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ABSTRACT

Optimization of complex real-time control systems often requires efficient response to any system changes
over time. By combining pattern search optimization with a fast estimated Gaussian Process model, we are
able to perform global optimization more efficiently for response surfaces with multiple local minimums or
even dramatic changes over the design space. Our approach extends pattern search for global optimization
problems by incorporating the global and local information provided by an additive global and local Gaussian
Process model. We further develop a global search method to identify multiple promising local regions for
parallel implementation of local pattern search. We demonstrate our methods on a standard test problem.

1 INTRODUCTION

Significant advances in computing capacity have contributed to increase in computational efficiency of
simulation models. These models are then more applicable for some real-time control systems which require
effective response to any system changes over time. In this paper, we are interested in optimizing real-time
control systems where the objective function f (x) is continuous and multimodel. Let XΩ be a compact set in
R

d . The general target of global optimization is to find x∗ that satisfies f (x∗) = minx∈XΩ f (x). For stochastic
simulation models which are evaluated with the effect of random noise, we are interested in optimizing
the expectation of the sampled observations, minx∈XΩ E(y(x)), where y(x) are sample observations.

In those real-time control systems whose behaviours change dynamically, a fast optimization algorithm
is required because the systems need to effectively respond to those changes with new optimal settings
in a short time. For example, in maritime transportation, the Safe Sea Traffic Assistant (S2TA) (Pedrielli
et al. ) applies a look-ahead approach with an agent based simulation model (ABM) to detect potential
conflicts/collisions for vessels in heavy traffic regions. At any point, it looks 10 minutes ahead to determine
the safety of the current trajectory and detect potential conflicts. If a potential conflict of high risk is
detected on the pre-specified trajectory of an own vessel, the optimizer is called. Then the optimizer needs
to find an alternative trajectory that minimizes the probability of conflict within 5 minutes given the current
and predicted traffic conditions.

To solve such problems where response time is critical, direct optimization algorithms like pattern
search (Torczon 1997, Taddy et al. 2009) can be applied as their speed is essential to conduct extensively
fast search. On the other hand, the global and local information with a metamodel and a metamodel based
optimization algorithm can also be very useful and informative (Jones et al. 1998, Picheny et al. 2013,
Quan et al. 2013), especially for a large design space or highly complex functions. This is because they
can help to drive the search to the correct optimal region for highly complex functions.

Many direct search methods have been used fruitfully in conjunction with metamodels for optimization
problems with complex computer simulations. The asynchronous parallel pattern search (APPS) and the
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treed Gaussian Process (TGP) model are combined to generate a set of candidate locations that are queued
for evaluations (Taddy et al. 2009). The mesh adaptive direct search (MADS) also uses the TGP as a
surrogate and to evaluate the EI criterion (Gramacy and Digabel 2015). Another common strategy for
metamodel assisted direct search methods is to construct a coarse metamodel in the entire design space
and use it to identify promising local regions. Then a more refined metamodel can be built in smaller
local regions. It is then possible to explore several local regions simultaneously (Booker et al. 1999). The
adaptive response surface method (ARSM) (Wang et al. 2001) disregarded regions with large function
values as predicted by a surrogate and generated experimental designs using central composite designs
(Montgomery 1991) in the reduced region. The predictive uncertainty, however, is not well considered
when reducing the design space based on the surrogate predictions.

A more efficient optimization algorithm can incorporate parallel implementation of local pattern search.
By generating multiple distinct points in each iteration based on the predictions from Gaussian Process
model, the pattern search better exploits different local areas simultaneously. Sóbester et al. (2004)
essentially parallelized the EGO methods (Jones et al. 1998) by generating multiple evaluation points that
have the best local maximums of the EI functions. Ginsbourger et al. (2009) first introduced the multivariate
Expected Improvement (q-EI) and implemented it via Monte Carlo sampling. The implementation of q-EI
is further studied by Clark and Frazier (2012) and Chevalier and Ginsbourger (2013).

In this paper, we propose an enhancing pattern search algorithm for the global optimization problem.
The general idea is to generate global search patterns based on the global and local information from
an Additive Global and Local Gaussian Process (AGLGP) model and then to locally generate evaluation
points based on local search patterns. We call it parallel global and local optimization (PGLO) algorithm.
Moreover, pattern search is used as an example when deriving the PGLO algorithm. The choice of pattern
search scheme is made on the grounds of its specific search patterns. It is noted that PGLO is not restricted
to the pattern search algorithm, in fact any direct search methods can be adopted. Here we consider the
multiple-core processors on personal computers or servers only as they are more readily available to general
users. Hence it is assumed that the time to load simulations to different processors and transmitting data
among processors is almost negligible. The rest of the paper is organized as follows. In section 2, we
review the background of pattern search and the AGLGP model, and discuss desirable search patterns for
global optimization. A simple one-dimension problem is then used to illustrate these desired properties.
The details of the parallel global and local search algorithm are provided in section 3. Numerical results
and conclusions are given in sections 4 and 5.

2 BACKGROUND AND OVERVIEW

2.1 Pattern Search

Pattern search is one of the direct search methods applied directly into the simulator to address problems
whose objective function has no closed form or analytical solutions are intractable. By a predefined pattern
of points, it has been shown to perform well in small local areas (Torczon 1997). Pattern search algorithms
are characterized by their meshes and polling conditions. A mesh is a lattice on which the search for an
iterate is restricted. At each iteration k, three basic steps are executed:

1. Generate a set of trial points Qk within a mesh Mk around the current best point xk.
2. (a) Obtain a set of function evaluations Fk from computer models. If ∃xk+1 ∈ Mk such that

f (xk+1)< f (xk), the search is successful.
(b) Else, polling conditions are applied to refine the mesh. Generally the mesh Mk+1 is obtained

by halving the mesh size, i.e. Mk+1 = Mk/2. Repeat Step 1.
3. Update the best point by xk+1.

Essentially, pattern search performs the search using a predefined ”pattern” of points that are independent
of objective functions f and the design points that have been observed. Hence, the computational time for
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generating trial points is almost negligible and the majority of the computational time is spent on function
evaluations. In this way, it efficiently exploits a small area for a local optimal solution with a shrinking
mesh size, but it may not be able to sufficiently explore the entire space.

2.2 AGLGP Model

The AGLGP model (Meng and Ng 2015) is a flexible surrogate for stochastic computer models. It attempts
to capture the overall global spatial trend and the local trends of the responses separately, to enable more
accurate modeling of the surfaces that are nonstationary in both the underlying function and the stochastic
noise. The additive structure of the model reduces the computational complexity in model fitting, and
allows for more efficient predictions with large data sets.

Specifically, the AGLGP model assumes that the stochastic simulation response can be modeled as a
realization of a random process

y(x) = f (x)+ ε(x) = fglobal(x)+
K

∑
k=1

wk f k
local(x)+ ε(x), wk =

{
1, x ∈ Rk
0, x /∈ Rk

where f (x) is the deterministic mean function of the stochastic response. The random noise ε(x) has a
normal distribution ε(x)∼ N(0,σ 2

ε (x)), which is independent and identically distributed across replications
and uncorrelated at different locations. The mean function f (x) can be further decomposed to a global model
fglobal(x), which models the global trend, and K local models with each local model f k

local(x) modeling the
residual process that is unexplained by fglobal(x) in local region Rk, where ∪K

k=1Rk = XΩ. To capture the

global trend, a set of m inducing points are used (where m � n). The GP models fglobal(x) and f k
local(x)

are assumed to be piece-wise independent.
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(a) The global, local and overall model.
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Figure 1: Plot of function y(x) = sin(30(x−0.9)4)cos(2(x−0.9))+(x−0.9)/2.

Figure 1 illustrates the general idea of the AGLGP model, which is an additive combination of a
global model and local models. To fit the model, the entire space is divided into several nonoverlapping
local regions via classification techniques like Support Vector Machine (SVM) (as shown in Figure 1b).
To obtain inducing points to fit the global model, within each local region, we further separate points
into clusters based on a set of equally spaced contour lines from the minimum observation value to the
maximum observation value. This avoids clustering points that have large variability together. The purpose
of this clustering of similar observations (in both x and y space) is to obtain a cluster centroid which can
reasonably represent the observations in the cluster and be a representative point (called an inducing point)
of the cluster. With a good spread of evaluation points in the domain, the inducing points (although fewer)
will also have a good spread in the entire space and will be able to capture the global trend.

It is assumed that fglobal(x) can be modeled by a deterministic GP model with a mean β0 and covariance
σ2rg(xi − x j,θθθ), where σ2 is the variance of the global component and rg(·) is the correlation structure
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with a sensitivity parameter θθθ . Given the set of inducing points and the global evaluations yg, the best
linear unbiased global predictor can then be written as

ŷglobal(x) = β0 +g′G−1
m (yg −1′β0), (1)

where g = (g(x−xi
g), · · · ,g(x−xm

g )), Gm is an m×m covariance matrix with i jth element g(xi
g −x j

g). The

global predictor interpolates yg since ŷglobal(x
j
g) = β0 + e′i(yg − 1′β0) = yi

g. With the fitted global model,
the global predictors at x are ŷglobal = (ŷglobal(x1), ..., ŷglobal(xn)). The residuals, which include both the
residuals from the signal function and the random noise, are then obtained by yl = y− ŷglobal and modeled by

another stochastic GP model ylocal(x) = ∑K
k=1 wk f k

local(x)+ ε(x), where f k
local(x)∼ N(0,τk

2rk(xi
l − x j

l ,αααk)),
and αααk is the sensitivity parameter for the local model. We assume that the residual process is correlated
within a local region while independent across the regions, so different correlation functions are allowed
in different regions. This enables the flexibility to capture nonstationarity in the process. Given K local
regions R = (R1, ...RK), the local predictor is given by

ŷlocal(x) = lk′(Lk +ΣεΣεΣε)
−1yk

l , ∀x ∈ Rk, (2)

where lk = (lk(x−xi
l), ...lk(x−xrk

l )) and Lk is covariance matrix with ( jh) element lk(xh
l −x j

l ), ∀x j
l ,x

h
l ∈ xk

l .

The quantities ΣεΣεΣε = diag(σ̂2
ε (x

1
l ), ..., σ̂

2
ε (x

rk
l )) and σ̂2

ε (x
i
l) can be estimated from the sample variance. So

the overall AGLGP predictor for ∀x ∈ Rk can be expressed by

ŷ(x) = ŷglobal(x)+ ŷlocal(x) = β0 +g′G−1
m (yg −1′β0)+ lk′(Lk +ΣεΣεΣε)

−1yk
l . (3)

As yg and yk
l are latent processes that cannot be observed directly, the predictive distribution of any input

x can be derived by integrating out the random variable yg and yk
l , see (Meng and Ng 2015).

2.3 Desired Properties of Global and Local Search Pattern

Although the AGLGP model, as a fast surrogate, can provide efficient predictions with large data sets,
for optimization problems where observations tend to be clustered in promising local regions, the local
estimation can still become computationally challenging in regions with dense observations. Hence, it will
be more efficient (and desirable) to exploit local promising regions with fast local search patterns, and then
generate more detailed and guided global search patterns with the AGLGP model. A desirable parallel
framework should at least have the following properties,

• evaluate multiple evaluation points quickly around the current best local optimal solution to potentially
find better solutions around the current best one.

• evaluate multiple evaluation points simultaneously around different local optimal solutions to better
explore the whole space for a global optimal solution.

To better understand the desired properties of a parallel framework, we first look at the following
example where the noisy test function is given as

y(x) = (2x+9.96)cos(13x−0.26)+ ε(x) (4)

and ε(x) is the noise function that is normally distributed with mean 0 and variance σ 2
ε = 4 and x ∈ [0,1].

The test function has a local minimum at 0.2628 and a global minimum at 0.7460. Here we adopt a
single region for simple illustration. An initial seven points Latin Hypercube Design (LHD) experiment
is conducted with 10 replications at each point and the initial AGLGP model is fitted as shown on the
left plot of Figure 2. Based on the initial AGLGP model fit, we generate a global search pattern from a
modified expected improvement (mEI) function (Quan et al. 2013) that identifies a local optimal area close
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Figure 2: AGLGP model fit with design point selected by pattern search.

to x = 0.3. A local pattern search is then applied to select the six subsequent points that exploit this local
optimal area (the right plot of Figure 2). With this global search pattern, the algorithm is able to identify
the local optimal area more efficiently.

The overall search, however, has mistakenly identified the global optimal point after the six iterations
because of the low observations near the local minimum on the left. This problem could be mitigated if
multiple local minimums can be identified and exploited simultaneously. Based on the same initial fit,
the mEI function is displayed in the left panel in Figure 3. Suppose the two local maximums of the mEI
function are selected for simultaneous evaluations, followed by local pattern search that exploits around
each of these two points. As we can see in the right panel of Figure 3, the global optimal solution is much
improved with two series of local pattern search (searching for the two local minimums at the same time).
In this example, the two local maximums of the mEI function are located around the two local minimums
of the function too. In general, this will not be the case. The maximum mEI locations can indicate areas
with high spatial uncertainty but not low (or optimal) predictions. In these cases, however, pattern search
can still guide the search towards local minimums because pattern search can continue exploiting for better
solutions. Hence, they can combine to better exploit multiple local minimums simultaneously.
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Figure 3: mEI function and AGLGP model fit with design point selected by multistart pattern search.

To incorporate these desirable properties in the search, we propose the PGLO algorithm to consist of a
global search stage to identify multiple promising local regions and a parallel local search stage searching
for multiple local optimal solutions. The evaluations in the local search stage are initialized from a set
of global search patterns that have either low predictions or high spatial uncertainty. Then, local pattern
search is applied to select additional follow-up evaluation points to quickly exploit around each of those
initial points for better local optimal solutions. In section 3, we explain the development of PGLO in detail.
Selecting the best local maximums of the mEI function is a straightforward and intuitive approach to select
the initial evaluation points, more sophisticated selection criterion can be adopted.
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3 PARALLEL GLOBAL AND LOCAL OPTIMIZATION WITH AN AGLGP MODEL

In this section, we present the framework for a master-worker parallel global and local optimization (PGLO)
algorithm. It is an efficient algorithm that can quickly select multiple promising local regions and focus on
searching for multiple local optimal solutions in each promising local region. Here, we assume one master
processor and q available worker processors. The details of this algorithm are introduced in the following
subsections.

We begin by fitting the AGLGP model in Equation (3) from an initial set of points (typically from a
space-filling experimental design like Latin Hypercube Design (LHD)). After the initial fit, each subsequent
iteration of the algorithm is composed of a global search stage based on the global model (Equation (1)) that
exploits the entire space globally for several promising local regions, and a local search stage based on the
overall model (Equation (3)) that exploits within each promising local region simultaneously. Considering
a total budget of T , in each iteration t, the budget exhausted is denoted as Bt , where Bt = Bt,s +Bt,a. The
budget Bt,s is for the parallel local search stage to find new design points (preferred as a multiplier of q) and
the budget Bt,a is for the allocation stage to allocate replications to existing design points. Here we simply
assume a constant budget Bt over iterations. nmax is the maximum number of new evaluation points at
each iteration. pmax is the maximum number of new evaluation points selected from pattern search before
refitting of the local models. An overview of the algorithm is given in Table 1.

3.1 Global Search Stage

In the global search stage in Step 3, PGLO focuses on identifying promising local regions to focus the
search. It randomly generates nc candidate points Ωg and selects q points that maximize the multi-point
global expected improvement from Ωg. Each local region Dk with qk selected candidate points is then
allocated with qk processors for parallel local search, where ∑qk = q. By smoothing out the localized
features in each local region, the global search avoids putting efforts exploiting one single local region that
has multiple neighboring local optimal solutions from the start.

3.1.1 Multi-points Global Expected Improvement

Here we apply a multi-point global expected improvement (q-gEI) criterion as an extension of the global
expected improvement (Meng and Ng 2016), which is defined as

gEI(x) = E{max(ygmin − yg(x),0)} · 1

1+ eni/v−5
. (5)

where ygmin is the lowest predicted global evaluation,and yg(x) is a normal random variable with mean

given by the global predictor ŷg(x) = μ + g′Q−1
m Gmn(Λ+Σε)

−1(y−1′μ) and global variance given by

ŝ2
g(x)) = [Gnn −g′G−1

m g]+g′Q−1
m g (Meng and Ng 2016). Based on the global model which smooths out

the localized features in each local region, the predictive global trend can provide a guide towards the
promising solutions in the design space. The additional factor is designed to account for observations
around each point that has been aggregated away with the inducing points. It serves as a penalty for points
with many observations around it, giving diminishing returns overall for points with increasing number of
observations around it.

The multi-point gEI criterion (q-gEI) is the expectation of the improvement brought by the q points,

q-gEI(x1, ...,xq) = E[max{(ygmin − yg(x1))
+ · 1

1+ en1/v−5
· · · ,(ygmin − yg(xq))

+ · 1

1+ enq/v−5
}] (6)

The Multi-point Expected Improvement (also called qEI) criterion was first defined by Schonlau
et al. (1998). In most situations, maximizing the expectation of Equation (6) of dimension q×d requires
demanding computational effort. To address this, we approximate the maximization of Equation (6) by
selecting the q points xg

1, · · · ,xg
q sequentially (Ginsbourger et al. 2010) through optimizing the gEI function.
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Table 1: Overview of PGLO.

Parallel Global and Local Optimization Algorithm
Step 1: (Initialization) Run a size n0 space filling design, with rmin replications allocated to each

point. Total initial replications B0 = n0rmin. Set t = 0.

Step 2: (Validation of overall model) Fit an AGLGP response model to the set of sample means

and variances, and use cross validation to ensure that the AGLGP prediction is satisfactory.

While the available replications A = T −∑t
i=0 Bi > 0, t = t +1

Step 3: (Global Search Stage) Generate nc candidate points Ωg. Select q points xg
1, · · · ,xg

q from Ωg

based on the global model and a multi-point global criterion. Identify the promising local

regions, where xg
1, · · · ,xg

q are located. Each promising local region Dk with qk selected

candidate points is allocated with qk processors for the local search and evaluation. Hence

q1 + · · ·+qK = q.

Step 4 (Parallel Local Search Stage) While nt < nmax and A > 0,

(Fit/Update local models) Fit or update the local models in all the promising local regions.

(Generate Candidate Points) Randomly generate nl candidate points Ωk
l independently in

each promising local region Dk.

(Select the Initial Evaluation Points) In each promising local region Dk, select qk points

x1
nt
, · · · ,xqk

nt from the candidate points Ωk
l based on the overall model and a multi-point

local search criterion. Simultaneously evaluate at all q selected points x1
nt
, · · · ,xq

nt from

all promising local regions with rmin replications on q processors. Hence the number of

observed points nt = nt +q.

(Select the Follow-up Evaluation Points by Pattern Search) Set pt = 0,

While nt < nmax and pt < pmax, the q processors continue to evaluate at q new points from

the predefined search patterns. Hence, nt = nt +q and pt = pt +q.

Break follow-up selection if a stopping criterion is satisfied. end
end

Step 5: (Allocation Stage) Allocate Bt,a replications for additional evaluations among all evaluated

points.

end
Step 6: (Return the Optimal Solution) Return the point with the lowest sample mean.

As we expect the global expected improvement function to change with each new point xg
i , i= 1, · · · ,q−1

added, to deliver a set of distinct points spread out across the entire space, we update the global model
for each new xg

i that has already been selected. To select xg
i+1 that optimizes the updated gEI function,

the global model is updated given the new ’observation’ y(xg
i ) based on the kriging believer assumption

(Ginsbourger et al. 2010), which assumes the observation value y(xg
i ) equals to the overall AGLGP model

prediction ŷ(xg
i ) in Equation (3).

To ensure that q distinct candidate points are selected, if the global model does not change after each
new xg

i is added, a minimum number of artificial points ñi are assumed to be selected around xg
i by local

search to affect the penalty term such that

gEI(xg
i ) = E[(ygmin − yg(x

g
i ))

+] · 1

1+ e(ni+ñi)/v−5
≤ max

xc∈Ωg\xg
i

gEI(xc), (7)

This is a reasonable assumption because the local search stage will help to better exploit a promising
area with a set of surrounding points around. This is also done as with a sparse distribution of the global
candidate points, each new added point xg

i+1 with maximum gEI can indicate a different local region from
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the previous added point xg
i . This avoids putting all effort in a single local region and allows the algorithm

to spread the searching effort in multiple local regions.

3.2 Parallel Local Search Stage

Next we provide the details on the parallel local search stage. Once the promising local regions are selected
by the global search, the local search stage then searches more extensively within each promising local
region for better solutions. In this stage we first adopt a multi-point modified expected improvement
function to select an initial set of q evaluation points for simultaneous evaluations, with qk points selected
from each promising local region Dk. A follow-up local pattern search is then conducted for additional
evaluation points exploiting around each of the initial q points.

3.2.1 Initial Evaluation Points Selection

The role of the initial points is to start the local search from promising areas, which have either low
predictions or higher spatial uncertainty, and quickly progress to better solutions in the local region with
additional follow-up evaluation points. In order to achieve this, we propose a multi-point modified expected
improvement function as an extension of the mEI criterion (Quan et al. 2013). The initial qk evaluation
points in the promising local region Dk are selected by maximizing the qk-mEI function defined as

qk-mEI(x1, ...,xqk) = E[max{(ymin − z(x1))
+·, ...,(ymin − z(xqk))

+}] (8)

where ymin is the predicted response at the sampled points in the local region Dk with the lowest sample
mean, and z(x) is a normal random variable with mean given by the AGLGP predictor in Equation (3)
and variance given by spatial prediction uncertainty ŝ2

z (x) = Lnn − l′L−1
n l. Instead of searching the global

optimal solution for the batch (x1, ...xqk), we approximate it again by optimizing the qk points sequentially
one at a time with each step maximizing the mEI(x),

x∗1 =argmaxx∈Ωl mEI(x) = argmaxx∈Ωl E1(max[ymin − z(x),0], (9)

x∗i+1 =argmaxx∈Ωl mEI(x) = argmaxx∈Ωl E(max[ymin − z(x),0]|x∗1, ...,x∗i ,y1, ...,yi). (10)

Here we also optimize the mEI with respect to a set of candidate points Ωl , which are uniformly distributed
in the local region (Regis and Shoemaker 2007). To select the optimal point x∗i+1, the local model and
the mEI function are updated with the selected points x∗1, ...,x

∗
i and their ’observations’ y1, ...,yi. We

approximate the ’observations’ y1, ...,yi equal to the AGLGP model prediction ŷ(x1), ..., ŷ(xi) in Equation
(3). As the updated model variance ŝ2

z (x) = Lnn − l′L−1
n+il is reduced around the selected points x∗1, ...,x

∗
i , it

avoids selecting new points near the selected ones.

3.2.2 Follow-up Evaluation Points Selection

In this step, we continue the local search by selecting additional follow-up evaluation points to quickly
exploit the promising areas around each of the q initial points for better solutions in the promising local
region. To achieve this, we apply q pattern search to quickly select q new evaluation points from the
pre-defined search patterns. The pattern search is initialized from each of the q initial points obtained as
described in section 3.2.1, and it is sequentially repeated with q new selected evaluation points. Although
the pattern search can move efficiently towards a local optimal solution in a small area, it only converges
at a local optimal solution. As there may exist more than one local optimal solution in each local region,
it is not desirable for the algorithm to converge only to a local optimal solution instead of a global optimal
solution in the local region. Hence, to avoid being trapped in a local optimal, we stop the pattern search
when a stopping criterion is satisfied and require the algorithm to reselect a new set of initial points that
explore the entire local region for potentially better local optimal solutions.
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Stopping Criterion In the follow-up pattern search step, the mesh size of the pattern search can
keep shrinking as the search progresses and it already identifies a local optimal point, Mtk+1 = 1/2Mtk . To
avoid spending unnecessary budget for unsuccessful searches, we set a stopping criterion where we stop
the pattern search when Mtk ≤ Mmin, where Mtk is the current mesh size and Mmin is a predefined minimum
mesh size (Torczon 1997). When one of the q pattern search stops at a local minimum before pmax budget
is exhausted in that promising local region Dk, we stop the follow-up points selection step and require
the algorithm to return to the initial points selection step to select a new set of initial points. The local
models are then updated in the promising local regions, and new initial evaluation points are selected by
maximizing the updated mEI function to identify new promising areas.

This stopping criterion allows the pattern search to escape from the current local optimal solution to a
potentially better local optimal solution before exhausting all the pmax budget. The new initial points can
be selected with either low prediction or high predicted mean square error. If the new initial points have
low predictions, the pattern search continues exploiting the current promising areas, and if the new initial
points have high predicted mean square error, the pattern search starts to exploit new promising areas.

3.3 Allocation Stage

In this stage, we adopt an allocation strategy to evaluate the best few optimal solutions after the local search
with an additional number of replications Bt,a. Specifically, the Optimal Computing Budget Allocation
(OCBA) approach (Chen and Lee 2010) is adopted for all the already evalated n points. Suppose each point
xi has a sample mean given by ȳi and a sample variance σ2

ε (xi), then according to Theorem 1 provided
by (Chen and Lee 2010), the Approximate Probability of Correct Selection (APCS) can be asymptotically
maximized (as the available budget tends to infinity) when

Ni,b

Nj,b
=

(
σε(xi)/Δb,i

σε(x j)/Δb, j

)2

, i, j ∈ {1,2, ...,n}, i �= j �= b (11)

Nb,b = σε(xb)

√√√√ n

∑
i=1,i�=b

(
Ni,b

σε(xi)

)2

where ȳb is the lowest observed sample mean in the entire space, Ni,b is the number of simulations allocated
to point xi, and Nb,b is the number of simulations allocated to the point xb with the lowest sample mean.
Hence, ∑i Ni,b = Bt,a. Δb,i = ȳi − ȳb. The OCBA technique is able to allocate additional replications to
the points with low sample means and high sample variances in order to distinguish the best point from
the other competitors. With additional replications allocated at those potential optimal points, the model
estimation around those points can be further improved, which in turn can help the global and local search
criterion to make better selection in the subsequent iteration. After the allocation stage, the sampled point
with the lowest sample mean is selected as the location of the current best response.

4 NUMERICAL STUDIES

In this section, we compare the performance of PGLO (which incorporates the AGLGP model and the
efficient AGLGP model-based global and local searching criterion to drive the local pattern search) with
other parallelized pattern search techniques.

Here, we compare MultPPS-LHS, using a direct application of multistart parallel pattern search
(MultPPS) initialized with Latin Hypercube Sample (LHS), and MultPPS-qEI, with MultPPS initialized
from the multi-point expected improvement (q-EI) of the AGLGP model. MultPPS-LHS is used as a
benchmark algorithm for the direct application of pattern search method, while MultPPS-qEI is compared
to evaluate the performance of PGLO which incorporates pattern search within a global and local search
algorithm against a single level search with q-EI. To replicate the situation of a fast simulation model, a
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wait time of 0.01 seconds is added to each function evaluation. The sequential pattern search is limited
with 200 evaluations to avoid spending too much budget in any sub-optimal areas.

The performance of a parallel optimization algorithm is measured by the wall clock time consumed
to find a reasonable solution within a specific level of accuracy. With known global optimum g∗, the
relative error of a reasonable solution gbest , |g∗ −gbest |/|g∗|, should be less than 1%. Another commonly
used measure for the parallel performance is the speedup, which is defined by the time required for the
sequential optimization on one processor T (1) divided by the time required for the parallel optimization
on q processors T (q), i.e., SP = T (1)/T (q). We adopt the following example from Sun et al. (2014),

max
0≤x1,x2≤100

g(x1,x2) = 10 · sin6(0.05πx1)

2((x1−90)/50)2 +10 · sin6(0.05πx2)

2((x2−90)/50)2 . (12)

g has a global optimum of g∗(90,90) = 20 and the second best local optimum is g(70,90) = g(90,70) = 18.95
(see Figure 12). We introduce a noise term that is normally distributed with mean 0 and variance
σ2

ε (x1,x2) = 3(1+ x1/100)2(1+ x2/100)2.
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Figure 4: g(x1,x2) function.

Table 2 presents the average wall clock time to get a solution with a relative error |g∗−gbest |/|g∗|< 1%
over 30 macro-replications, where with g∗ = 20 the observed global optimum gbest end up within [19.8,20.2].
As the second best local optimum is only 18.95, gbest is at least able to identify the global optimal area.
Even though the simulation runs as fast as 0.01s, the direct application of pattern search (MultPPS-LHS)
performs the least efficiently for any number of processors. Because the objective function has 25 local
optimal solutions, the MultPPS-LHS can not explore the entire space sufficiently without global information.
However, as the number of processors increases, the MultPPS-LHS catches up with better exploration.

Table 2: Average wall clock time to get a reasonable solution with a relative error < 1% using q = 1,4,8
Processors.

q PGLO MultPPS-LHS MultPPS-qEI

1 210.3611 272.1705 252.2541

4 42.4318 92.1054 53.1587

8 37.0719 47.9258 39.6525

Note: For each optimization algorithm, the average wall clock time required for a reasonable solution obtained

from a sample of 30 macro-replications.

In this example, MultPPS-qEI performed significantly worse with one and four processors at α = 0.05,
but there is no significant difference between PGLO and MultPPS-qEI with 8 processors. This is because
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PGLO better explores the entire space in the first several iterations with a global search stage. Instead of
identifying one particular local optimal area, the global search identifies promising local regions (which
can include multiple local optimal areas). Once a point is picked up in one local region, it reduces the
tendency to pick too many points in the same local region. Therefore, it balances between exploiting
too much in the local region and spreading out more points for exploration in more local regions. When
there are eight processors, MultPPS-qEI also has sufficient budget to explore each local region, hence the
different becomes not significant.

Table 3: Relative speedup of parallel optimization algorithm when using q = 4,8.

q PGLO MultPPS-LHS MultPPS-qEI

4 4.9576 2.9565 4.7547

8 5.6790 5.7872 6.4605

Table 3 presents the relative speedup when q = 4 and q = 8 to evaluate the efficiency of parallelization.
The relative speedup measures how well a parallel algorithm scales relatively to its serial version with
additional processors. It is worth to mention that as different algorithms can require different wall clock
time with one processor, a larger speedup does not mean a better algorithm in absolute time. It is also
problem dependent. The results show that in this example, both PGLO and MultPPS-qEI have significant
speedup for four processors, but only achieve marginal improvement with additional four processors (eight
in total). This is because the additional processors will end with exploiting the same optimal area. Even
though initialized from different locations, different pattern search will deliver the same optimal solution.
MultPPS-LHS, on the other hand, achieves significant speedup with any additional processors because they
will help to better explore the entire space.

5 CONCLUSION

In this paper, we proposed a parallel global and local optimization algorithm to enhance pattern search for
global optimization. By incorporating the global and local information in AGLGP model, the enhanced
pattern search algorithm better explores the entire space for global optimal solution and is suitable for
parallel implementation. We also studied its numerical performance. In the future, we will evaluate its
performance for practical real-time control systems and theoretically derive its asymptotic behavior.
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