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ABSTRACT

In this study, we consider the robust Ranking and Selection problems with input uncertainty. Instead of
adopting the minimax analysis in the classical robust optimization, we propose a novel method to approach
this problem from the perspective of multi-objective optimization and Pareto optimality. More specifically,
the performances of each design under various scenarios are reformulated as multiple objectives, and in this
case, robust Ranking and Selection becomes a multi-objective Ranking and Selection. In order to determine
the number of simulation replications to various scenarios of each design, a bi-level convex optimization
is formulated by maximizing the surrogate of the large deviation rate function of the probability of false
selection. Numerical results show the efficiency of the proposed procedure (PR-OCBA) compared with
other methods.

1 INTRODUCTION

One successful and widely-used approach to dealing with the intractable complex optimization with
randomness for decision-makers is the simulation optimization (SO) (see Hong and Nelson 2009; Pasupathy
and Ghosh 2013; Fu et al. 2015; Xu, Huang, Chen, and Lee 2015 for a detailed review) which refers to the
identification of the best solutions or designs by using efficient simulation techniques to evaluate their noisy
performance. When the number of feasible designs is relatively small, the SO is reduced to the Ranking
and Selection (R&S) problem (Branke, Chick, and Schmidt 2007; Kim and Nelson 2007) problem, which
determines how to allocate the simulation budget to each design such that the “best” can be identified. There
are three research streams in R&S (Chau, Fu, Qu, and Ryzhov 2014). The indifference-zone (IZ) approach
(Kim and Nelson 2001; Nelson, Swann, Goldsman, and Song 2001; Andradóttir and Kim 2010; Teng, Lee,
and Chew 2010; Frazier 2014; Healey, Andradóttir, and Kim 2014) aims at finding the budget allocation
strategy which can guarantee a lower bound for the probability of correct selection (P(CS)) given that the
performance mean of the best design is at least δ better than the others, where δ is the minimum difference
to differentiate two designs. The expected value of information procedure (EVI) (Chick and Inoue 2001b;
Chick and Inoue 2001a; Frazier and Kazachkov 2011; Chick and Frazier 2012; Xie, Frazier, and Chick
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2016) selects the design with the largest expected value of information to simulate from the perspective
of Bayesian statistics. Lastly, the optimal computing budget allocation approach (OCBA) (Chen, Lin,
Yücesan, and Chick 2000; Lee et al. 2010; Lee, Chew, Teng, and Goldsman 2010; Lee et al. 2012; Xiao,
Lee, and Ng 2014; Gao and Chen 2016a; Gao and Chen 2016b; Peng, Chen, Fu, and Hu 2016; Zhang et al.
2016) focuses on the maximization of P(CS) given a computing budget constraint, and such procedure can
further be applied to the case when simulation output follows correlated general distributions by adopting
the large deviation principle (Glynn and Juneja 2004; Hunter and Pasupathy 2013; Hunter and Feldman
2015; Li et al. 2016). A general formulation of R&S can be illustrated by (1),

argmin
i∈S

E[HHH(i,ω|θ)], (1)

where the decision-maker wants to find the optimal design i from a finite set S with the smallest mean of
the function HHH(i,ω|θ). Here, ω represents the intrinsic uncertainty within the simulation model, while θ

and HHH(·) are the input parameters and input models which are assumed to be given for most classical R&S
work. However, it can be quite difficult to select the correct input model and the associated parameters in
practice, which leads to the problem of R&S with input uncertainty (Lam 2016).

To tackle the R&S with input uncertainty, one typical way borrowed from the classical robust optimization
is the Wald’s maximin or minimax models (Wald 1945). This approach intends to find designs with the best
worst-case performance, which can be mathematically formulated as (2) where Θ is the input parameter
set, H is the input model set, and U = Θ×H is the input uncertainty set. For example, Fan, Hong, and
Zhang (2013) propose a two-layer R&S procedure under the IZ formulation. The first layer identifies the
worst-case scenario and the best design is chosen in the second layer. Furthermore, an entropic descent
algorithm by Ghosh and Lam (2015) is introduced to obtain a conservative bound considering the worst-case
robust R&S. In addition, Gao, Xiao, Zhou, and Chen (2016) developed an asymptotically optimal budget
allocation strategy under Gaussian assumption to select the best designs on the worst-case performance.

argmin
i∈S

max
(θ ,HHH)∈U

E[HHH(i,ω|θ)]. (2)

Despite the fact that for a realized scenario (θ ,HHH), the performance E[HHH(i∗,ω|θ)] of the optimal
designs i∗ given by (2) cannot be worse than their worst-case performance, such maximin or minimax
models are criticized for their conservative decisions especially when the worst case is unlikely to happen
in practice. Furthermore, this approach is from the perspective of the risk-averse decision-makers, while
the risk-neutral and risk-seeking decision-makers might want to find the designs with optimal average-case
performance and best-case performance, respectively. Finally, as pointed by Iancu and Trichakis (2013),
such paradigm can produce suboptimal designs without the property of Pareto optimality in practice, and
thus leads to inefficiency. To address these issues and provide more flexibility, we propose a novel approach
from the perspective of multi-objective optimization and Pareto optimality to handle the robust R&S. More
specifically, as presented in (3), the performances of each design under various scenarios are reformulated
as multi-objectives where each scenario is treated as an objective measure, and we want to identify all the
Pareto robust designs which are non-dominated by the others. It is noteworthy that the number of input
uncertain scenarios can be positive infinite, but we can construct a finite uncertainty set by selecting some
representative scenarios. Such scenarios might be selected as the quantiles of the performance of each
design, or the status of the decision environment and the decisions by the adversarial player (e.g. sunny
or rainy, stock prices go up or down, silent or betray).

argmin
i∈S

{E[HHH(i,ω|θ)],∀(θ ,HHH) ∈U }. (3)

The organization of this paper is as follows. The robust R&S problem is formulated in section 2,
followed by section 3 which illustrates the multi-objective optimization approach to solve the robust R&S.
The performance of the proposed algorithm and the other two budget allocation strategies are compared in
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section 4, and we summarize this paper in section 5. Please refer to the journal version of this paper (Liu,
Gao, and Lee 2017) for the proof of theorems and lemmas.

2 PROBLEM STATEMENT

In this study, we consider the robust R&S problem of identifying the best designs from a finite set S of
r designs. For all the r designs, their input uncertainty set U is assumed to be identical and contains s
scenarios which represent various input models and the relevant parameters. Such input uncertainty set can
be a continuous set especially in the area of robust optimization, and thus the number of scenario for each
design will be positive infinite. However, potential input models or parametric distribution families can
be selected based on the historical data and the goodness-of-fit test, and then the quantiles of associated
models can be used to construct the finite input uncertainty set U . Therefore, the performances of each
design under s scenarios can be treated as s objectives, and thus the robust R&S problem is reformulated
as a multi-objective R&S problem.

Let hik,σik,Hik, H̄ik denote the mean, standard deviation, random variable and sample mean for the
performance of design i under scenario k, where i≤ r(the abbreviation for i = 1,2, . . . ,r and i∈ S) and k≤
s(the abbreviation for k = 1,2, . . . ,s and k ∈U ). In addition, let hhhi = [hi1,hi2, · · · ,his]

T be the performance
mean vector of design i, and i ≤ r. Particularly, the values of hik and σ2

ik are unknown and can only be
evaluated by the noise simulation as the sample mean and sample variance whose accuracy depends on
the simulation budget allocation strategy. Hence, given the total simulation budget N, this study aims
at determining the proportion of the simulation budget (αikN) that should be allocated to evaluate the
performance of design i under scenario k such that the Pareto robust set Sp ⊂ S can be identified with
high probability. Further, let ααα i = [αi1,αi2, · · · ,αis]

T , i ≤ r denote the allocation proportion vector for
design i. The Pareto robust set Sp, with cardinality |SP|= m, is mathematically defined as below, and its
complementary set is noted by Sc

p = S\Sp.
Definition 1 (Pareto Dominance) Design i dominates design j, noted by i≺ j, if and only if hik ≤ h jk,∀k≤ s
and ∃k ≤ s,hik < h jk. Otherwise we use i⊀ j to represent that design i does not dominate design j. The
notation ≺̂ is used to represent the dominance relationship when each design’s performance is evaluated
by its sample mean.
Definition 2 (Pareto Robust Set) The Pareto robust set of S is defined by Sp = {i ∈ S : @ j ∈ S, j ≺ i} and
the estimated Pareto robust set is Ŝp = {i ∈ S : @ j ∈ S, j≺̂i}.

Throughout this paper, we make several common assumptions which can be found in the previous
R&S papers (Glynn and Juneja 2004; Hunter and Pasupathy 2013; Li et al. 2016). Further, we assume the
performances of a given design under any two scenarios are independent.

3 ASYMPTOTIC OPTIMAL ALLOCATION STRATEGY

3.1 Rate Function of Probability of False Selection

The false selection event will happen if there exists non-dominated design i ∈ Sp which is estimated to be
dominated by some other design l ∈ S, l 6= i; or there exists dominated design j ∈ Sc

p which is estimated to
be non-dominated by all the other design l ∈ S, l 6= j. Therefore, the probability of false selection (P(FS))
for the non-dominated designs can be formally expressed as (4),

P(FS) = P(
⋃

i∈Sp

⋃
l∈S,l 6=i

l≺̂i∪
⋃
j∈Sc

p

⋂
l∈S,l 6= j

l⊀̂ j), (4)

which is normally intractable to derive the analytical closed-form expression. To handle this difficulty, we
present the upper and lower bounds to approximate P(FS) in Theorem 1, whic can be calculated by the
Bonferroni inequality and the Lemma 1 of Lee, Chew, Teng, and Goldsman (2010).
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Theorem 1 The P(FS) is bounded from above by

P(FS)≤ (mr−2m+ r)max{max
i∈Sp

max
l∈S,l 6=i

P(l≺̂i),max
j∈Sc

p

min
l∈S,l 6= j

P(l⊀̂ j)},

and is bounded from below by

P(FS)≥max{max
i∈Sp

max
l∈S,l 6=i

P(l≺̂i),max
j∈Sc

p
∏

l∈S,l 6= j
P(l⊀̂ j)}.

Instead of minimizing the P(FS), this study intends to derive the optimal allocation strategy by
maximizing the rate function of P(FS) from the perspective of large deviation principle. Relying on the
Gärtner-Ellis theorem (please refer to Dembo and Zeitouni 2010, chap. 2), Theorem 2 demonstrates the
bounds of the rate function of P(FS), and let Iik(x) , supθik∈R{θikx−ΛHik(θik)},∀i ≤ r,k ≤ s,x ∈ R, be
the Legendre-Fenchel transformation of the cumulant function ΛHik(θik) , logE[exp(θikHik)]. Note that
ΛHik(θik) is strictly convex, and thus Iik(x) as the supremum of infinitely many linear function is also
strictly convex. Hence, λil(ααα i,ααα l) and η jl(ααα j,ααα l) below are strictly concave functions with respect to the
associated α .
Theorem 2 The rate function of P(FS) is bounded from below by

lim
n→∞
−1

n
logP(FS)≥min{min

i∈Sp
min

l∈S,l 6=i
λil(ααα i,ααα l),min

j∈Sc
p

max
l∈S,l 6= j

η jl(ααα j,ααα l)},

and is bounded from above by

lim
n→∞
−1

n
logP(FS)≤min{min

i∈Sp
min

l∈S,l 6=i
λil(ααα i,ααα l),min

j∈Sc
p

∑
l∈S,l 6= j

η jl(ααα j,ααα l)}.

where
λil(ααα i,ααα l) = ∑

k≤s
λilk(αik,αlk) = ∑

k≤s
[ inf
xlk≤xik

(αikIik(xik)+αlkIlk(xlk))],

η jl(ααα j,ααα l) = min
k≤s

η jlk(α jk,αlk) = min
k≤s

inf
xlk≥x jk

(α jkI jk(x jk)+αlkIlk(xlk)).

Furthermore, the closed-form expressions of λilk(αik,αlk) and η jlk(α jk,αlk) are presented in Lemma 1. In
addition, it is well-known that Iik(x) is a convex function with the minimum value zero at x= hik,∀i≤ r,k≤ s.
Therefore, it can be shown that λilk(αik,αlk)> 0 if min(αik,α jk)> 0, othewise λilk(αik,αlk) = 0. Similar
results can be found for η jlk(α jk,αlk).
Lemma 1 The explicit expression of λilk(αik,αlk),∀i ∈ Sp, l ∈ S, l 6= i,k ≤ s can be represented as below

λilk(αik,αlk), inf
xlk≤xik

(αikIik(xik)+αlkIlk(xlk))

= I(hlk≥hik)(αikIik(x(αik,αlk))+αlkIlk(x(αik,αlk))),

and the gradient of λilk(αik,αlk) can be calculated by ∂λilk(αik,αlk)
∂αik

= Iik(x(αik,αlk)) and ∂λilk(αik,αlk)
∂αlk

=

Ilk(x(αik,αlk)) if hlk≥ hik, where x(αik,αlk) is the solution to the first-order condition αik
∂ Iik(x)

∂x +αlk
∂ Ilk(x)

∂x = 0.
The explicit expression of η jlk(α jk,αlk),∀ j ∈ Sc

p, l ∈ S, l 6= j,k ≤ s can be represented as below

η jlk(α jk,αlk), inf
xlk≥x jk

(α jkI jk(x jk)+αlkIlk(xlk))

= I(hlk≤h jk)(α jkI jk(x(α jk,αlk))+αlkIlk(x(α jk,αlk))),

and the gradient of η jlk(α jk,αlk) can be calculated by ∂η jlk(α jk,αlk)
∂α jk

= I jk(x(α jk,αlk)) and ∂η jlk(α jk,αlk)
∂αlk

=

Ilk(x(α jk,αlk)) if hlk≤ h jk, where x(α jk,αlk) is the solution to the first-order condition α jk
∂ I jk(x)

∂x +αlk
∂ Ilk(x)

∂x =
0.
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Particularly, if the performance samples of each design follow the multivariate Gaussian distribution,
it is well-known that Iik(x) =

(x−hik)
2

2σ2
ik

,∀i≤ r,k ≤ s. Therefore, the closed-form solution of the overall rate
function under multivariate Gaussian assumption can be derived based on Lemma 1.

3.2 Optimal Allocation Problem

By maximizing the rate function of P(FS), the true P(FS) is guaranteed to converge to zero asymptotically.
In this study, the upper bound of rate function of P(FS) in Theorem 2 is selected as the surrogate of true
rate to formulate the optimal allocation problem in (5) which leads to a bi-level convex optimization,

Problem P: max z

s.t. z≤ min
l∈S,l 6=i

∑
k≤s

λilk(αik,αlk), ∀i ∈ Sp,

z≤ ∑
l∈S,l 6= j

min
k≤s

η jlk(α jk,αlk), ∀ j ∈ Sc
p,

∑
i≤r

∑
k≤s

αik = 1,

z ∈ R,αik ≥ 0,∀i≤ r,k ≤ s.

(5)

where λilk(αik,αlk) and η jlk(α jk,αlk) can be solved via the inner convex optimization,

Problem Pilk: inf
xlk≤xik

(αikIik(xik)+αlkIlk(xlk)),

Problem P jlk: inf
xlk≥x jk

(α jkI jk(x jk)+αlkIlk(xlk)).

or utilizing the results in Lemma 1. Note that λilk(αik,αlk) and η jlk(α jk,αlk) are strictly concave with
respect to associated α , therefore there exists unique optimal solution ααα∗ for Problem P. In addition,
by letting z = 0 and αik =

1
r·s ,∀i ≤ r,k ≤ s, it can be easily checked that the Slater’s condition hold for

the convex optimization Problem P. Hence, the Karush-Kuhn-Tucker conditions (Karush 1939, Kuhn and
Tucker 1951) are necessary and sufficient conditions for the optimality based on Boyd and Vandenberghe
(2004). Problem P∗ in (6) is an equivalent formulation for the Problem P.

Problem P∗: max z

s.t. z≤∑
k≤s

λilk(αik,αlk), ∀i ∈ Sp, l ∈ S, l 6= i,

z≤ ∑
l∈S,l 6= j

t jl, ∀ j ∈ Sc
p,

t jl ≤ η jlk(α jk,αlk), ∀ j ∈ Sc
p, l ∈ S, l 6= j,k ≤ s,

∑
i≤r

∑
k≤s

αik = 1,

z ∈ R,αik ≥ 0,∀i≤ r,k ≤ s, t jl ∈ R,∀ j ∈ Sc
p, l ∈ S, l 6= j.

(6)

Let pil ≥ 0,∀i∈ Sp, l ∈ S, l 6= i;q j ≥ 0,∀ j ∈ Sc
p;r jlk ≥ 0,∀ j ∈ Sc

p, l ∈ S, l 6= j,k≤ s; and v∈R be the dual
variables for the four types of constraints in Problem P∗. Then Problem P∗ is equivalent to the optimiza-
tion problem min

z∈R,ααα i�0,t jl∈R
max

ppp�0,qqq�0,rrr�0,v∈R
L(z,ααα, ttt, ppp,qqq,rrr,v) , −z + ∑

i∈Sp

∑
l∈S,l 6=i

pil(z− ∑
k≤s

λilk(αik,αlk)) +

∑
j∈Sc

p

q j(z− ∑
l∈S,l 6= j

t jl)+ ∑
j∈Sc

p

∑
l∈S,l 6= j

∑
k≤s

r jlk(t jl−η jlk(α jk,αlk))+v(∑
i≤r

∑
k≤s

αik−1)by introducing the Lagrangian

function, and its optimality conditions are presented in Theorem 3.
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Theorem 3 The optimal allocation solution to Problem P∗ satisfies the stationarity conditions below,

∑
i∈Sp

∑
l∈S,l 6=i

pil + ∑
j∈Sc

p

q j = 1,

∑
l∈S,l 6=a

I(hlk≥hak)palIak(x(αak,αlk))+ ∑
i∈Sp,i 6=a

I(hak≥hik)piaIak(x(αik,αak))

+ ∑
j∈Sc

p

I(hak≤h jk)r jakIak(x(α jk,αak)) = v,∀a ∈ Sp,k ≤ s,

∑
i∈Sp

I(hbk≥hik)pibIbk(x(αIk,αbk))+ ∑
l∈S,l 6=b

I(hlk≤hbk)rblkIbk(x(αbk,αlk))

+ ∑
j∈Sc

p, j 6=b
I(hbk≤h jk)r jbkIbk(x(α jk,αbk)) = v,∀b ∈ Sc

p,k ≤ s,

∑
k≤s

r jlk = q j,∀ j ∈ Sc
p, l ∈ S, l 6= j,

and the complementary slackness conditions below,

pil(z−∑
k≤s
I(hlk≥hik)(αikIik(x(αik,αlk))+αlkIlk(x(αik,αlk)))) = 0,∀i ∈ Sp, l ∈ S, l 6= i,

q j(z− ∑
l∈S,l 6= j

t jl) = 0,∀ j ∈ Sc
p,

r jlk(t jl− I(hlk≤h jk)(α jkI jk(x(α jk,αlk))+αlkIlk(x(α jk,αlk)))) = 0,∀ j ∈ Sc
p, l ∈ S, l 6= j,k ≤ s,

and the primal and dual variables should be feasible.

4 NUMERICAL EXPERIMENTS

In this study, we compare the performance of the proposed allocation strategy Pareto Robust OCBA
(PR-OCBA) derived by Problem P∗ with another two strategies, namely equal allocation (EA) and the
proportional to variance allocation (PTV). PR-OCBA tries to solve Problem P∗ based on convex optimization
solver CVXPY (http://www.cvxpy.org/) to obtain the asymptotic optimal allocation proportion ααα∗. EA
allocates the simulation budget evenly to different designs’ scenarios. PTV is introduced by Rinott (1978)
which allocates simulation budget to each design’s scenario proportional to its variance. Furthermore,
the performance of each budget allocation strategy is evaluated by the P(CS) and the speed-up ratio of
required budget Nε such that P(FS)≤ ε ≤ 1. Let I be the value of rate function of P(FS), and its lower and
upper bounds are denoted by Iub and Ilb. For sufficiently large total simulation budget N, the true P(CS)
can be approximated by 1−exp(−NI) which falls into the interval [1−exp(−NIlb),1−exp(−NIub)]. Let
P(FS) ≈ exp(−NI) ≤ ε , and thus Nε = − logε

I ∈ [− logε

Iub
,− logε

Ilb
]. Lastly, the performance of each design

under different scenarios follows Gaussian distribution for the test cases we used throughout this study.
The mean and standard deviation of each design’s performance under different scenarios are known in
advance, and thus there is no need to calculate the sample means and sample standard deviations.

4.1 Heap Configuration

In the first test, we consider a special configuration structure to provide some intuitions behind PR-OCBA.
This configuration named after heap is described as follows for three variance structures,

• Constant-variance configuration: hik = i+ k−1,σ2
ik = 25, ∀i≤ r,k ≤ s.

• Increasing-variance configuration: hik = i+ k−1,σ2
ik = 20+ k, ∀i≤ r,k ≤ s.

• Decreasing-variance configuration: hik = i+ k−1,σ2
ik = 31− k, ∀i≤ r,k ≤ s.
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It is obvious that for the heap configurations, design i dominates design i+1,∀i ≤ r−1, and the Pareto
robust set only includes the first design. Figure 1 illustrates the visualized intuitions behind PR-OCBA
through three heap configurations when r = s = 10. The first column represents the configurations and
results for the increasing-variance case, followed by the constant-variance case and the decreasing-variance
case. The first and second rows describe the performance mean matrix and standard deviation matrix
with each row represents the design and each column stands for the scenario. The last row in Figure 1
demonstrates the optimal solution ααα∗ given by PR-OCBA. In all the nine sub-figures, the cells in blue have
smaller values, while the red cells mean larger values. Note that the first design is the only Pareto robust
design, and each design dominates the next design one after another. Hence, it is necessary and sufficient
to identify the dominance relationship between the first and second design to avoid the false selection event
which leads to more simulation budget allocated to the first two designs (illustrated by the first two red
rows in the last row of Figure 1). Furthermore, it is quite intuitive that more budget should be allocated
to those scenarios with larger variance, and therefore we can find that the first two rows get redder and
redder when the variance increases.

Figure 1: Demonstration of PR-OCBA Allocation.

Table 1 presents the P(CS) comparison of PR-OCBA, PTV and EA given the total simulation budget
N = 2×104 under various heap configurations. Since the exact P(CS) cannot be calculated directly, we
provide the lower and upper bounds of the P(CS) instead. It can be found that PR-OCBA performs the
best among the three budget allocation strategies in all the cases conducted, followed by PTV and EA.
Apparently, there is no need to consume too much simulation budget to the designs other than the first two
given that intrinsic uncertainty is not considered. Therefore, PTV and EA demonstrate poor performance
in all the cases tested, while PR-OCBA concentrates the simulation budget efficiently on the designs and
scenarios that can lead to the false identification of Pareto robust set.

4.2 Random Configuration

In this test, the performance of each budget allocation strategy is evaluated via randomly generated design
configurations. Specifically, hik and σik are randomly generated from the Uniform(0, 5) and Uniform(1, 2),
respectively ∀i≤ r,k ≤ s. For each test case of a various number of designs and scenarios, 1000 random
design configurations are generated. The numerical results are illustrated in Table 2 which shows the bounds
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Table 1: P(CS) Comparison of PR-OCBA, PTV and EA (N = 2×104).

Heap Configurations # of design # of scenario PR-OCBA PTV EA

Constant-variance

r=5

s=3 [1.0000, 1.0000] [1.0000, 1.0000] [1.0000, 1.0000]
s=5 [1.0000, 1.0000] [0.9997, 0.9997] [0.9997, 0.9997]

s=10 [0.9936, 0.9999] [0.9817, 0.9817] [0.9817, 0.9817]

r=10

s=3 [1.0000, 1.0000] [0.9987, 0.9987] [0.9987, 0.9987]
s=5 [0.9955, 1.0000] [0.9817, 0.9817] [0.9817, 0.9817]

s=10 [0.9329, 0.9999] [0.8647, 0.8647] [0.8647, 0.8647]

Increasing-variance

r=5

s=3 [1.0000, 1.0000] [1.0000, 1.0000] [1.0000, 1.0000]
s=5 [1.0000, 1.0000] [0.9998, 0.9998] [0.9997, 0.9997]

s=10 [0.9930, 0.9999] [0.9802, 0.9802] [0.9643, 0.9643]

r=10

s=3 [1.0000, 1.0000] [0.9995, 0.9995] [0.9993, 0.9993]
s=5 [0.9972, 1.0000] [0.9871, 0.9871] [0.9817, 0.9817]

s=10 [0.9292, 0.9999] [0.8593, 0.8593] [0.8111, 0.8111]

Decreasing-variance

r=5

s=3 [1.0000, 1.0000] [1.0000, 1.0000] [1.0000, 1.0000]
s=5 [0.9999, 1.0000] [0.9992, 0.9992] [0.9987, 0.9987]

s=10 [0.9930, 0.9999] [0.9802, 0.9802] [0.9643, 0.9643]

r=10

s=3 [0.9996, 1.0000] [0.9968, 0.9968] [0.9961, 0.9961]
s=5 [0.9920, 1.0000] [0.9719, 0.9719] [0.9643, 0.9643]

s=10 [0.9292, 0.9999] [0.8593, 0.8593] [0.8111, 0.8111]

of the speed-up ratio’s median of the required budget Nε such that P(FS)≤ ε = 1×10−6. This performance
indicator measures how many times the required budget Nε of PTV and EA is that of PR-OCBA. Similarly,
PR-OCBA shows the most promising performance than PTV and EA. The result is not surprising given
that simulation budget is not necessary to be allocated to the designs and scenarios that are not critical to
avoid the false selection event, and PTV and EA just end up sampling inferior designs more often than
PR-OCBA.

Table 2: Median of Speed-up Ratio of Nε such that P(FS)≤ 1×10−6.

# of design # of scenario PTV EA

r=3

s=3 [2.4973, 2.5529] [2.5655, 2.6345]
s=5 [2.5074, 2.5236] [2.5024, 2.5149]
s=10 [2.6001, 2.6001] [2.5222, 2.5222]

r=5

s=3 [3.2046, 3.6718] [3.1480, 3.5988]
s=5 [2.4340, 2.5666] [2.3789, 2.5574]
s=10 [1.9020, 1.9020] [1.8497, 1.8497]

r=10

s=3 [3.1867, 5.1068] [3.1684, 5.0561]
s=5 [5.8080, 6.8081] [5.7543, 6.6370]
s=10 [1.4494, 1.4494] [1.4473, 1.4473]

5 CONCLUSIONS

Despite the intrinsic uncertainty within the simulation model, the selection and estimation of the input
model family and associated input parameters are also fundamental for R&S problems due to the issues
of input uncertainty. Therefore, it is important to develop a robust approach to select the best designs
given the input uncertainty which can be seen in many real-world problems. Previous R&S with input
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uncertainty work majorly adopts the classic minimax model from the robust optimization work, while this
study proposes a novel procedure which tackles the robust R&S from the perspective of multi-objective
optimization and Pareto optimality. In addition, it is observed that the optimal allocation problem is a
bi-level convex optimization which can be solved easily even for large scale problems. The numerical
results show the promising performance of the proposed simulation budget allocation strategy (PR-OCBA)
than the compared methods. Future research work can consider how to utilize the correlation information
between performances of each design under different scenarios to propose more efficient budget allocation
strategies. In addition, a closed-form budget allocation strategy should be developed instead of solving
Problem P∗ based on convex optimization solver. Furthermore, stochastic dominance and risk measure can
be considered to compare the performance of each design when the probability distribution of scenarios in
the input uncertainty set is known.
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