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ABSTRACT

The field of simulation optimization has seen algorithms proposed for local optimization, drawing upon
different locally convergent search methods. Similarly, there are numerous global optimization algorithms
with differing strategies to achieve convergence. In this paper, we look specifically into meta-model based
algorithms that stochastically drive global search through an optimal sampling criteria evaluated over a
constructed meta-model of the predicted response considering the uncertainty of the response. We propose
Trust Region Based Optimization with Adaptive Restart (TBOAR), a family of algorithms that dynamically
restarts a trust region based search method via an optimal sampling criteria derived upon a meta-model
based global search approach. Additionally, we propose a new sampling criteria to reconcile undesirable
adaptive restart trajectories. This paper presents preliminary results showing the advantage of the proposed
approach over the benchmark Efficient Global Optimization algorithm, focusing on a deterministic black
box simulator with a d-dimensional input and a one-dimensional response.

1 INTRODUCTION

In this paper, we consider single objective simulation optimization problems. We assume a d-dimensional
compact solution space, X ⊂ Rd , and a deterministic objective function y(x) : X→ R that can only be
observed as an outputted response of a deterministic black box simulator; where x is a single point in X.
We desire to identify the global minimum of y(x) : X→ R. Formally:

(P) : min y(x)
s.t. x ∈ X

The proposed solution approach is a blend of global and local stochastic optimization methods. The Trust
Region Based Optimization with Adaptive Restart (TBOAR) family of algorithms drives optimization with
local searches, while relying upon globally convergent methods as a guide for adaptive restart. The formal
integration proposed in this paper combines a derivative based local search and a meta-model based global
sampling algorithm.

1.1 Background

Global stochastic optimization algorithms can generally be classified as either a direct or a meta-model
based search method. Direct search such as stochastic approximation methods (Yin and Kushner 2003),
or COMPASS (Xu et al. 2010, Hong and Nelson 2006), directly call the simulator as a means of objective
function estimation. These methods are generally held back when observing a simulation run requires high
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computational effort. In these scenarios, meta-model (or surrogate) based methods offer a computational
compromise estimating a response model from a few simulator observations. The estimated model enables a
predicted performance evaluation of the function over the entire space without the need to call the simulator.
Efficient Global Optimization (EGO, Jones et al. 1998) and Two Stage Sequential Optimization (TSSO,
Quan et al. (2013)) represent two meta-model based algorithms which both use the Kriging meta-model
form. Kriging has been shown to be particularly successful in computer experiments as its closed form
predictors allow closed form computation of sampling criteria, like the Expected Improvement (EI) function.
In this regard, we explore the use of improvement functions as a foundation for adaptive restart.

For relative context algorithms combining local and global search have been proposed, such as Industrial
Strength COMPASS (ISC) and BEESE (Xu et al. (2010), Andradóttir and Prudius (2009)). Exploratory and
exploitative behavior are structured in two phases. First a global search samples the entire space identifying
promising regions to sample further, then a local search exploits the identified regions. The algorithm is
typically then terminated with a clean up or estimation phase.

1.2 Motivation

The two pertinent trade-offs between global and local searches that motivate TBOAR are: (1) the typical
differences in data management, and (2) finite-time versus asymptotic algorithm performance. Classic local
searches are often ”memoryless” procedures that make decisions based on purely local information. Global
searches typically accumulate all observed response data and compute sampling criteria based on sample
observation paths, which is then used to make sampling decisions on which data should be accumulated for
subsequent model fit. This complete information storage leads global search techniques such as Efficient
Global Optimization (Jones et al. 1998) or the Two stage Sequential Optimization algorithm (Quan et al.
2013) to have appealing asymptotic performance guarantees. Nevertheless, the more myopic local search
techniques often provide stronger finite-time performance in finding a good solution providing milestones
of improvement, while guarantees for finite-time performance of global methods remains a hard problem
(Zabinsky et al. 2010).

Several empirical studies have been conducted on the nature of local optimization and the powerful
benefits that random restarts can have on the performance of such methods. This observation has promoted
work in the dynamic generation of restarting points trying to address two main questions: (1) when to restart
a local algorithm, (2) where to restart. The results of Dynamic Multistart Sequential Search presented by
Zabinsky et al. (2010) illustrate the power that restarts can have on local search performance. In their final
concluding remarks, the authors acknowledge that the DMSS framework ignores function values across
separate runs of the local search. This acknowledgment motivates the formal integration of information over
multiple local search runs through the use of a global meta-model, which we propose in this contribution.

1.3 Contributions

We propose the TBOAR family of algorithms to fill the current research gap and give a means of integration
of local and global searches through sequential globally informed adaptive restarts of local algorithms.
TBOAR integrates serial local searches through a dynamic global model capturing local minimums and
adaptively directing restarts. We interpret adaptive restarts as a global optimization sampling problem.

It is of note that the TBOAR family of algorithms takes motivation from the GSTAR algorithm previously
proposed in Pedrielli and Ng (2016). GSTAR serves as a novel work, integrates information generated from
a global and numerous locally estimated models into a single ensemble model to guide starting centroids
for local trust region models. The local models created in GSTAR are constructed through a Gaussian
process fit to a space filling design across a trust region of arbitrary size around an arbitrary centroid xc.
In contrast, TBOAR employs a pure local search that does not seek to describe the surface within the trust
region, as GSTAR’s local models do, but rather to identify a local minimum x∗l within a neighborhood of
size ε > 0, such that x∗l ∈ X : y(x∗l )< y(x), ∀x ∈Nε(x∗l ). This difference in local search methods drives
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TBOAR algorithms to converge to local minima quicker than GSTAR. While the local search employed
in TBOAR is less sophisticated in comparison to algorithms such as STRONG (Chang, Hong, and Wan
2013), the trust region based optimization closely follows the testing procedures laid out in STRONG.
All TBOAR algorithms presented employ a trust region based subproblem optimization routine, but for
breadth, a locally convergent simplex hill-climber with adaptive restarts driven by global meta-modeling
would fit well in the TBOAR framework.

The overall target of the proposed TBOAR family of algorithms is to monopolize the relative efficiency
enjoyed by locally convergent methods, while simultaneously modeling salient response observations to
estimate a global response surface to adaptively guide restarts of the local search.

2 TBOAR OVERVIEW

TBOAR refers to a family of algorithms comprised of three main components: (1) an estimated global
meta-model, (2) a trust region based local optimization, and (3) a sampling criterion for the restart of the
local search. In this section, we will discuss the role and implementation of each of the three components,
along with two alternatives for both the local trust based search and optimal sampling criteria. In Section
3, we present the numerical results from experimentations over four instances of TBOAR algorithms. The
main steps and flow of a TBOAR algorithm is summarized in Figure 1 and outlined below:

Figure 1: Flow of TBOAR algorithm framework.

1. Initialization
(a) Construct and observe an initial design Xobs of n0 points over the solution space, Xobs ⊂ X.

Estimate the global meta-model to these n0 points, and produce ŷ(x) and s2(x). If Cross
validation is passed, go to Step 2c. If Cross validation is failed, re-sample the initial design.

2. Adaptive Restart
(a) Test whether or not to exit the current trust region.
(b) If exit from the trust region is granted, go to Step 4. Otherwise, go to Step 3.
(c) Use ŷ(x) and s2(x), and derive the sampling criteria over all X.
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(d) Select the previously unobserved location that best optimizes the computed sampling criteria,
this is the centroid xc where the local search will restart. Construct an initial trust region ∆ of
size ‖∆‖← ‖∆0‖ about the centroid xc. Proceed to local optimization, Step 3.

3. Local Optimization
(a) Formulate the local model constrained to the current trust region.
(b) Solve the trust region subproblem (S); the optimal solution becomes the candidate centroid xcc.
(c) Evaluate y(xcc), and adjust the size of the trust region appropriately; go to Step 2.

4. Global Meta-Model Estimation
(a) Update the global set of sampled points Xobs and yobs with the final observed centroid location

and its associated response (xc,y(xc)).
(b) Estimate the global response parameters by fitting the desired meta-model to {Xobs, yobs}.
(c) Generate ŷ(x) and s2(x) throughout the entire solution space, x ∈ X.
(d) Go to Step 2c.

Section 2.1 presents the Gaussian process meta-model pertinent to Step 4, section 2.2 presents Local
Optimization (Step 3), and finally section 2.3 presents alternative sampling criteria for adaptive restarts.

2.1 Global Meta-Model Estimation

A common approach in the literature for global optimization entails the estimation of meta-models. Within
this class, Kriging models with Gaussian correlation have found favor in the research community (Jones
et al. (1998), Huang et al. (2006), Kleijnen (2009)). This is largely due to the flexibility and concise
closed-form expressions for both expectation and predictive mean squared error of a Gaussian process
model. In the TBOAR algorithmic framework presented, we use Gaussian process models as our global
meta-model structure. Latin hypercube sampling is used to generate initial global Gaussian process models.

2.1.1 Structure of the Gaussian Process Model

Using a Gaussian process model we attempt to fit n training pairs of simulation input-output observations,
using a univariate output response yi ∈R and a d-dimensional input xi ∈Rd . We assume that the response
is adequately modeled as y(x) = µ + z(x) where µ is the overall process mean, and z(x) is the Gaussian
process, we formally assume that z(x)∼ N(0,σ2

z ). Comprehensive Gaussian process details can be found
in Santner et al. (2013), and Cressie and Cassie (1993).

The specific model that is employed as the global emulator is the Stationary Ordinary Kriging (OK)
model, yielding a constant mean with exactly interpolating behavior to the n training pairs in Xobs and
yobs. We use the Gaussian correlation function, a member of the power exponential correlation family:
Ri j = ∏

d
k=1 e(−θk|xik−x jk|)2

where θ is a d-dimensional vector of smoothing hyper parameters.
We follow maximum likelihood method for estimation of OK model parameters and hyper-parameters-

µ , σ2
z , and θ . The closed form estimators of the model parameters µ and σ2

z are: µ̂ = 1T
n R−1yobs
1T

n R−11n
and

σ̂2
z = (yobs−1n µ̂)T R−1(yobs−1n µ̂)

n . The best linear unbiased predictor (BLUP) associated with the OK model at
any location x ∈ X is:

E[y(x)] = ŷ(x) = µ̂ + rT R−1(yobs−1nµ̂) (1)

with a corresponding predictive error of:

Var[ŷ(x)] = s2(x) = σ
2
z

(
1− rT R−1r+

(1−1T
n R−1r)2

1T
n R−11n

)
(2)

To complete the formal definition of the OK model predictor, we define r as the n-dimensional vector of
correlations between the systematic error at the predictive location x and the observed model error at all
previously observed locations Xobs, i.e. ri =Corr(x,xi) : xi ∈ Xobs.
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2.2 Local Optimization

In this work, the local search is based upon the construction of a trust region, a d-dimensional area ∆ centered
about an arbitrary centroid xc. The trust region carves out a subspace ∆ ⊂ X, enabling the construction
of an effective model over a reduced decision space ∆. Essentially the trust region subproblem becomes
that of: (1) estimation of a local model within the trust region, (2) optimization over that model, and (3)
control of the trust region in size and location to find a more promising region of X and an appropriate
trust region size, allowing for a better fit of the simple local model.

The use of trust regions was a logical choice for TBOAR as a candidate local search method to
incorporate into a global-local search method. An analogous algorithmic framework to TBOAR is the
basic branch and bound algorithm. Branch and bound works to iteratively solve an integer program though
a series of easier to solve linear program subproblems. If we assume our trust region is small enough
such that the response surface is convex over it, then iteratively solving local trust region searches to
termination, coupled with an adaptive restart procedure will, in infinite time, converge to the true globally
optimal solution. Where branch and bound deals with finite, discrete, and mutually exclusive subproblems;
TBOAR iteratively solves continuous, and non-mutually exclusive trust region subproblems.

2.2.1 Estimation and Optimization of Local Model

In this work, the specific local models constructed over the trust region ∆, are first and second order Taylor
expansions centered around a trust region centroid. While this is not the most sophisticated local model, if
we assume a continuous surface and relatively small trust regions, then a Taylor expansion is not ill-suited.
Formally, the linear (ŷL(x), equation (3)) and quadratic (ŷQ(x), equation (4)) models are:

ŷL(x) = y(xc)+∇y(xc)(xc−x) (3)
ŷQ(x) = y(xc)+∇y(xc)(xc−x)+ 1

2 ∇2y(xc)(xc−x)2 (4)

Because the function response can only be observed through a deterministic black box simulator, the
response gradient ∇y(xc), and Hessian ∇2y(xc) are calculated through a local finite differencing sampling
strategy. Establishing an initial trust region size of ‖∆0‖, we assume that ∆ is a compact set. Formulating
the trust region subproblem (S); the linear or quadratic constrained optimization problem (S) becomes:

(S) min ŷi(x), i = {L,Q} (5)
s.t. x ∈ ∆

The optimal solution to (S) becomes the candidate centroid xcc for the next trust region subproblem. Testing
of the identified optimal solution xcc, indicates whether the current local model and subproblem (S) are
trustworthy, i.e. if the local model over the constrained trust region: ŷi(x) : x ∈ ∆ is effective. Please note
there is no mixing of models, model choice for the local search is an a priori decision of the user, although
there may be future opportunities to dynamically select local model forms.

The quadratic model allows estimation of curvature over the trust region, and offers the ability to predict
a unique local minimum as an interior point of ∆. Alternatively the linear model does not offer this capability,
and trivially reduces to an exercise in trust region control. However, a leveling trade-off between the two
models is the number of observations required to fit the local model. In d-dimensions, the linear model
requires d+1 observations to compute ∇y(xc); where the quadratic model requires 2d+1 observations to
additionally estimate ∇2y(xc). The assumption that observing a simulator response is the most expensive
operation (by at least two orders of magnitudes) makes the need to calculate finite differences burdensome
on the finite time performance on all of our experimental TBOAR algorithms. In high dimensionality,
polynomial models, optimally designed experiments and bridge designs offer derivative free alternatives
that may be more computationally efficient to model trust regions, see (Conn et al. 2009) for examples.
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2.2.2 Trust Region Control: Translation and Reshaping

Control of the trust region is arguably just as influential on the quality of trust region based optimization
as the formulation and solving of the subproblem (S). There are four parameters necessary for basic trust
region control: initial size of trust region, ‖∆0‖, rate of trust region growth, γ > 1, rate of trust region
reduction, ω ∈ (0,1), and decision criteria to determine how to control trust regions. Trust region control
serves to move the centroid and trust region and exploit promising regions in X. Given infinite time ∆

reduces to a single point xc the local minimum defined as:

x∗l ∈ X : y(x∗l )≤ y(x), ∀x ∈Nε(x∗l ), ε > 0 (6)

The trust region literature offers little consensus on initial trust region size, optimal rate of growth, or
reduction of a trust region. Tests such as the sufficient reduction (SR), and ratio-comparison (RC) are
common decision tools. Both tests require an observation of response at the candidate centroid xcc; a
comparison test statistic is then constructed from the true response y(xcc) and the locally predicted response
ŷi(xcc). The Ratio-Comparison (RC) test statistic is used in TBOAR as the decision criteria for trust region
control and is implemented similarly to Chang et al. (2013). The RC test statistic is compared with two
user specified threshold values: η1, η2. The RC test statistic ρ is calculated as:

RC Test: ρ =
y(xc)− y(xcc)

ŷi(xc)− ŷi(xcc)
(7)

ρ > 1 implies that the current local model ŷi(x) : x ∈ ∆ is effective in exploiting the trust region. ρ < 0
indicate that the chosen model form is inadequate at describing the current trust region. Comparing ρ with
the threshold values, the trust region is controlled in one of the three following ways:

Case 1 If ρ ≤ η1 then there is no movement of the centroid and no translation of the trust region, xc← xc,
the trust region is reduced by a factor to improve model fit, ‖∆‖← ‖∆‖ ·ω .

Case 2 If η1 < ρ ≤ η2, we conditionally accept the candidate centroid and translate the trust region,
xc← xcc. There is no growth or reduction in trust region size, ‖∆‖← ‖∆‖.

Case 3 If η2 < ρ then we accept the candidate centroid and move the trust region, xc← xcc. Due to our
confidence in our model’s ability to describe the space, we grow the trust region size, ‖∆‖← ‖∆‖·γ .

Under Case 1, we immediately return to formulating subproblem (S) with the same local model estimation
but under more restrictive trust region constraints. Under Case 2 or Case 3 we must recompute ∇y(xc)
and ∇2y(xc)) in order to estimate ŷi(x) : x ∈ ∆. With the local model re-estimated we reformulate the
optimization subproblem (S) and continue to iterate until one of two local search termination criteria are
met. The termination criteria are: ‖∇y(xc)‖< ε1, and ‖∆‖< ε2 (ε1,2 > 0). Upon exiting the trust region
and terminating the local search, we append the last centroid and its associated response xc,y(xc) to the
training data set Xobs,yobs for the global OK meta-model.

We assume that the last centroid xc is relatively close to a true local minimum. Due to minimums being
the points with furthest deviation from the mean and the nature of exact Kriging interpolation, we argue
that local minimums are those points which best support Kriging models and best represent the behavior
of a region, especially when optimization is goal. It is of note that with infinite time, density will be
achieved, and every input location will be considered as a centroid; this guides our intuition that TBOAR
is globally convergent. It should be apparent, in terms of simulation calls, how costly trust region search
can become when termination is based solely on gradient and trust region size. In TBOAR, we compensate
by monitoring local searches and forcing adaptive restarts prior to gradient conditions being met.

2.3 Adaptive Restart

As highlighted in Zabinsky et al. (2010), to perform random restarts we need to address two questions:
(1) when to restart, and (2) where to restart.

2109



Mathesen, Pedrielli, and Ng

Concerning the first point it is clear that when a local search terminates due to gradient conditions
we will need to restart. Additionally, we also apply an adaptive restart criteria to monitor the progress of
local searches and dynamically force local search restarts. The decision is made based upon an indicator
chosen to be the proportional size of current trust region to the initial trust region size, ‖∆‖‖∆0‖ . We further
the dynamic nature of the criteria by sampling a number pe ∼U(0,1), and then comparing pe with the
current trust region size ratio. If pe ≤ ‖∆‖

‖∆0‖ then we remain in the current trust region and continue the local
search by formulating the next subproblem. Otherwise, the trust region is exited and we continue to the
second question of where to restart. The question of when to restart is answered by an adaptive process
where the trust region ratio acts as a surrogate for the current performance of the local search. A large
‖∆‖
‖∆0‖ ratio indicates that the local search is improving and that it should not be terminated prematurely.
Alternatively, a ratio tending to zero means the improvement rate of the local search has slowed and an
adaptive restart should be applied soon. Figure 2 shows the progression of a sample path of the stochastic
adaptive restart process. Evolution through the sample path is a consequence of trust region control of
growth and reduction, following the ratio comparison test. In Figure 2 restarts are indicated by the right
facing triangles, note these restarts always re-initialize the trust region ratio, ‖∆‖/‖∆0‖= 1. The top section
filled by slanted lines indicates where ‖∆‖/‖∆0‖ ≥ 1 where an adaptive restart will never be applied; the
bottom section filled by circles indicates ‖∆‖/‖∆0‖< 0.5 where a restart becomes much more likely.

Figure 2: Sample adaptive restart path, 4 local search restarts are indicated by the 4 triangles at ‖∆‖‖∆0‖ = 1.

Concerning the second issue of where to restart, the next trust region centroid xc is selected as the location
that maximizes some sampling criteria applied over the uncertain expected response surface predicted by
the global meta-model. Allowing ymin = min{yobs}, the expected improvement criteria is recognized as:

xc ∈ argmax
x∈X

E [max(ymin− ŷ(x),0)] (8)

If max EI(xc) = 0, next centroid is selected randomly such that xc 6∈Xobs. The expected improvement (EI)
criteria has been shown to strike a balance between exploration and exploitation of a space, and was a logical
choice for use as a sampling criteria in TBOAR. Nevertheless, the expected improvement criteria, may place
too much emphasis on exploitation of promising regions. This ”biased” behavior towards exploitation and
clustering of observations is noted in Ranjan et al. (2011), and can be seen in Figure 11 (a) and (b) presented
in Jones et al. (1998). In an attempt to mitigate this effect, we propose the probabilistic improvement (PI)
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criteria. The PI criteria follows the same assumption as EI but takes on EI’s pre-integrated form, namely:

PI(x) =
P(I(x))∫
x P(I(x))

=
Φ

(
ymin−ŷ(x)

s(x)

)
∫

x P(I(x))
(9)

Discovering the cumulative probability of improvement for x ∈ X, we optimize the sampling criteria
in a modified manner to that of EI. We add an extra component of randomness to promote exploration by
sampling from a uniform distribution c∗ ∼U(0,1) and comparing c∗ with PI(x) for all x ∈ X. The next
initial local search centroid xc is then chosen as xc 6∈Xobs such that xc ∈ {argmin |PI(x)−c∗| : x ∈X}. In
the following section we present a numerical study of TBOAR.

3 NUMERICAL RESULTS & IMPLEMENTATION DETAILS

In this section we present the challenges facing implementation and basic numerical results of experimentation
on TBOAR over two one-dimensional test cases, and one two-dimensional case. We conducted numerical
studies on the relative performances of four alternative TBOAR instances. In the local search procedure,
two instances fit first order linear Taylor expansion models centered about xc, and two used second order
quadratic models. Two of the TBOAR formulations use the expected improvement (EI) sampling criteria,
and the other use the probabilistic improvement (PI) criteria to determine adaptive restart location. We
refer to the four TBOAR algorithms as: Linear EI, Linear PI, Quadratic EI, and Quadratic PI; and to better
test absolute algorithm performance we implemented a basic EGO algorithm with stationary OK model.

We make comparisons through two metrics (1) is the mean Euclidean distance between the true global
minimum x∗, and the identified global minimum xmin - averaged over all macro-replications, and (2) is the
percent of macro-replications that identify the true global minimum. Note we relax the true minimum to
a target region of size ξ corresponding to a hypersphere centered around the true minimum with volume
equal to ξ percent of the total solution space volume. In two dimensions the target region is a circle
centered on the true minimum, with radius such that πr2 = ξ ·A, where A is the total box constrained area.

3.1 Computational Issues in OK Model Parameter Estimation

The numerical instability of exact Gaussian process interpolation of deterministic simulation data is well
investigated in Ranjan et al. (2011). The instability arises in the maximum likelihood estimation of Gaussian
process model parameters which requires the computation of the determinant and inverse of the model
correlation matrix, R. By definition R is positive definite, but when two points in X with dimensional
distance approaching zero are fit, R becomes sparse, near-singular, and ill-conditioned.

We overcome this matrix ill-conditioning through the introduction of a nugget, δ , to perturb the diagonal
of R. As proposed by Ranjan et al. (2011) we employ a lower bound on this nugget, δlb, to minimize
excessive over-smoothing and non-interpolation when estimating OK model parameters. The nugget lower
bound, and new correlation matrix are δlb = max

{
λn(κ(R)−ea)
κ(R)(ea−1) ,0

}
, where κ(R) is the condition number

of R, and λn is the maximum eigenvalue of R. The use of a lower bound on the nugget implies that
perturbation is only employed when R is identified as being potentially ill-conditioned. This lower bound
gives computational robustness to model fitting, balancing the necessity to numerically compute parameters
while still achieving a near-exact interpolating OK emulator.

3.2 One and Two Dimensional Experimental Results

Both one-dimensional test cases have at least one unique local and a unique global minimum, in both
cases we assume that X is a set of box-constraints on the true function domain. The first test function is a
sinusoidal wave with increasing amplitude:

f1(x) = (2x+9.96)cos(13x−0.26) (10)
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where X1 ∈ [0,1]. The global minimum is located in x∗ = 0.746 with function value y∗ = −11.45, and
there exists a local minimum at x = 0.263 with y =−10.48.
The second function is Gramacy & Lee 2012:

f2(x) =
sin(10πx)

2x
+(x−1)4 (11)

Where X2 ∈ [0.5,2.5]. The global minimum and related function value are (x∗,y∗) = (0.5486,−0.869),
with eight local minimums xl = [0.75, 0.95, 1.15, 1.35, 1.55, 1.74, 1.94, 2.12].

Two sequential adaptive restarts are shown for the simpler test function f1(x) in Figure 3. With n0 = 4,
Figure 3b shows: the initial space filling design Xobs = [0.075, 0.348, 0.612, 0.988], the initial OK model
fit, and the true function f1(x). Figure 3a presents plots of the probabilistic improvement and expected
improvement sampling criteria, and the two corresponding centroid selections (note Figure 3b also shows
the probabilistic improvement centroid and associated trust region). Following the local optimization
subroutine (not shown) the centroid appended to Xobs is the local minimum xc = 0.2682. Figure 3d shows
the re-fitted OK model with the local minimum fit exactly. Figure 3c is similar to Figure 3a and shows
the progression of adaptive restart sampling. As the centroid and trust region in Figure 3d allude to; the
subsequent local search does converge to the global minimum, requiring 18 total simulation observations
to identify the true global minimum. With this specific random number generator EGO required 37 total

(a) Initial EI and PI evaluations. (b) Initial OK model fit with xc identified via PI.

(c) Second EI and PI evaluations. (d) Second OK model fit with xc identified via PI.

Figure 3: Two TBOAR adaptive restart iterations, (a) and (c) show two iterations of both sampling criteria,
and (b), (d) show OK model fits.

simulations to identify the global minimum of f1(x).
Table 1 shows the results for 500 macro-replications of each of the five algorithms, with a budget of 500

simulations per replication. All algorithm macro-replications use n0 = 4, and common TBOAR parameters
are: γ = 1.2, ω = 0.5, η1 = 0.25, η2 = 0.75, and ∆0 =

1
15(xub− xlb). Note that % correct identification

corresponds to ξ = 0.05, or 5% of the total solution space; we assume that at the 5% level the ξ target
region is a compact and continuous set.
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Table 1: Numeric results of 500 algorithmic replications on one dimension test functions (∗indicates a
statistically significant difference from EGO).

Test Function Metric EGO Quad EI Quad PI Linear EI Linear PI
Average |xmin− x∗| 0.032 0.003∗ 0.009∗ 0.004∗ 0.009∗

f1(x) Std Dev |xmin− x∗| 0.09 0.008 0.05 0.03 0.05
% Correct Identification 74% 97.8%∗ 96%∗ 97.8%∗ 96%∗

Average |xmin− x∗| 0.035 0.037 0.059 0.035 0.04
f2(x) Std Dev |xmin− x∗| 0.123 0.115 0.111 0.106 0.085

% Correct Identification 91% 89.4% 74.8%∗ 90.4% 84.8%∗

Table 1 yields promising results for TBOAR when compared with EGO. A two-sample t-test strongly
indicates that all four TBOAR alternatives consistently yield solutions that are significantly better than
EGO over f1(x). The same cannot be said for the Gramacy and Lee function f2(x), testing confirms that
all the algorithms statistically perform the same. This is most likely due to the difficulty of this function
with a plethora of local minimums over the relatively small solution space. The PI indicator performs
statistically worse than EI, this is most likely due the random nature of centroid selection overshadowing
the information of the indicator. Future research on alternative global model forms, centroid selection, and
adaptive restart methods remain open.

With proof of concept from the one-dimensional test cases we extend the Quadratic EI TBOAR algorithm
to a two-dimensional test case as this TBOAR formulation is assumed to see substantial performance increases
in multiple dimensions. Table 2 summarizes numeric results of the Quadratic EI TBOAR and EGO algorithms
in two dimensions. Unlike the first test suite we complete only 100 algorithmic replications and establish
a finite time allocation of 200 simulated observations per replication. The two-dimensional test case is the
six-hump camel function with box constraints: x1 ∈ [−2,2] and x2 ∈ [−1,1]; and two symmetric global
minimums: x∗1 = [0.0898, −0.7126] and x∗2 = [−0.0898, 0.7126]. The metrics in Table 2 are the same as
in Table 1 but we consider the minimum Euclidean distance from xmin to either global minimum x∗1 or x∗2.

Statistical analysis appears in Figure 4, including a quantile comparison and box plot. Note that in
the results six of the 100 TBOAR replications identify a local minimum. The error distance of these six
identified local minimums from the true global minimums is nearly four orders of magnitude larger than
any error distance yielded by the other 94 runs. As the quantile breakdown in Figure 4 shows, the 90th

worst performing Quadratic EI TBOAR replication has a error of only 0.0004, and yet the six outlying
points leverage the overall error results so heavily we see the overly inflated average error of 0.097 in Table
2. This same behavior is captured in the box plot in Figure 4 and is the reason why there appears to be
no quantile boxes for the Quadratric EI TBOAR.

Table 2: Numeric results of 50 macro-replications in two dimensions.

6 Hump Camel Metric Quad EI EGO
Average ‖xmin− x∗1,2‖ 0.097 0.085

f (x) =
(

4−2.1x2
1 +

x4
1

3

)
x2

1 + x1x2 +(−4+4x2
2)x

2
2 Std Dev ‖xmin− x∗1,2‖ 0.385 0.227

% Correct Identification 94%∗ 50%

Looking at just mean and standard deviation is a bit misleading as there seems to be no statistical
difference. However, the percentage of correct identification shows that 94% of the minimums identified
by Quad EI TBOAR lie within the ξ = 0.05 target region. Of the 100 EGO runs, only 50 identified a point
that resided in this target region. Indeed TBOAR’s empirical precision was 6 magnitudes better than EGO.
38% of EGO’s macro replications fell in a ξ = 0.01 target region, while 45% of TBOAR’s runs fell in a
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ξ = 1×10−8 target region. The degree of precision from TBOAR (a direct result from local searches) in
two dimensions shows great potential for extension to higher dimensional solution spaces.

Figure 4: Quantile comparison of EGO and Quad EI TBOAR algorithms.

4 CONCLUSIONS

In this paper we proposed the algorithmic family framework of Trust region Based Optimization with
Adaptive Restart. As illustrated in Section 2, the algorithmic framework allows for compartmentalization
of the local and global search. Resultantly TBOAR is highly adaptable to the use of more sophisticated
local search methods, and the use of alternative global meta-model structures with alternate assumptions
that may more accurately fit a given problem or achieve a desired modeling characteristic. Additionally
different adaptive restart criteria for both when and where to restart is yet another modularity of the TBOAR
framework to achieve desired algorithmic characteristics.

This work presents a contribution to the field of simulation optimization and efficient global optimization
as it is the first, to the author’s knowledge, formal and iterative integration of local and global optimization
methods. While GSTAR breaches the topic of combining local and global models, DMSS dynamically
restarts local searches, and ISC globally finds a set of seeds to then be solved by COMPASS; TBOAR
adaptively restarts sequential local searches by solving a series of global optimization problems, enabling
global optimization to learn from local optimization. Through this work several other avenues for further
future research include:

1. Algorithmic tests or criteria to optimally determine an appropriate initial trust region size along
with growth and reduction factors.

2. Probabilistic improvement sampling provided a nice alternative to the typical expected improvement
sampling criteria, but a more focused study needs to be conducted on the performance of the
probabilistic improvement function.

3. An extension of the TBOAR family into higher dimensional cases to test if the gains in performance
seen from the one to two-dimensional case continue to scale.

4. While TBOAR currently treats all models (local or global) as being independent of all others, a
model ensemble procedure would be a logical extension allowing local model information to serve
as a global model approximation in that region.

5. An extension of the TBOAR family of algorithms into the stochastic setting, in this setting TBOAR
could adequately be compared to stochastic algorithms such as GSTAR and ISC.
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