results. The detail pseudo code is as follows:

Initialization:
Set M, ∆T , Generate W;
Allocate N0 size of equal allocation;
Calculate the initial J̄i and Si for all i;

while T is not exhausted do
Allocation:

Subtract ∆T from T ;
Solve (5) to get the optimal allocation;

Simulation:
Simulate according to the allocation;
Update J̃i, Si and ~NE ;

end
Algorithm 1: OCBA-SAA.

So, the basic idea is that after an initial stage, in each iteration, we take s as b and generate W. Then
we do affine transformation based on sample mean J̄i and standard variance Si to create each mi, j. We then
solve the optimization problem to get ~N for the following simulation session.

4 NUMERICAL EXPERIMENT

Numerical experiment is done to show the advantage of using an unbiased estimation in the situation where
the total budget is scarce (e.g. T small). In this particular case, N0 and ∆T are usually set small. Extremely,
∆T is set to be 1. In purpose of showing the differences, we need to compare our method with the one
that maximize the APCS.

When the batch size ∆T = 1, the classical OCBA turns to SOCBA (Chen, He, and Fu 2006), which
intends to solve the following problem in each iteration:

max
~∆N

APCS-B

s.t.
〈
~∆N,1

〉
= 1

~∆N ∈ {0,1}k.

This algorithm is exactly what we need for comparison since the other parts of the algorithm are identical
to our method except its optimizing over the biased APCS.

The effectiveness of SAA and SOCBA are both heavily relying on how close J̄i and Si are to Ji and
σi. In this sense, the N0 is especially important. If SAA can dominate SOCBA in different scenario of N0
(indicating different estimation accuracy), then we can conclude that applying more computation in PCS
estimation is meaningful.

We use monotone-decreasing-means (Chick, Branke, and Schmidt 2007) to test the performance of
our algorithm against SOCBA. It creates systems with the same interval between true means. The variance
decreases from the worst system to the best system. Here, we set the variance as ip, where i is the true rank
of the system from the best to the worst and p a controllable parameter. When p = 1, the variance will
be linear to the rank difference. When p > 1, the variance increases faster than the rank, vice versa. This
configuration is especially designed to test the ability of utilizing both the mean and variance information.
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(a) k = 5, p = 0.5 (b) k = 10, p = 0.5

(c) k = 5, p = 1 (d) k = 10, p = 1

(e) k = 5, p = 1.5 (f) k = 10, p = 1.5

Figure 1: The PCS according to the budget consumed under Monotone configuration.

Each trial runs until the PCS under Equal Allocation (EA) turns to 1. Since a sequential EA allocates
one budget for all solution in each iteration, the trajectory of it is a step function. Since the initial stage is
exactly EA, we compare SAA and OCBA rule in scenarios where N0 is 2 and 5 respectively.

The PCS shown in the graphs are estimated by 1000 Monte Carlo Sampling knowing the true mean
and variance. All results shown are averaged among 100 trials, meaning that each curve on the graph is
the average of 100 results.

Through numerical results, we can generally conclude that SAA performs robustly better than OCBA
when batch size is 1. Trends can be drawn from the Figure 1 that the smaller N0 is, the larger the performance
gap between using unbiased estimation versus a biased one be. Further, as a sized 10 problem performs
better than a sized 5 in all configurations, one could expect that the gap is even larger when problem size
increases.

5 CONCLUSION

In this work, we apply MCM to create an SAA to approximate PCS in an unbiased way. Then we derive an
optimal allocation rule based on this approximation. The numerical experiments are conducted to examine
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its performance against the algorithm relying on APCS when the batch size is 1. The result shows consistent
advantages of our rule against the SOCBA rule in the presented scenarios. Through this result, we can
partially conclude that our allocation based on estimated PCS is robust in performance. It can combine
mean and variance information effectively, and leads to a more efficient finite time performance.

Still, more work needs to be done in effectively solving the problem (5). When problem size goes
large or batch size increases, the total number of valid allocation will go faster than the exponential. This
issue is essential for a practical application.

Other than solving the programming problem, another potential of this work is to broaden the simulation
output distribution to a general one. When the observation results do not follow a normal distribution,
SAA will be different leading probably to a new allocation rule.
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