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ABSTRACT

There has been recent interest, and significant success, in adapting and extending ideas from statistical
learning via Gaussian process (GP) regression to optimization via simulation (OvS) problems. At the
heart of all such methods is a GP representing knowledge about the objective function whose conditional
distribution is updated as more of the feasible region is explored. Calculating the conditional distribution
requires inverting a large, dense covariance matrix, and this is the primary bottleneck for applying GP
learning to large-scale OvS problems. If the GP is a Gaussian Markov Random Field (GMRF), then the
precision matrix (inverse of the covariance matrix) can be constructed to be sparse. In this paper we
show how to exploit this sparse-matrix structure to extend the reach of OvS based on GMRF learning for
discrete-decision-variable problems.

1 INTRODUCTION

Stochastic simulation models are most often constructed to design and improve the performance of systems
that are subject to uncertainty. Therefore, optimizing some measure of system performance with respect
to controllable decision variables (which we will also call “feasible solutions”) is a typical goal. Here we
consider minimizing the expected value of some stochastic performance measure when the expected value
can only be estimated via simulation. We refer to this activity as optimization via simulation (OvS), and
focus on OvS problems in which the decision variables can only assume integer-ordered values. We refer
to these as discrete optimization via simulation (DOvS) problems, and they abound in operations research
where discrete units of resources often need to be allocated (e.g., machines in manufacturing, agents in
call/contact centers, nurses in healthcare services).

When the number of feasible solutions is finite and small relative to the time required to simulate
them, then theoretical and practical success has been achieved using the exhaustive search algorithms of
ranking and selection (R&S). R&S simulates all feasible solutions and terminates with either a guaranteed
probability of correct selection (frequentist) or posterior assessment of the relative quality of the selected
solution (Bayesian). For surveys see Kim (2013) and Frazier (2012).
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DOvS problems that cannot possibly be searched exhaustively present particular challenges because
tools that are effective in deterministic integer programming—cuts and relaxations—have no counterparts
in DOvS when the objective function can only be estimated and fractional solutions (e.g., 2.72 servers)
cannot be simulated.

A setting that is more similar to DOvS is system optimization via deterministic computer experiments;
see Jones et al. (1998) for the foundation paper, and Santner et al. (2003) for a general reference. The setting
is similar in that the “computer experiment” is treated as a black box that can only be evaluated at specific
settings of the decision variables, and each evaluation is (often) computationally expensive. Differences
include a lack of noise (e.g., the computer experiment is a finite-element code that always produces the
same outcome for a fixed setting), continuous-valued decision variables, and objective function evaluations
that are so expensive that only a small number (by our standards) of feasible solutions will be explored.

In computer experiments, statistical learning based on modeling the unknown objective function as a
Gaussian process (GP) takes the place of exploiting some known or assumed structure of the objective
function or feasible region. As feasible solutions are evaluated, the conditional distribution of the GP is
updated and employed to guide the search for new feasible solutions in a way that balances exploration
and exploitation. This is the framework of the EGO algorithm introduced in Jones et al. (1998), and
upon which we build; it has been shown again and again to be remarkably effective and robust. However,
calculating the conditional distribution requires inverting a large, dense, and sometimes ill-conditioned
covariance matrix, and this is the bottleneck for applying GP learning to large-scale problems.

“GP” is generic for a huge class of stochastic processes with normally distributed marginals. The choice
of GP is important: every GP implies certain properties of the objective-function surface it models, and
this has consequences both on the validity of the “statistical learning” and on the required computations.
Examples in the stochastic simulation context include Frazier et al. (2009), Frazier et al. (2011), Jalali
et al. (2015), Sun et al. (2011), and Qu et al. (2012).

Recently, Salemi et al. (2014) and Salemi et al. (2017) argued that a Gaussian Markov Random Field
(GMRF), appropriately parameterized, is a particularly good choice for DOvS problems. A GMRF is a
GP defined on a lattice with the non-zero elements of its precision matrix determined by a user-defined
neighborhood structure; we carefully define a GMRF in Section 2.1. Salemi et al. (2017) propose the
Gaussian Markov Improvement Algorithm (GMIA), which is a global DOvS algorithm based on a GMRF
model, and demonstrate that this model provides better learning inference than other standard choices,
specifically continuous-decision-variable GPs that are evaluated only at the integer solutions. The focus of
this paper is on reaping the computational benefits of using a GMRF with a sparse precision matrix.

In Section 2, we introduce the concepts of GMRF and GMIA. We also review complete expected
improvement (CEI), which is adopted as a search and stopping guide in GMIA because of its nice
features when combined with a GMRF model. However, there can be considerable computational overhead
in calculating CEI. CEI is an extension of the expected improvement (EI) criterion, used in the EGO
algorithm, that works well for our application. Section 3 describes how to reduce the overhead by
exploiting sparse matrix computation techniques and less frequent update of the conditional distribution.
We propose GMIA++, a computationally more efficient version of GMIA, in Section 4, accommodating
these changes. Empirical performance of GMIA++ is analyzed in Section 5.

2 OPTIMIZATION VIA SIMULATION AND GMRFS

We consider the global DOvS problem

minimize y(x), E[Y (x)] subject to x ∈X ,

where the feasible region X is a finite subset of the d-dimensional integer latticeZd ; let n= |X |, the number
of feasible solutions. The distribution of the random variable Y (x), as a function of the feasible solution x,
is unknown. However, the expectation y(x), E[Y (x)] can be estimated using stochastic simulation. More
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formally, for any feasible solution x we are able to observe

Yj(x) = y(x)+ ε j(x) (1)

on replication j = 1,2, . . . , where {ε j(x)} are i.i.d. with mean 0 and finite variance that may depend on x.

2.1 Gaussian Markov Random Fields

Any GP-based optimization method starts by modeling the unknown objective-function values y =
(y(x1),y(x2), . . . ,y(xn))

> as a multivariate normal random vector Y = (Y1,Y2, . . . ,Yn)
>. The particu-

lar GP process in use will determine the structure of the mean vector µ and covariance matrix Σ of Y, and
therefore the structure of its conditional distribution after some feasible solutions x are simulated. Often, µ

and Σ are implicitly defined and approximated conditional on the simulated solutions; we take an approach
to explicitly model µ and Σ. The one feature common to all GP-based methods of which we are aware is
that the covariance between Yi and Y j decreases as some measure of distance increases.

A GMRF is a non-degenerate multivariate Gaussian random vectorY that is associated with an undirected
and labeled graph G = (V ,E ), where V denotes the set of nodes and E denotes the set of edges; see Rue
and Held (2005). Each node in V is associated with a unique element of Y. Two nodes in the graph are
called neighbors if they are connected by an edge. If we denote the precision matrix of Y by Q, then the
probability density function of the GMRF is

f (y | µ,Q) = (2π)−n/2|Q|1/2 exp
(
−1

2
(y−µ)>Q(y−µ)

)
,

where Q is the inverse of the covariance matrix Σ. The diagonal entries of the precision matrix are the
conditional precisions Prec(Yi |YV \{i}) = Qii, where YV \{i} is the vector of values of the GMRF observed
only at the nodes V \ {i}. The scalar precision Qii is the reciprocal of the conditional variance. The
off-diagonal elements are proportional to conditional correlations; specifically Corr(Yi,Y j | YV \{i, j}) =

−Qi j/
√

QiiQ j j, where YV \{i, j} is the vector of values of the GMRF observed only at the nodes V \{i, j}.
The graph G determines the non-zero pattern of the precision matrix Q, and vice versa, since for a

GMRF Qi j 6= 0 if and only if {i, j} ∈ E . Thus, the precision matrix will be sparse if the set of edges is
small. GMRFs are “Markov” because they possess the local Markov property:

Yi ⊥ YV \{i,N (i)} | YN (i) for every i ∈ V ,

where N (i) is the set of neighbors of node i in G ; that is, N (i) = { j : {i, j} ∈ E }. This local Markov
property makes sense in operations research problems; the quality of a solution can best be inferred from
its immediate neighbors and the additional information from other solutions in the solution space adds
little.

2.2 Optimization using GMRFs

In a DOvS problem with integer-ordered decision variables, the natural graph G = (V ,E ) defines the nodes
V to be X . However, the construction of G also requires a neighborhood. Salemi et al. (2017) show
that a particularly effective choice is N (x) = {x′ ∈X : ||x−x′||2 = 1}, which implies that the fraction of
non-zero entries in the precision matrix Q is bounded above by 2d/n, which will be very small for large
problems. We adopt this neighborhood structure.

We define the non-zero entries of Q by a function p(x,x′;θ), where θ is a vector of parameters; i.e.,
Qi j , p(xi,x j;θ). For the neighborhood N (x), we use θ = (θ0,θ1,θ2, . . . ,θd)

> and

p(x,x′;θ) =


θ0, if x = x′
−θ0θ j, if |x−x′|= e j

0, otherwise
(2)
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for x,x′ ∈ Zd , where e j is the jth standard basis vector and | · | is component-by-component absolute value.
Thus, θ0 is the conditional precision of each solution, and θ j is the conditional correlation between solutions
that differ by 1 in the jth coordinate direction. Under this parametrization Q = Q(θ), however, we omit
θ for notational symplicity.

Since the conditional precisions must be positive, it follows that θ0 > 0. We also want neighbors to
have non-negative conditional correlations, so we restrict the values of θ1,θ2, . . . ,θd to be non-negative as
well. Furthermore, we need θ j ≤ 1 for j = 1,2, . . . ,d, as conditional correlations must be less than one.
Lastly, Q should be positive-definite. With this parameterization and these restrictions, Q is a non-singular
M-matrix so its inverse is nonnegative (Johnson 1982). In other words, there are no negative unconditional
correlations among nodes in the GMRF, which is a property that makes sense in many DOvS problems.
Notice that even though we construct the precision matrix Q to be sparse, the covariance matrix it implies,
Q−1, will typically be dense, as it should be.

At any iteration in the optimization, let Ξ2 ⊆X denote the subset of feasible solutions that have been
simulated, and partition X into the two disjoint sets Ξ2 and Ξ1 = X \Ξ2. Thus, Ξ1 is the set of feasible
solutions that have not yet been explored. For simplicity, we use “1” as a subscript to denote quantities
associated with the set Ξ1 and “2” as a subscript to denote quantities associated with the set Ξ2. For
instance, n1 = |Ξ1| and n2 = |Ξ2| are the numbers of solutions in each set. Using these disjoint sets, we
can partition the vectors y,Y,µ , and the precision matrix Q, and write(

Y1

Y2

)
∼ N

((
µ1

µ2

)
,

(
Q11 Q12
Q>12 Q22

)−1
)
.

Let Ȳ2 be the vector of sample means of the simulation output at the solutions in Ξ2. Consistent with the
output model (1), we represent Ȳ2 as a realization of the GMRF Yε

2 =Y2 +ε , with Y2 and ε independent,
and ε ∼ N(~0n2×1,Q−1

ε ), where Qε is the intrinsic precision matrix of the noise inherent to the stochastic
simulation output Ȳ2. If we simulate design points independently, then Qε is a diagonal matrix, whereas
if we simulate with common random numbers (CRN), then Qε is a dense matrix; to preserve sparsity we
do not employ CRN. The values in Qε also depend on how many replications have been averaged, which
need not be the same at all design points. In Salemi et al. (2017) we prove the following:
Theorem 1 The conditional distribution of Y given Yε

2 = Ȳ2 is

N

(
µ + Q̄−1

( ~0n1×1

Qε(Ȳ2−µ2)

)
,Q̄−1

)
, (3)

where

Q̄ ,

(
Q11 Q12
Q>12 Q22

)
+

(
0n1×n1 0n1×n2

0>n1×n2
Qε

)
is the conditional precision matrix, and 0ni×n j is the ni×n j matrix of zeros.

The conditional distribution (3) is the key to learning-based optimization. Notice that it involves the
inverse of the precision matrix Q̄, which will change as we simulate additional feasible solutions, and that
the sparsity of Q̄ is inherited from the sparsity of Q and Qε . Efficiently calculating quantities that depend
on (3) for large numbers of feasible solutions n is the topic of this paper.

Remark: In practice, parameters such as θ and µ are not known; they are usually estimated via maximum
likelihood after simulating an initial set of feasible solutions, and possibly updated as the search progresses.
The intrinsic precision matrix Qε , on the other hand, is often directly estimated from simulation output
data by using the sample variances at simulated solutions.
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The GMIA searches a discrete solution space effectively and efficiently based on inference from the
underlying GMRF model. A strength of GMIA is its ability to stop further search when it finds a solution
whose optimality gap is less than or equal to user defined tolerance δ > 0.

Let us denote the conditional mean and variance-covariance matrix in (3) at the tth iteration of GMIA
as Mt and Q̄t , respectively. We define Qt

ε and Ȳ t
2 , similarly. At each iteration, GMIA selects the solution

with the smallest sample mean as the current optimal solution, x̃t , and uses it as an anchor to evaluate other
feasible solutions, X \x̃t . The complete expected improvement (CEI) measures how much improvement
in the objective function is expected to be made by choosing x ∈X \x̃t as the optimal solution instead of
x̃t under Distribution (3). Given the simulation output Ȳ t

2 , the conditional joint distribution of Y(x̃t) and
Y(x) is bivariate normal with parameters from the rows and columns of Distribution (3) corresponding to
x̃t and x. By denoting the conditional means by Mt(x̃t) and Mt(x), the conditional variances by V t(x̃t) and
V t(x), and the conditional covariance by Ct(x̃t ,x), we can write the variance of the difference Y(x̃t)−Y(x)
as

V t(x̃t ,x),V t(x̃t)+V t(x)−2Ct(x̃t ,x). (4)

Then, the CEI of x is defined as

CEIt(x) = E[max(Y(x̃t)−Y(x),0)]

=
(
Mt(x̃t)−Mt(x)

)
Φ

(
Mt(x̃t)−Mt(x)√

V t(x̃t ,x)

)
+
√

V t(x̃t ,x) φ

(
Mt(x̃t)−Mt(x)√

V t(x̃t ,x)

)
, (5)

where φ and Φ are the density and cumulative distribution function, respectively, of a standard normal
random variable.

GMIA uses CEIs of solutions for both search guidance and the stopping decision. If maxx∈X \x̃t CEIt(x)≤
δ , then it implies that the largest expected improvement from x̃t we can make is ≤ δ , which means that we
have obtained the target optimality gap, and therefore can stop further search. Otherwise, GMIA selects
the solution with the largest CEI, xt

CEI , argmaxx∈X \x̃t CEIt(x), to simulate next.
The computationally expensive calculation for determining the CEIt(x) lies in computing conditional

variances V t(x) for all x, which correspond to the diagonal elements of (Q̄t)−1. In the next section, we
discuss obtaining these elements without fully inverting Q̄t at each iteration.

3 COMPUTATIONALLY EFFICIENT CALCULATION OF CEI

Much of the power of GMIA has been drawn from a sparse parameterization of the precision matrix,
Q̄t , rather than working with its dense inverse, the covariance matrix, Σ

t = (Q̄t)−1. Computing the entire
covariance matrix to calculate the conditional variances required for the CEI calculation would negate much
of the benefit from using the sparse precision matrix. However, the CEI does not require all elements of Σ

t .
In fact, all we need are a) the diagonal elements of Σ

t , which correspond to V (x),∀x, and b) the column
of Σ

t that corresponds to x̃t whose elements are C(x̃t ,x),∀x ∈X . We denote this column by Γ(x̃t).
We can obtain Γ(x̃t) by simply solving the system Q̄tΓ(x̃t) = e(x̃t) where e(x̃t) is the elementary vector

consisting of 0s and a single 1 in the row corresponding to the position of x̃t . An efficient way to solve
a system of linear equations, AZ = B for Z, given symmetric positive definite matrix A, is to backsolve,
which we represent by ‘\\’ in the rest of the paper (e.g. Z = A\\B). The backsolve operation first finds
a lower triangular matrix L and a diagonal matrix D such that A = LDL> (LDL factorization), and then
sequentially solves LZ1 = B and L>Z = D−1Z1 by forward and backward substitutions, respectively.

More challenging, however, is extracting the diagonal of Σ
t in an efficient manner. In the original

GMIA, Salemi et al. (2017) solve Q̄t\\I at each iteration to obtain the full inverse, Σ
t , and extract the

diagonal elements. This computation takes about O(n2) for sparse Q̄t , which can be burdensome when n
is large. Instead of obtaining the entire inverse, Takahashi et al. (1973) propose a much more efficient
method that computes the elements of Σ

t necessary to calculate its diagonal only, which has been used
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more recently in the context of GP modeling in Vanhatalo and Vehtari (2012). In the following, we discuss
this method in the context of GMRF.

Since Σ
t is, by definition, positive definite and symmetric, its inverse, Q̄t is as well, implying there

exists a unique LDL factorization of Q̄t . That is, there exists a lower triangular L, with ones on its diagonal,
and a diagonal D, such that Q̄t = LDLT . The sparse nature of Q̄t implies that L is also relatively sparse (or
can be transformed to be sparse after some number of column/row permutations to reduce fill-in). Further
detailed discussion can be found in Golub and Van Loan (2013). Takahashi et al. (1973) arrive at the
following identity:

Σ
t = D−1L−1 +(I−L>)Σt . (6)

Recall that since L has ones on its diagonal from the LDL factorization, I−LT is strictly upper triangular,
while D−1L−1 is lower triangular. Combined with the fact that both Q̄t and Σ

t are symmetric matrices,
this identity results in the more illuminating relationship for a given element in the ith row and jth column
of Σ

t :

Σi j = ∑
k>i

LkiΣk j ∀i < j, (7)

Σii = D−1
ii −∑

k>i
LkiΣki. (8)

For a sufficiently sparse factorization there are significant savings, since both summations only contain as
many summand terms as there are nonzero elements in the ith column of L. Note that this strongly justifies
the use of permutations and reorderings of Q̄t to reduce the fill-in of L. This method is implemented in
the PARDISO software package, the user guide for which can be found in Schenk and Gärtner (2014).

As an example, suppose that L, D and Σ are 8×8 matrices and have the following sparsity patterns,
where× represents nonzero elements. It is important to note that, in practice, nonzero elements (represented
by ×) may in fact contain the value 0, which may result through certain computations and cancellations.
However, any zero element must contain the value 0:

L =


×
×

× ×
× ×

× ×
× ×

× ×
× × × ×

 D =


×
×
×
×
×
×
×
×

Σ =


× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×

 . (9)

Suppose we wish to calculate Σ44 on the diagonal of the covariance matrix. A naı̈ve implementation
involves computing Σ in its entirety (all 64 elements) and then extracting Σ44. However, with an LDL
factorization of Q̄t , Σ44 can be computed in an efficient manner. From (7)–(8) and the fact that Σ is
symmetric (Σi j = Σ ji), we can generate the following system of equations:

Σ88 = D−1
88

Σ87 = Σ78 =−L88Σ88

Σ68 =−L87Σ87−L88Σ88

Σ77 = D−1
77 −L87Σ87

Σ74 = Σ47 =−L86Σ68−L77Σ77

Σ44 = D−1
44 −L74Σ74.

Therefore, to calculate Σ44, rather than having to compute 64 elements, we find that only solving for 6
elements in Σ is necessary. PARDISO exploits this.

Although calculating the diagonal elements as above greatly reduces the computational effort compared
to inverting Σ

t , it may still be burdensome to compute CEI for all feasible solutions at each iteration if X
is large. Below, we suggest two methods to reduce the computational effort spent for CEI calculation.
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First, we may select the solutions with the q largest CEI values, rather than the single solution with the
largest CEI at each iteration. We expect this to result in slower improvement in the optimality gap, however
for small q, we may save some computational overhead of CEI calculation at a small cost in performance.

Alternatively, we may delay updating V t(x) for p iterations, which is the bottleneck of the CEI
calculation, and compute CEIs approximately. On the other hand, updating Mt is relatively cheap as it
only involves a backsolve with respect to Q̄t when LDL factors of Q̄t are available. When we update V t(x)
at each iteration, it is necessary to perform the factorization at each iteration. However, when we delay
updating V t(x) for p iterations, it tends to be more efficient to update Mt+1 using the factors of Q̄t via the
following Sherman-Morrison-Woodbury identity instead of factorizing Q̄t+1:

(Q̄t +UV>)−1 = (Q̄t)−1− (Q̄t)−1U(Im +V>(Q̄t)−1U)−1V>(Q̄t)−1, (10)

where U and V are n×m matrices for some positive integer m and Im is the m×m identity matrix. In our
case, UV>= Q̄t−Q̄t+1, which is a matrix with exactly two nonzero diagonal elements and zeroes elsewhere
as we choose x̃t and the largest CEI point at the tth iteration and update the corresponding diagonal elements
of Qt

ε . Therefore, if we let a and b be the nonzero elements of UV>, then U can be represented as an
n×2 matrix such that the first column has a and the second column has b at the corresponding elements
as the sampled points and zeroes elsewhere and Z is an n×2 matrix with ones at the position of nonzero
elements of U and zeros elsewhere. Hence, it is easy to see that inverting (Im +V>(Q̄t)−1U) in (10) is
cheap for m = 2. We can extend this trick to compute any backsolve operation with respect to Q̄t during
the p−1 iterations we do not factorize Q̄t . The number of nonzero diagonal elements of UV> during these
iterations is at most 2(p−1). In the algorithm we propose in Section 4, we use ¯̄Qt to denote the factorized
precision matrix to distinguish it from Q̄t . Note that the covariance vector, Γ

t(x̃t), should be computed at
each iteration using ¯̄Qt instead of Q̄t to be consistent with the approximate V t(x) and V t(x̃t).

However, one should exercise caution when determining termination of GMIA. Computing CEIs using
approximate V t(x) can lead to premature termination of the algorithm. Therefore, should GMIA indicate
that the termination criterion is satisfied, the exact CEIs should be computed to ensure this holds true.

In the next section, we present algorithm GMIA++ that incorporates sparse matrix techniques introduced
in this section as well as the periodic update of V t(x). In Section 5, we examine the performance of both
modifications proposed above.

4 COMPUTATIONALLY EFFICIENT GAUSSIAN MARKOV IMPROVEMENT ALGORITHM

In the following algorithm, each time a solution, x, is selected, the algorithm simulates r replications at
the solution. The user must specify the tolerance on the optimality gap, δ . Note that we use k as a counter
to keep track of the cycle to update diagonal elements.

[GMIA++]

0. Generate a set of n0� n initial design points. Simulate r replications for each design point and
use the simulation output to calculate the maximum likelihood estimates (MLEs) for the GMRF
parameters. Using the MLEs, set µ0 and Q0. Set t = 0 and k = p.

1. Set t← t +1. Let x̃t , the current sample-best solution, be the design point with the smallest sample
mean. Update Qt

ε and Q̄t . If k = p go to Step 2. Otherwise, go to Step 3.
2. Set ¯̄Qt = Q̄t . Extract the diagonal elements of ( ¯̄Qt)−1 using the method in Section 3. Compute the

conditional means

Mt = µ
0 + ¯̄Qt∖∖( ~0n1×1

Qt
ε(Ȳ

t
2 −µ2)

)
.

Set k = 1 and go to Step 4.
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3. Set ¯̄Qt = ¯̄Qt−1. Find U and V that permit use of (10) to perform an update (ie. find U and V such
that UV> = Q̄t − ¯̄Qt). Using the notation found in [GMIA++], (10) becomes:

( ¯̄Qt +UV>)−1 = ( ¯̄Qt)−1− ( ¯̄Qt)−1U(Im +V>( ¯̄Qt)−1U)−1V>( ¯̄Qt)−1.

Without repeating any calculations, compute the conditional mean:

Mt = µ
0 + ¯̄Qt∖∖( ~0n1×1

Qt
ε(Ȳ

t
2 −µ2)

)
− ¯̄Qt\\U(I+V> ¯̄Qt\\U)\\V> ¯̄Qt∖∖( ~0n1×1

Qt
ε(Ȳ

t
2 −µ2)

)
.

Set k← k+1 and go to Step 4.
4. Compute Γt(x̃t) = ¯̄Qt\\e(x̃t). For each x ∈X , calculate V t(x̃t ,x) and CEIt(x) in (4)–(5).
5. If maxx∈X \x̃t CEIt(x)≤ δ and k = 1, then go to Step 8. If maxx∈X \x̃t CEIt(x)≤ δ and k > 1, then

set k = p and go to Step 2. Otherwise, go to Step 6.
6. Simulate r replications at both x̃t and xt

CEI.
7. Update the simulation output at x̃t with the new replications. If xt

CEI is a design point then update
the simulation output at xt

CEI and go to Step 1. If xt
CEI is not a design point, then add xt

CEI to the set
of design points, add the simulation output obtained at xt

CEI to the collection of simulation output,
Ȳ t

2 and go to Step 1.
8. Return x̃t as the estimated optimal solution.

Remarks: PARDISO supports an efficient backsolve operation as well as diagonal extraction. Note that
one may specify the maximum number of iterations, T , and stop the algorithm when either maximum
CEI≤ δ or t = T in Step 5. If we wish to select the q > 1 largest-CEI solutions to simulation on each
iteration, then change Step 6 accordingly and ensure that p = 1.

In the next section, we compare the performance of GMIA++ and GMIA empirically.

5 EXPERIMENTS

In this section we use an (s,S) inventory problem to provide timing comparisons between GMIA and
GMIA++, as well as provide proof-of-concept demonstrations of the effects of using approximate methods
that further reduce computation. When using GP-based optimization methods, comparisons that only
consider the number of simulation replications expended can be misleading: streamlining or avoiding
expensive updates of the conditional distribution become even more important on problems with large
numbers of feasible solutions, n. We consider both measures here.

In our version of the (s,S) inventory model, we assume that a firm is subject to periodic demand that
follows a Poisson distribution. The firm waits until its inventory level falls below a lower threshold, s, at
which point they reorder product to bring the inventory up to S. The objective is to minimize the expected
value of cost over a fixed planning horizon with respect to (s,S). To treat the feasible region as a rectangular
grid, we let the decision variables be (x1,x2) = (s,S− s), as done in Salemi et al. (2017).

5.1 Objective Function Value Comparison of GMIA and GMIA++

We start with a quick check that our new implementation GMIA++ using smart inversion and the sparse
matrix solver libraries of PARDISO is actually encoding the same algorithm as the original GMIA that
uses the Matlab sparse matrix toolbox.

Figure 1 illustrates the average across 15 trials of 100 iterations of the true objective function values
evaluated at the feasible solutions that GMIA and GMIA++ believe to be optimal on each iteration. The
feasible region is 50×50, and for this experiment we used q = 1 and p = 1, meaning we update Q̄t and
simulate only the feasible solution with the largest CEI on each iteration. Common random numbers were
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used across algorithms, but not within runs. Modulo small differences in numerical error whose impact
accumulates later in the run, it is clear GMIA and GMIA++ are the same algorithm.

Figure 1: Comparison of GMIA and GMIA++ objective function values averaged across 15 trials.

5.2 Runtime Comparison of GMIA and GMIA++

We now compare the runtimes of GMIA and GMIA++ on the (s,S) inventory problem of three different
sizes. In the first the feasible region for (x1,x2) is a 50×50 integer lattice, while in the second the feasible
region has 100× 100 integer solutions and the third is 150× 150. GMIA makes use of the standard
MATLAB sparse matrix toolbox, while GMIA++ makes use of the sparse matrix solver libraries offered by
PARDISO. Again we used q = 1 and p = 1, meaning we update Q̄t and simulate only the feasible solution
with the largest CEI on each iteration

First we compare runtimes for the 50× 50 problem, letting both algorithms run for 100 iterations,
and using common random numbers across the two algorithms so that they generate common simulation
output at Step 0, and as similar as possible after that; we do not use common random numbers within a
run of either algorithm. Even on this relatively small-scale problem, the gains from using smart sparse
linear algebra techniques are immense, with GMIA having a runtime mean, median and standard deviation
of 394.83s, 394.64s and 147.21s, respectively and GMIA++ having a runtime mean, median and standard
deviation of 4.53s, 3.98s and 1.01s, respectively.

The impact of our tailored sparse matrix techniques is even more dramatic as the problem becomes
larger. From 15 trials of GMIA++ with a 100×100 feasible region and 50 iterations, the runtime increases
in magnitude only moderately, with the mean, median and standard deviation being 9.41s, 8.72s and 0.99s,
respectively. Similarly, for GMIA++ with a 150×150 feasible region and 50 iterations, the runtime mean,
median and standard deviation are 22.55s, 22.80s and 1.89s. We cannot show a similar plot for GMIA as
a single run of the 100×100 problem took 14500s (≈ 4 hours).

5.3 Top q CEI Solutions

Up to this point the precision matrix used for calculating conditional means, variances and covariances
has been updated each iteration and used to allocate simulation effort to only what GMIA++ finds to be
the current sample best solution and another solution with the largest CEI. A simple variation that reduces
the number of matrix factorizations per solution by 1/q is to select the top q > 1 CEI solutions on each
iteration for additional simulation.
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Figure 2 shows the true objective function averaged across 15 trials, both as a function of the number
of matrix factorizations we must perform on the precision matrix and as a function of the number of
replications we generate at given feasible solutions. Tracking the objective function value with respect
to matrix factorizations confirms what one would expect through intuition: additional simulation effort
helps GMIA++ reduce cost at a faster rate. This is true despite the tendency for these additional simulated
solutions to cluster near one another. Tracking the objective function with respect to number of replications
results in the objective function decreasing in a stepwise fashion, that is, after each set of q solutions is
simulated (assuming r = 10 replications for each point).

Notice that the improvement per replication is comparable provided q is not too large, but the improvement
per factorization is substantially better for q = 5 or q = 10. Thus, as the number of feasible solutions
increases to the point that factorization is more significant than simulation effort, there is clear value to
selecting more than one solution to explore on each iteration.

Figure 2: Comparison of GMIA++ objective function values averaged across 15 trials with respect to number
of precision matrix factorizations and number of replications with q solutions simulated per iteration.

5.4 Approximate Precision Matrix

An alternative method to reduce the number of factorizations of Q̄t is only to update it every p > 1 iterations,
and to use an approximate precision matrix to calculate the V t(x̃t ,x) in between; calculating V t(x̃t ,x) is
typically the most computationally expensive step for reasons outlined in Section 3. This reduces the
number of complete factorizations per solution by 1/p.

Figure 3 compares various update increments both per full factorization and per simulation replication
expended. While p = 2 has comparable performance to p = 1 in terms of improvement per replication,
larger p is inferior on this metric. However, improvement per factorization for the first 10 full factorizations
clearly shows p > 1, and perhaps p as large as 10, is advantageous. Again, as the number of feasible
solutions increases to the point that factorization is more significant than simulation effort, there is clear
value to less frequent updating of Q̄t .
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Figure 3: Comparison of GMIA++ objective function values averaged across 15 trials with respect to number
of precision matrix factorizations and number of replications with p solutions simulated per iteration.

6 CONCLUSIONS

OvS based on statistical learning has shown great promise, but the conditional distribution (posterior)
updates are a computational bottleneck for large problems. In this paper we have shown that tailored sparse
matrix methods can signficantly reduce the computation, allowing larger problems to be solved routinely.
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ANDREAS WÄCHTER is an Associate Professor in the Department of Industrial Engineering and Man-
agement Sciences at Northwestern University. His research centers on the design, analysis, implementation,
and application of numerical algorithms for nonlinear optimization. He is a recipient of the J. H. Wilkin-
son Prize for Numerical Software for the Ipopt open-source optimization package, and of the INFORMS
Computing Society Award. His e-mail address is andreas.waechter@northwestern.edu.

EUNHYE SONG is an Assistant Professor in Industrial and Manufacturing Engineering at the Pennsylvania
State University. Her research interests include large-scale DOvS, simulation optimization under model
risk, input uncertainty quantification, and sensitivity analysis of computer experiments. Her e-mail address
is eunhyesong2016@u.northwestern.edu

2091


