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ABSTRACT

Simulated systems are often described with a variety of models of different complexity. Making use of these
models, algorithms can use low complexity, “low-fidelity” models or meta-models to guide sampling for
purposes of optimization, improving the probability of generating good solutions with a small number of
observations. We propose an optimization algorithm that guides the search for solutions on a high-fidelity
model through the approximation of a level set from a low-fidelity model. Using the Probabilistic Branch
and Bound algorithm to approximate a level set for the low-fidelity model, we are able to efficiently locate
solutions inside of a target quantile and therefore reduce the number of high-fidelity evaluations needed
in searches. The paper provides an algorithm and analysis showing the increased probability of sampling
high-quality solutions within a low-fidelity level set. We include numerical examples that demonstrate the
effectiveness of the multi-fidelity level set approximation method to locate solutions.

1 INTRODUCTION

Simulation models have been shown to be widely applicable in a number of fields that involve complex and
random systems; subsequently optimizing simulation models can be a computationally expensive problem.
However, in many contexts simulated systems have a range of different models with varying complexities,
or have simpler meta-models that track the behavior of the system (Barton and Meckesheimer 2006). As
such, experts looking to optimize a system can make use of lower-complexity models to guide their analysis
of high-complexity systems.

Under a multi-fidelity approach to simulation optimization, a high-fidelity model provides an accurate
response at a high computational cost, whereas a low-fidelity model, or a meta-model, has a marginally
less reliable response at a lower computational cost. Since both models represent the same system, high
and low-fidelity outputs are presumed to have a strong similarity. Using this relationship, multi-fidelity
optimization employs the low-fidelity simulation (or a meta-model) to guide the optimization of a high-
fidelity model, reducing the computational time required to generate good or optimal solutions to the
problem (Xu et al. 2014).
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The multi-fidelity approach has become popular in a number of applications (Molina-Cristóbal et al.
2010, Huang et al. 2015, Chiu et al. 2016, Qiu et al. 2016). Similarly, multi-fidelity approaches have
taken a variety of forms. One approach emphasizes efficient sampling of the high-fidelity models using an
ordinal transformation based on a low-fidelity model (Xu et al. 2014, Li et al. 2015, Li et al. 2016, Xu
et al. 2016). Alternative methods have used multi-fidelity models as a basis for constructing meta-models
for optimizing expensive high-fidelity functions (Forrester et al. 2007). However, to date, simulation
optimization methods have yet to explore the use of multi-fidelity models for partitioning algorithms to
focus searching a high-fidelity function’s domain for optimization.

Our paper extends the multi-fidelity approach using the Probabilistic Branch and Bound (PBnB) (Huang
and Zabinsky 2013) algorithm to create a level set approximation of a low-fidelity function to focus the
sampling of a high-fidelity function. Specifically, the algorithm creates a level set approximation for some
best δ ∈ (0,1) percent of solutions on the low-fidelity model in a common domain. Given a large amount
of similarity between the behavior of low-fidelity and high-fidelity models, the developed level set for
the low-fidelity model will likely contain many good points when evaluated with the high-fidelity model.
Therefore, the low-fidelity model can be used to significantly improve high-fidelity searches for optimal
or near-optimal solutions.

Results are outlined as follows. Section 2 describes the problem statement along with the basic
assumptions concerning the relationship between low and high-fidelity models. We subsequently outline
the algorithm in Section 3 with theorems describing the increased probability of sampling points in the
target set presented in Section 4. We present numerical results on selected test functions in Section 5. A
general discussion of results including possible next steps is included in Section 6.

2 OVERLAPPING LEVEL SETS OF MULTI-FIDELITY OPTIMIZATION PROBLEMS

We consider a high-fidelity black box function fH with an accompanying minimization problem

minx fH(x) (1)

s.t. x ∈ S

where S⊂Rn and S is defined by box-constraints. We are interested in sampling solutions in some “target”
set that is comprised of points that fall into some low, δtarget quantile of fH ( 0 ≤ δtarget ≤ 1), namely
x ∈ LH(δtarget ,S) where LH(δtarget ,S) = {x : fH(x)≤ yH(δtarget ,S)} and yH(δtarget ,S) is the δtarget-quantile
of the domain S, or explicitly:

yH(δtarget ,S) = argminy∈{ fH(x):x∈S}{P( fH(X)≤ y)≥ δtarget}
where X is uniformly distributed on S. In addition to the high-fidelity function fH , we also have a low-fidelity
function such that fL, defined on the same domain. We note that for quantile level, δ , δ = ν(LH(δ ,S))

ν(S) .
In order for the low-fidelity model to give some indication of where the target set resides in S, we assume

that there is some δshared level set, such that δshared ≥ δtarget , where both functions overlap. Specifically,
let LL(δshared ,S) be the level set for the low-fidelity model and define the overlap as:

γ =
ν (LH(δshared ,S)

⋂
LL(δshared ,S))

ν (LH(δshared ,S))
(2)

where ν is a volume measure. We assume that the overlap ratio γ is of some sufficient size 0 < γ ≤ 1.

Assumption 1. We assume a minimum value of the overlap ratio:

γ ≥ 1+δtarget −
δtarget

δshared
. (3)
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Alternatively, the assumption could be restated in terms of our desired δtarget . For a given overlap γ at
some δshared , the assumption will indicate a minimum value for the δtarget quantile:

δtarget ≥
(1− γ) ·δshared

(1−δshared)
.

Assumption 1 indicates that the high-fidelity function behavior has a significant amount of overlap at
a given δshared quantile. We define concentration on some given set σ as being the ratio of volume from
the set LH(δtarget ,S) in the set σ , or ν(LH(δtarget ,S)

⋂
σ)

ν(σ) . Domains with high concentration of points will be
more efficiently searched by random search algorithms. Based on the assumption, we show that the level
set LL(δshared ,S) has a greater “concentration” of points from LH(δtarget ,S) than S in Section 4.

We can visualize improved concentration in the example shown in Figure 1. In Figure 1(a) we represent
high and low-fidelity level sets on a two-dimensional domain. The high-fidelity model shares a significant
amount of its δshared level set with the low-fidelity model. Due to the significant amount of overlap, there is
a large concentration of points from δtarget level set of the high-fidelity model within the δshared level set of
the low-fidelity model. Figure 1(b) illustrates high and low-fidelity function responses with corresponding
level sets.

Figure 1: A graph of intersecting level sets between a high-fidelity function and a low-fidelity function
on a common domain. In (a), LL(δshared ,S) is outlined with a dashed line, LH(δshared ,S) is outlined with
a dash-dot line, and LH(δtarget ,S) is outlined with a solid line. In (b), the level sets are shown relative to
their function responses.

Since we can evaluate fL much faster than fH , a fast approximation of LL(δshared ,S) level set will enable
an algorithm to be more likely to sample points in LH(δtarget ,S) than sampling from the entire domain.

3 OPTIMIZATION ALGORITHM USING LOW-FIDELITY MODELS TO GUIDE HIGH-FIDELITY
SAMPLING

The general multi-fidelity optimization approach exploits the computationally inexpensive approximation
of a low-fidelity level set to subsequently guide sampling of the high-fidelity function. To accomplish
this, we make use of the Probabilistic Branch and Bound (PBnB) algorithm for level set approximation
outlined by (Huang and Zabinsky 2013). Using the low fidelity function, another search algorithm can
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optimize the high-fidelity function on the resulting level-set approximation which will likely contain a high
concentration of good solutions. We outline the method for searching a domain for high-fidelity solutions
within a target level set in algorithm 1:

Algorithm 1. High-Fidelity Random Search Optimization through Low-Fidelity Level Set Generation
For a given low-fidelity budget Nlow function evaluations and a high-fidelity budget level Nhigh function

evaluations

1. Initialize Parameters: Select B, δshared , δtarget , ε , and α parameters.
2. Run PBnB: Implement a level set approximation using the PBnB algorithm on the low-fidelity

function, fL, on the domain S for k iterations until the algorithm reaches Nlow function evaluations.
The PBnB algorithm outputs three disjoint subregions, Σ

p
k ,Σ

m
k , and Σc

k (corresponding respectively
to the pruned, maintained, and undecided sub-regions such that after k iterations

S = Σ
p
k ∪Σ

m
k ∪Σ

c
k.

Let Σ̃k = S\Σp
k = Σm

k ∪Σc
k be the “level set approximation” at iteration k such that Σ̃k ≈ LL(δshared ,S).

3. Search High Fidelity Model: Run a search algorithm for Ni function-evaluations of the high fidelity
model fH on each sub-region σi in Σk, where Ni =

ν(σi)

ν(Σ̃k)
·Nhigh.

4. Output: Rank the Nhigh candidate points by their high-fidelity function values and return the best
δtarget percent.

The approximation of the LL(δshared ,S), in Step 2, is accomplished by the PBnB algorithm which
repeatedly estimates the quantile and then determines whether to maintain or prune regions based on
whether they fall within the estimated level set. The PBnB algorithm requires parameters: B, the number
of divisions across a given dimension to create a new set of sub-regions when branching; α , a performance
confidence level; ε , an upper bound of the volume incorrectly estimated; and, δshared , the quantile of the
level set that needs to be approximated. The fully specified algorithm can be found in Huang and Zabinsky
(2013).

4 ANALYSIS SHOWING INCREASED CONCENTRATION OF TARGET SOLUTIONS ON
LOW-FIDELITY LEVEL SETS

We use Assumption 1 to develop theorems concerning the concentration of points from LH(δtarget ,S) that
can be found in LL(δshared ,S) (or an approximation of LL(δshared ,S)). We expect the efficiency of the
random search in Step 4 of Algorithm 1 to be generally improved by a higher concentration of points in
LL(δshared ,S) since the probability of uniformly sampling a point from the target level set will be equal to
the concentration.

Theorem 1. The volume intersection of the LH(δtarget ,S) and the LL(δshared ,S) level sets has a lower bound,
such that:

ν(LH(δtarget ,S)
⋂

LL(δshared ,S))≥ ν (S) · (δtarget −δshared · (1− γ)) . (4)

Proof. We can express the target level set for the high fidelity model as a union of two disjoint subsets
LH(δtarget ,S) = (LH(δtarget ,S)

⋂
LL(δshared ,S))

⋃
(LH(δtarget ,S)\LL(δshared ,S)). Therefore we can write:

ν

(
LH(δtarget ,S)

⋂
LL(δshared ,S)

)
+ν (LH(δtarget ,S)\LL(δshared ,S)) = ν (LH(δtarget ,S))

ν

(
LH(δtarget ,S)

⋂
LL(δshared ,S)

)
= ν (LH(δtarget ,S))−ν ((LH(δtarget ,S)\LL(δshared ,S)))
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Since ν ((LH(δshared ,S)\LL(δshared ,S))) ≥ ν ((LH(δtarget ,S)\LL(δshared ,S))), we can lower bound the
expression with:

ν

(
LH(δtarget ,S)

⋂
LL(δshared ,S)

)
≥ ν (LH(δtarget ,S))−ν ((LH(δshared ,S)\LL(δshared ,S))) .

We can then write (LH(δshared ,S)\LL(δshared ,S)) in terms of the intersection LH(δshared ,S)
⋂

LL(δshared ,S)

ν (LH(δtarget ,S))−ν ((LH(δshared ,S)\LL(δshared ,S)))

= ν (LH(δtarget ,S))−ν

(
LH(δshared ,S)\

(
LH(δshared ,S)

⋂
LL(δshared ,S)

))
= ν (LH(δtarget ,S))−

(
ν (LH(δshared ,S))−ν

(
LH(δshared ,S)

⋂
LL(δshared ,S)

))
= ν (LH(δtarget ,S))−ν (LH(δshared ,S))+ν((LH(δshared ,S)

⋂
LL(δshared ,S))

and replacing from the definition in (2) we get

= ν (LH(δtarget ,S))−ν (LH(δshared ,S)+ γ ·ν(LH(δshared ,S))

Using the relationship between quantile and domain volume, we substitute to get:

= δtarget ·ν (S)−δshared ·ν (S)+ γ ·δshared ·ν(S)
= ν (S) · (δtarget −δshared · (1− γ))

�

Corollary 1. Given Assumption 1, the ratio of the concentration of target level set of the high-fidelity
function inside LL(δshared ,S) is greater than δtarget that is,

ν(LH(δtarget ,S)
⋂

LL(δshared ,S))
ν(LL(δshared ,S))

≥ δtarget .

Proof. Starting with Assumption 1,

γ ≥ 1+δtarget −
δtarget

δshared

and rearranging the terms, we get

δtarget −δshared · (1− γ)

δshared
≥ δtarget .

Noting that 1
δshared

= ν(S)
ν(LL(δshared ,S))

, we get:

δtarget ≤
δtarget −δshared · (1− γ)

δshared
=

ν(S)
ν(LL(δshared ,S))

(δtarget −δshared · (1− γ)) .

From the relationship in Theorem 1 we get

δtarget ≤
ν(S)

ν(LL(δshared ,S))
(δtarget −δshared · (1− γ))≤

ν(LH(δtarget ,S)
⋂

LL(δshared ,S))
ν(LL(δshared ,S))

which demonstrates the proposition.
�
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Corollary 1 provides a theoretical lower bound on the concentration of points from the level set
LH(δtarget ,S) in the low-fidelity level set LL(δshared ,S) which under conditions of Assumption 1 will be
greater than the concentration of points from LH(δtarget ,S) in the domain S (δtarget by definition). The last
theorem extends this result to characterize a lower bound on the concentration of points from LH(δtarget ,S)
inside the level set approximation Σ̃k generated by the PBnB algorithm.

Theorem 2. After the application of the PBnB algorithm for k iterations, the concentration of points from
the δtarget level set in the level set approximation Σ̃k has a lower bound,

ν
(
Σ̃k
⋂

LH(δtarget ,S)
)

ν(Σ̃k)
≥

(δtarget −δshared · (1− γ))− ε

1− ν(ΣP
k )

ν(S)

with probability (1−α)4, where ΣP
k is the set of pruned sub-regions after k iterations of the PBnB algorithm.

Proof. By definition of the level set approximation Σ̃k, we note that

ν
(
Σ̃k
)
= ν (S)−ν

(
Σ

P
k
)
. (5)

ν

(
Σ̃k
⋂

LH(δtarget ,S)
)
= ν

(
LH(δtarget ,S)\ΣP

k
)
= ν

((
LH(δtarget ,S)

⋂
LL(δshared ,S)

)
\ΣP

k

)
This is strictly

= ν

(
LH(δtarget ,S)

⋂
LL(δshared ,S)\

(
Σ

P
k

⋂
LL(δshared ,S)

))
= ν

(
LH(δtarget ,S)

⋂
LL(δshared ,S)

)
−ν

(
Σ

P
k

⋂
LL(δshared ,S)

)
and applying Theorem 1 we get

≥ ν (S) · (δtarget −δshared · (1− γ))−ν

(
Σ

P
k

⋂
LL(δshared ,S)

)
.

Theorem 6 from (Huang and Zabinsky 2013) which states that at iteration k of the PBnB algorithm, the
volume of the incorrectly pruned regions does not exceed ε with probability (1−α)4, that is,

P
(

ν

(
LL(δshared ,S)

⋂
Σ

P
k

)
≤ ε

)
≥ (1−α)4,

and combined with above, results in

ν (S) · (δtarget −δshared · (1− γ))−ν

(
Σ

P
k

⋂
LL(δshared ,S)

)
≥ ν (S) · (δtarget −δshared · (1− γ))− ε (6)

with probability (1−α)4. Combining (4) with (6) we obtain

ν

(
Σ̃k
⋂

LH(δtarget ,S)
)
≥ ν (S) · (δtarget −δshared · (1− γ))− ε

and dividing by ν
(
Σ̃k
)

and using (5), we get

ν
(
Σ̃k
⋂

LH(δtarget ,S)
)

ν(Σ̃k)
≥

(δtarget −δshared · (1− γ))− ε

1− ν(ΣP
k )

ν(S)

with probability (1−α)4. �
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Theorems 1 and 2 imply that given values of α and ε , we can get a level set approximation Σ̃k with a
significantly higher concentration of solutions in the target quantile, LH(δtarget ,S), than in S.

5 NUMERICAL TESTS

We explore the utility of level set approximation for multi-fidelity optimization with numerical tests on
common test functions. Similar to previous multi-fidelity models, the use of numerical test functions allows
an examination of optimization performance for closely related “high” fidelity and “low” fidelity functions.
While the proposed algorithm could be used for mixed integer and continuous variables, the initial tests
focus on problems within a continuous domain without noise. First, we examine the one dimensional
test example used in Xu et al. (2016), with the next section looking at “high” fidelity and “low” fidelity
functions based on a set of common multi-dimensional non-convex test functions from Ali et al. (2005).

5.1 Test Example in One Dimension

The algorithm is initially tested on the function used in Xu et al. (2016), where the high-fidelity function
can be expressed as a one-dimensional analytical function:

fH(x) =
sin6 (0.09πx)

22
(
22((x−10)/80)2) +0.1 · cos(0.5π)+0.5 ·

(
x−40

60

)
+0.4 · sin

(
x+10

100
π

)
. (7)

For purposes of this paper’s focus on continuous domains, we use the domain S = [0,100]. We subtract the
original function from the maximum 1.4277 to create a positive value minimization problem with a global
minimum of 0. The corresponding low-fidelity function to the high-fidelity function in (7) is developed by
dropping all but the first terms, so that fL(x) =

sin6(0.09πx)

22
(

22((x−10)/80)2
) .

For analysis, we approximate the overlap between LH(δshared ,S) and LL(δshared ,S) for δshared = 0.3 as
γ̂ , such that

γ̂ ≈ ν(LH(δshared ,S)
⋂

LL(δshared ,S))
ν(LH(δshared ,S)

. (8)

We determine γ̂ = 0.90, for this example, by dividing the domain into 100 regions and approximating
whether each falls into LH(δshared ,S) or LL(δshared ,S) based on a uniform sample of 8000 points. Therefore
after applying Algorithm 1 with adequate level set approximation, we are guaranteed to improve the
concentration of points within target-quantiles greater than 0.04 based on Corollary 1.

Setting δshared = 0.3, B = 2,α = 0.1, Nlow = 50000, we run the PBnB algorithm to generate an level
set approximation Σ̃k of LL(δshared ,S). Subsequently, 10000 high-fidelity evaluations are taken both from
Σ̃k (as specified in Step 4. of Algorithm 1) and from S, uniformly.

Conducting 30 experiments, we can obtain the number of points that are sampled inside a range of target
quantiles (10%,5%,1%) relative to the number of high-fidelity function evaluations. Figure 2 plots the
number of points sampled within three different quantiles on the “high-fidelity” function based on sampling
from the entire domain, S, (solid lines) and sampling from Σ̃k (broken lines). Figure 2 demonstrates that,
for an equivalent number of sample points, sampling on Σ̃k results in significantly more points being found
inside the 10%, 5% 1% target quantiles.

We observe generally that sampling on the level set approximation Σ̃k will improve the probability of
sampling points inside the LH(δtarget ,S) for δtarget ≥ 0.04 by Corollary 1. However, from Figure 2, we
notice that sampling points inside LH(δtarget ,S) with δtarget = 0.01 is improved even without the theoretical
guarantee.
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Figure 2: Number of sample points within target quantiles (δtarget = 10%,5%,1%) from either the level
set approximation Σ̃k with δshared = 0.3 (broken line), or random sampling on the entire domain S (solid
line) for the one-dimensional test function in (7). The vertical axis shows the number of points sampled,
averaged across 30 experiments. The horizontal axis tracks the number of high-fidelity function evaluations.

5.2 Test Examples in Multiple Dimensions

We further examine a selection of common non-convex test functions. To reliably control the volume of
overlap between different level sets, we construct a high and low fidelity model based on an offset value
in the low-fidelity test function.

fL(x+χ) = fH(x) (9)

where χ is a constant offset. For our tests, we examine three common non-convex test functions used in
Ali et al. (2005), which can be summarized with their selected offsets.

1. Rosenbrock Function: fL(x)=∑
n−1
i=1 [100 ·

(
xi+1− x2

i
)2
+(xi−1)2] in two dimensions on the domain

S = {[−2,2], [−2,2]}with a true minimum at (1,1) with value 0. We use an offset χ = (−0.2,−0.2)
which results in an estimated overlap in two dimensions as γ̂ = 0.80 at δshared = 0.3, γ̂ = 0.69 at
δshared = 0.20, and γ̂ = 0.44 at δshared = 0.10.

2. Sinusoidal Function: fL(x) = − [A ·∏n
i=1 sin(xi− z)+∏

n
i=1 sin(B · (xi− z))] with A = 2.5, B = 5,

z = 30 in two dimensions on the domain S = {[0,180], [0,180]} with a true minimum at (90,90)
with value −3.5. We use an offset χ = (−5,−5) which results in an estimated overlap in two
dimensions as γ̂ = 0.81 at δshared = 0.20, γ̂ = 0.78 at δshared = 0.3, and γ̂ = 0.65 at δshared = 0.10.

3. Griewank Function (Problem): fL(x) = 1+ 1
4000 ∑

n
i=1 x2

i −∏
n
i=1 cos

(
xi√
xi

)
with the constraints

{[−5,5], [−5,5]} With true optimum at f (x∗) = 0 with x∗ = (0, . . . ,0). There are an unknown
number of local minimum. We use an offset χ = (−0.2,−0.2) which results in an estimated
overlap in two dimensions as γ̂ = 0.88 at δshared = 0.3, γ̂ = 0.85 at δshared = 0.20, and γ̂ = 0.76 at
δshared = 0.10.

The γ̂ values for each of the test functions and offsets are computed using a mesh division method (50
divisions for each dimension with 2000 sample points from each sub-region). Based on Corollary 1, we can
guarantee sampling within LL(δshared = 0.3,S) will increase the chance of candidate points in LH(δtarget ,S)
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for δtarget ≥ 0.08 for the Rosenbrock, for δtarget ≥ .08 for the Sinusoidal function, and δtarget ≥ 0.05 for
the Griewank function.

Figure 3: A plot of the intersecting level sets between the high-fidelity and low-fidelity models for the
Rosenbrock, Sinusoidal, and Griewank functions. The δshared = 0.3 level set approximation for the low-
fidelity model is inside the light shaded area, the δshared = 0.3 level set for the high-fidelity model is outlined
by the broken line, and the δtarget = 0.1 level set for the high-fidelity model is shown inside the solid line.

Using Algorithm 1 with δshared = 0.3 we can develop an approximate level set using the same parameters
from section 5.1. This results in a level set approximation of hyper-rectangles Σ̃k for each of the described
test functions that can be illustrated in Figure 3. Figure 3 plots the δshared = 0.3 level sets for the high-fidelity
function (inside-the dash-dot line), the approximated level set for the low-fidelity function (inside the shaded
rectangles), and the high-fidelity target level set (for δtarget = 0.1). We can see that, in all three functions,
there is significant overlap between high-fidelity target level sets and the approximated level sets.

As in the one-dimensional test, we compare the number of generated candidate solutions in LH(δtarget ,S)
when sampling uniformly from the approximated level set, Σ̃k, versus uniform sampling on the entire domain
S. In Figure 4 we plot the number of points found in the 10%,5%,1% target quantiles. This comparison
demonstrates that sampling on the approximated level set improves the number of generated candidate
solutions for the selected test functions, practically, even for δtarget levels that are lower than specified in
Assumption 1.

We also examine the effect of using Algorithm 1 to find minimum function values using a variety of
different δshared-levels. In Figure 5, we plot the minimum values sampled from a variety of approximated level
sets with different δshared quantile levels. The average log minimum values (averaged over 30 experiments)
are plotted versus the number of function evaluations and compared with random sampling on the entire
domain. The plots in Figure 5 demonstrate that the sampling from any of the approximated level sets
improves the minimum value found over uniform sampling on the domain. While the Rosenbrock function
shows that sampling on each approximated level set performs similarly for different values of δshared , the
approximated level sets using lower δshared values improve the sampling for the Sinusoidal and Griewank
functions.

6 DISCUSSION

The paper outlines an approach to multi-fidelity optimization by approximating a low-fidelity level set
in order to improve the sampling of a high-fidelity function. Using the PBnB algorithm to approximate
a level set, the algorithm conducts a high-fidelity random search in a generated set of hyper-rectangles
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Figure 4: Number of sampled points within target quantiles (δtarget = 10%,5%,1%) from either the level set
approximation Σ̃k generated by the PBnB algorithm with δshared = 0.3 (broken line), or random sampling
on the entire domain S (solid line) for the Rosenbrock, Sinusoidal, and Griewank Functions. The vertical
axis shows the number of points sampled, averaged across 30 experiments. The horizontal axis tracks the
number of high-fidelity function evaluations.

that approximate the level set of given low-fidelity model. Given sufficiently overlapping level sets, the
concentration of points inside the approximated level set (and therefore the efficiency of a random search
performed there) will be improved.

The usefulness of this algorithm is demonstrated by its application to pairs of low-fidelity and high-
fidelity test functions. In all cases (with a selection of the δshared that creates a large amount of overlap
between the level sets of high-fidelity and low-fidelity models), the efficiency of the algorithm in sampling
candidate points from a target level set is improved.

The largest challenge with the implementation of the algorithm is selecting a δshared where both the high
and low-fidelity level sets overlap. However, given that the a low-fidelity model will likely have broadly
similar behavior to the high-fidelity model with a sufficiently high δshared , there is likely to be significant
amount of overlap when δshared is not small.

One potential extension is to use alternate searches on both the high and low-fidelity models. First
using the low-fidelity model to prune away areas of the domain that are unfit (that do not fall within a very
high δshared level set) and subsequently using the high-fidelity model to determine whether it is likely that
a smaller δshared level set can be used to further focus sampling. This also might provide an opportunity to
use a shifting value of δshared based on observed properties of the high-fidelity function. Another extension
could explore the possibility of modifying the the low-fidelity model based on statistical tests for correlation
between low-fidelity and high-fidelity models within various sub-regions which could account for regions
of the domain where the two models have poor or negative correlation.
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Figure 5: Minimum objective function value (log) averaged across 30 experiment replications for uniform
sampling on the entire domain (solid lines) and uniform sampling from the level set approximation Σ̃k for
δshared = 0.3, 0.2, and 0.1 respectively. Three test functions are examined: Rosenbrock, Sinusoidal, and
Griewank.
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