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ABSTRACT

Principal-agent problems study contracts for goods or services that a principal (seller) should offer an
agent (buyer). The goal is for the principal to optimize the quantity and price in the contract offered to
an agent with uncertain demand, where the principal has estimated a distribution for the agent’s demand.
The agent’s demand distribution can be discrete or continuous. A deterministic optimization solution to
the discrete distribution problem delivers a contract with price and quantity options targeted towards each
possible demand realization. When the demand distribution is continuous, the optimal contract becomes
a continuous function of the demand space. This paper introduces a sample average approximation to the
continuous distribution problem using methods for solving the discrete distribution problem. We explore
using numerical results an example motivated by carbon capture and storage systems.

1 INTRODUCTION

Principal-agent (PA) problems find the optimal contract (quantity and price for goods or services) for a
principal (seller) to offer an agent (buyer). The contract consists of one or more options, and each option
stipulates the quantity q of the product to be transferred, and a total price t that the agent pays to receive
q. The agent may have hidden preferences that affect their demand for the product, or may have demand
uncertainty such that their demand is not realized until after the contract has been set. While the principal may
not know a particular agent’s demand, she may know their demand distribution. The principal determines
the optimal contract options by maximizing her expected profit over different potential realizations of the
agent’s demand. Once the agent realizes his actual demand level, he makes a utility-maximizing decision
whether or not to participate and purchase q units of the product at price t.

The original PA problems in the literature are solved analytically using deterministic optimization
(Maskin and Riley 1984). Much work has been done to derive the form of the optimal contracts analytically
for specific problem settings, such as supply chain coordination between retailers and manufacturers (Tsay
1999, Iyer, Schwarz, and Zenios 2005), procurement strategy (Cachon and Zhang 2006, Chaturvedi and
Martı́nez-de-Albéniz 2011), production planning (Yang et al. 2009, Norde et al. 2016), and performance-
based services (Kim et al. 2010, Huber and Spinler 2013). The current literature on discrete-type problems
is mostly dominated by the analysis of symmetric agents who have the same likelihood of being either of
two types of agents. The analytical solutions provided by Laffont and Martimort (2009) are widely cited
in the service contracting literature (Özer and Wei 2006, Hasija, Pinker, and Shumsky 2008, Akan, Ata,
and Lariviere 2011).

Analytical solutions yield managerial insights that explain how different factors and parameters affect
the optimal contract. However, simplifying assumptions and small problem sizes are often used to obtain
tractability. This means that the demand distribution of agents is often assumed to be discrete with very
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few possible values. The paper by Cai and Singham (2017) presents one of the first attempts to consider
heterogenous agent distributions (with multiple possible demand distributions). That paper derives analytical
solutions for the case when there are two possible discrete demand distributions, each with two possible
demand levels, and solves larger problems numerically using a nonlinear solver. One of our goals is to be
able to solve larger problems numerically while understanding the structure behind the solutions. Lovejoy
(2006) makes a significant advancement by considering a finite number of agent types and each type takes
on a different set of discrete values. Analyzing the structural properties of quasi-linear utility functions,
Lovejoy (2006) is able to reduce the dimension of the problem under certain conditions to obtain tractability.

Let demand θ have a discrete distribution with N possible levels so θn,n = 1, . . . ,N. The optimal
contract can consist of multiple options (qn, tn),n = 1, . . . ,N where each option is a quantity and price
combination geared towards a particular demand level θn. The principal chooses these options to maximize
her expected profit given the uncertainty in demand. The agent may select the option (qn, tn) from the
contract that maximizes his utility once his actual demand level is realized. Alternatively, let θ be a
continuous random variable. Then, the optimal contract consists of the functions (q(θ), t(θ)), where the
quantity and price are functions of θ . The continuous demand principal agent problem has been studied in
Mirrlees (1999). It is often difficult to find an analytical or numerical solution for the continuous distribution
case, and this paper proposes a sample-average approximation solution to help solve this problem. We
refer to these two distributional settings as the “discrete problem” and the “continuous problem.”

The continuous demand problem presented here attempts to maximize a concave objective profit function
which is an expectation over one continuous nonnegative random variable. We propose a sample-average
approximation (SAA) approach. We sample N0 values of θ from the continuous distribution, and formulate
a deterministic optimization problem using a discrete equally weighted distribution over the sampled values
of θ . The solution to the discrete problem yields a set of options (qn, tn),n = 1, . . . ,N0 which “approximates”
the continuous distribution solution (q(θ), t(θ)), and we will explore the nature of this approximation.

We study a simple implementation of the continuous problem that yields an analytical solution, allowing
us to analyze the quality of the discrete problem approximation. Studying this example helps support ongoing
work to justify use of sample average approximation to solve general instances of the continuous PA problem.
The solution to the continuous problem is a function, and we describe the challenges associated with applying
functional SAA results to this problem.

2 THE PRINCIPAL-AGENT (PA) PROBLEM

This section describes the principal-agent problem. First, suppose that the agent’s demand θ for a product
is deterministic, and that the principal offers the agent an option (q, t) which sells q units of the product for
total price t. The principal has a cost function s(q) and will obtain a profit t− s(q) if the agent participates.
The value function to the agent receiving quantity q of the product is v(q,θ), and we assume this value
function is concave and increasing in q, for q≤ θ . The utility to the agent from participating in the contract
is v(q,θ)− t. The principal then has the following optimization problem:

(q̄, t̄) =
argmax(q,t) t− s(q)

s.t. v(q,θ)− t ≥ 0,

where the constraint is imposed to ensure the agent participates. Call q̄ the “efficient quantity,” and t̄ the
“full price” that would be offered if there was no uncertainty for an agent with demand θ . Typically, the
prices and quantities offered to agents under uncertainty in θ will be smaller than the full price and efficient
quantity, respectively. We next describe the discrete and continuous problem when θ has a distribution.

2.1 The Discrete Problem

In the discrete problem, the hidden demand of the agent can take values θn,n= 1, . . .N, where θn is ordered by
increasing value. The probability of each demand level θn is πn,n = 1, . . . ,N, with ∑n πn = 1. As described
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in the introduction, the principal’s goal is to design a contract of multiple options (qn, tn),n = 1, . . . ,N,
with each option geared towards a particular demand level θn. The principal’s optimization problem can
be written as

max
{qn,tn}

Φ = ∑
N
n=1 πn(tn− s(qn))

s.t. v(qn,θn)− tn ≥ 0 n ∈ 1, . . . ,N (IRn)

v(qn,θn)− tn ≥ v(qn′ ,θn)− tn′ n,n′ ∈ 1, . . . ,N,n 6= n′ (ICnn′)

qn ≥ 0, tn ≥ 0 n ∈ 1, . . . ,N (NNn).

(1)

The objective is to choose the contract options offered towards the agent’s demand levels such that
the expected profit is maximized. In order to ensure that the objective function is valid in using demand
probabilities πn, the constraints ensure that agents select the contract that is designed for them. Each
IRn constraint is the individual rationality constraint that ensures the agent receives nonnegative utility
from choosing the option that is designed for his realized demand level. The ICnn′ incentive compatibility
constraints ensure that if an agent has demand θn, he will not benefit by choosing the option designed for
θn′ . Finally, the NNn constraints ensure nonnegativity in the contract values.

We note that the solution to (1) can often be easily obtained using a nonlinear solver, for example when
v(q,θ) is concave and s(q) is linear in q. Formulation (1) can be re-written with a concave objective and
linear constraints by using the information rents ∆n = v(qn,θn)− tn as decision variables instead of tn. The
information rent is the decrease in price relative to the full price t̄n (as t̄n = v(qn,θn) in the deterministic
case). Moreover, let ρ(θn,θn′ ,qn′) = v(qn′ ,θn)−v(qn′ ,θn′) represent the difference in utility between agents
with demand levels θn and θn′ when selecting quantity qn′ . This reformulation is presented as:

max
{qn,∆n}

Φ =
N
∑

n=1
πn [v(qn,θn)−∆n− s(qn)]

s.t. ∆n ≥ 0 n ∈ 1, . . . ,N (IRn)

∆n ≥ ρ(θn,θn′ ,qn′)+∆n′ n,n′ ∈ 1, . . . ,N,n 6= n′ (ICnn′)

qn ≥ 0 n ∈ 1, . . . ,N (NNn).

(2)

Formulation (2) has constraints that are linear in the decision variables qn and ∆n when ρ(θn,θn′ ,qn′)
is linear in qn′ , and the objective function is concave when v(qn,θn) is concave and increasing in q and
s(qn) is linear and increasing in qn.

2.2 The Continuous Problem

When θ is a bounded nonnegative continuous random variable with density f (θ), the optimal contract is
a function of θ and takes the form (q(θ), t(θ)) over the range of θ , [θ ,θ ]. Let the information rent be
defined as ∆(θ)≡ v(q(θ),θ)− t(θ), then the principal’s problem can be written as

max
{q(θ),∆(θ)}

Φ =
θ∫
θ

[v(q(θ),θ)−∆(θ)− s(q(θ))] f (θ)dθ

s.t. ∆(θ)≥ 0 θ ∈ [θ ,θ ] (IRθ )

∆(θ)≥ ρ(θ ,θ ′,q(θ ′))+∆(θ ′) θ ,θ ′ ∈ [θ ,θ ],θ ′ 6= θ (ICθθ ′)

q(θ)≥ 0 θ ∈ [θ ,θ ] (NNθ ).

(3)

It can be quite difficult to obtain analytical solutions for q(θ),∆(θ). Appendix A derives a partial
analytical solution for (3).
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3 EXAMPLE: CARBON CAPTURE AND STORAGE

We present an example of a PA problem. Our context is motivated by carbon capture and storage (CCS)
systems. CCS is the process of capturing CO2 from an emissions source, such as a power plant, and
transporting it to a facility where it can be liquified and injected underground for storage. The idea is to
prevent, at relatively low cost, excess CO2 emissions from entering the atmosphere. CCS, in conjunction
with renewable energy and other alternatives, can form a portfolio for reducing emissions. Klokk et al.
(2010) and Middleton et al. (2012) describe alternative models for structuring CCS systems between
emissions sources and storage operators.

We study a pay-at-the-gate model, where power plants pay an external agency to transport and store
CO2, as opposed to conducting the storage themselves (Esposito, Monroe, and Friedman 2011). The
principal is the storage operator, who wants to maximize her profits from charging the agents (power
plants/emissions sources) to store excess CO2 over the allowable emissions limit. The agent has a random
demand θ for CCS services based on his CO2 emissions. If the agent selects an option with quantity q
and price t, he will pay a price t to transport at most q units (Megatonnes of CO2).

A carbon tax penalty is required to provide an incentive for power plants to participate in CCS. We
assume a convex and increasing penalty function p(x),x≥ 0 applied where x is the emissions level above
the allowable limit, and p(x) = 0 for all x < 0. Additionally, the emitter faces a cost of capturing c(q) in
preparation for delivering q units to the principal. The emitter’s value function for a contract with quantity
q when his demand is θ is defined as

v(q,θ) = p(θ)− p(θ −q)− c(q) for q≤ θ . (4)

We can assume q≤ θ because v(q,θ) = p(θ)−c(q) decreases in q when q > θ , so the emitter will never
choose a q that is greater than θ . The first term on the right hand side of (4) is the foregone penalty from
emitting θ units. The second term is the tax penalty paid on the excess emissions above the amount to be
transported, q. The last term is the cost of capturing q units. In PA problems, the value function is required
to meet a single-crossing property, which means that the derivative of v(q,θ) with respect to q increases
as θ increases so that an agent with higher θ will have a higher valuation for larger values of q. When
p(x) is increasing and convex in x and c(q) is linear and increasing in q, the single-crossing property is
met. Finally, PA problems assume monotonicity in qn such that qn ≤ qn′ for n < n′.

We employ generic functions to enable analytical solutions and numerical computations. The penalty
function used is p(x) = α

2 x2, for x≥ 0 with α > 0 . The cost functions are linear in q: c(q) = γq, γ > 0, and
s(q) = βq, β > 0, where γ is the per unit cost of capturing CO2 and β is the per unit cost of transporting
and storing CO2. Using the monotonicity property for qn, formulation (2) can be reduced to

max
{qn,∆n}

Φ =
N
∑

n=1
πn [v(qn,θn)−∆n−βqn]

s.t. ∆1 ≥ 0 (IR1)

∆n ≥ α(θn−θn′)qn′+∆n′ ∀n = 2, ...,N,n′ = n−1 (ICnn′)

qn ≥ qn′ ∀n = 2, ...,N,n′ = n−1 (MONnn′).

(5)

We note that ∆n is also monotonic and increasing. Because (5) has far fewer constraints than (2), we
perform computations using (5) to find solutions to the discrete problem. Next, we can use our specific
forms of v(q,θ),s(q),c(q) and ρ(θn,θn′ ,qn′) in the continuous case. Appendix B shows that the optimal
quantity and information rent functions are:

q∗(θ) = θ +
γ +β

α
− F(θ)

f (θ)
, ∆

∗(θ) =
∫

θ

θ

αq∗(ϑ)dϑ .
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Additionally, if we assume that the density of θ is uniform on the range [θ ,θ ], then we can derive the
threshold that determines whether the agent participates as:

θc = max
{

θ ,
1
2

(
θ +

γ +β

α

)}
,

where if θ ≥ θc the agent will purchase CCS services from the principal, otherwise he will not participate.
Appendix B derives the optimal quantity and information rent functions as

q∗(θ) =
{

0 if θ < θc

2θ −θ − γ+β

α
if θ ≥ θc,

(6)

∆
∗(θ) =

{
0 if θ < θc

α(θ 2−θ 2
c )− (αθ + γ +β )(θ −θc) if θ ≥ θc.

(7)

4 SAMPLE AVERAGE APPROXIMATION

We propose using sample average approximation (SAA) to solve the PA problem when θ has a continuous
distribution. As Section 2.2 suggests, it is difficult to derive the optimal contract function (q(θ), t(θ)) for a
general form of the profit and cost functions, though it is possible for some specific situations as shown in
(6) and (7). However, for a discrete distribution for θ , the optimal solution often can be readily calculated
numerically using standard nonlinear optimization packages. We explore the ability of the discrete problem
to approximate the continuous problem using sample average approximation.

We formulate an approximation to the continuous problem using the discrete problem with N0 sampled
values of θn from the continuous density f (θ). These sampled values of θn form a discrete empirical
distribution with each sample having equal weight 1/N0. Then, we can solve the following problem with
a sample average approximation in the objective:

max
{qn,∆n}

Φ = 1
N0

N0

∑
n=1

[v(qn,θn)−∆n−βqn]

s.t. ∆1 ≥ 0 (IR1)

∆n ≥ α(θn−θn′)qn′+∆n′ ∀n = 2, ...,N0,n′ = n−1 (ICnn′)

qn ≥ qn′ ∀n = 2, ...,N0,n′ = n−1 (MONnn′).

(8)

We abuse notation and call the solutions (θn,q∗n) and (θn,∆
∗
n) “function” approximations, and will

observe in the numerical results below that as N0 increases, these “functions” more closely approximate
the functional solutions (θ ,q∗(θ)) and (θ ,∆∗(θ)) from the continuous case as derived in (6) and (7).
Continuous functions can be approximated using piecewise linear interpolations between the discrete points
in (θn,q∗n) and (θn,∆

∗
n). However, the optimal quantity (θn,q∗n) takes a step function form in the discrete

case, with the steps increasing as θ increases. As shown by Maskin and Riley (1984), there exists a set of
subintervals where the optimal quantity function is constant. This step function solution shows pooling, in
which consecutive values of θ are assigned the same q, but have different information rents. To construct
continuous functions based on the discrete solutions, we note that a semi-continuous feasible solution exists
so that between demands θn and θn+1, the principal can offer either q∗n or q∗n+1 (we omit the details for
brevity).

We explore the behavior of the SAA estimator (8) when the demand distribution f (θ) is Uni f [θ ,θ ]
to compare the numerical results to the known solution. Emissions data is publicly available and we use
data from eight plants in Illinois. Applying proposed 2015 CO2 limits by the Environmental Protection
Agency, we calculate the amount of emissions per month that would need to be stored using the historical
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data sets for the years 2000-2012. A number of distributions can be estimated for the storage demand,
but for the purposes of this paper we specify a uniform distribution between 0.3 and 1 Megatonnes which
encompasses the range of values across the eight power plants.

From past research on CCS systems (Cai et al. 2014, Singham et al. 2015) we estimate the cost and
penalty parameters in the model. We calculate the cost to transport and store CO2 as β =$13/tonne, and
the cost to the emitter of capturing CO2 as γ =$45/tonne. We can estimate a carbon tax of approximately
$100/tonne, and calibrate α by estimating the per unit tax to be $100 when θ = 0.7 Mt (Megatonnes).
Solving using the total tax function α

2 θ 2 yields α = 2.86×10−4.
We model formulations (2), (5), and (8) using Pyomo (Hart et al. 2011, Hart et al. 2012) and apply the

nonlinear solver IPOPT (Wächter and Biegler 2006) to obtain all numerical results. For various values of
N0, we take samples θn from Uni f (0.3,1) and use those demand values with πn = 1/N0 to solve the discrete
problem (8). This yields contract option solution “functions” (θn,q∗n) and (θn,∆

∗
n). Figure 1 shows the

discrete problem solution for N0 = 100 and N0 =1,000. The red solid line denotes the analytical solution to
the continuous problem. Figure 2 shows the discrete solutions for increased sample sizes of N0 =10,000 and
N0 =100,000. As we increase N0, we observe (θn,q∗n) and (θn,∆

∗
n) more closely approximating (θ ,q∗(θ))

and (θ ,∆∗(θ)), which are (6) and (7).
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Figure 1: Discrete problem solution with N0 =100 and N0 =1,000. The red line shows the analytical results
(6) and (7) for the continuous problem.

For large enough N0, the discrete solution begins to resemble the piecewise linear solution from the
continuous case. In the case of (θn,∆

∗
n), an approximate quadratic function is obtained for small sample

sizes, but the estimate appears to be biased and converges from below to the optimal solution as N0 increases.
This means that the information rent will be smaller than optimal due to the perceived certainty in θ in
the discrete case relative to the true density f (θ), so the prices offered will be higher than they should be
in the continuous case.

There are many issues to consider before we can begin to establish the consistency of the SAA estimator
(8). There exist some results showing the consistency of SAA estimators when the decision variables of
the problem lie in a function space. One such result is Proposition 3.3 of Royset and Wets (2017), which
shows the epi-convergence of sample average approximations for locally inf-integrable random lower-
semicontinuous functions under some conditions. However, (8) has multiple complications that prevent
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Figure 2: Discrete problem solution with N0 =10,000 and N0 =100,000. The red line shows the analytical
results (6) and (7) for the continuous problem.

Table 1: Mean and half-width of the optimal profit (in millions of dollars) for the SAA estimator (8) with
100 independent replications used for each value of N0.

N0 Mean 95% Half-Width
100 18.28 0.36

1,000 17.41 0.13
10,000 17.29 0.04
100,000 17.27 0.01

Continuous 17.25 —

immediate application of prior results to show consistency. The first is that while the functions q∗(θ) and
∆∗(θ) are continuous over the range of θ , the SAA estimates q∗n and ∆∗n are not continuous or defined
for all θ . Additionally, the random generation of constraints associated with the samples θn cannot be
immediately written as a sample average because they are functions of multiple particular values of θ (θn
and θn′). Future work will determine the conditions under which the SAA approximation can be quantified
under a general PA setting.

To observe the behavior of SAA estimators over many replications, we replicate solving (8) for multiple
sample paths and collect the maximum expected profit value. We report confidence intervals for the optimal
profit to observe the bias in the estimate and the decreasing half-width as N0 increases in Table 1. We observe
the optimal profit approach the analytical optimal profit for the continuous problem. For well-defined SAA
problems with finite solution spaces, the sample size N0 can conservatively be chosen to guarantee with a
given probability that the solution is close to optimal (Shapiro 2003), but due to the lack of a consistency
result we are unable to offer direct guidance for our particular problem.

We note that solving the discrete problem for different functional forms of v(q,θ) and s(q) is not
difficult, though sometimes a mixed-integer nonlinear solver is needed. However, we cannot ensure the
quality of the SAA solution will be similar to that given in the problem above. For example, when θ is
assumed to have an exponential distribution, the unbounded range of the function space yields complications
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numerically because the range of the space in the discrete problem depends on the samples drawn, and the
fit of the discrete solution can be poor at high demand levels where fewer values are sampled.

5 CONCLUSION

This paper suggests the use of sample average approximation to solve continuous principal-agent problems
using sampled demand values in discrete principal-agent problems. The discrete problem, while non-linear,
is often well-posed so that a solution can be obtained using a solver. We explore a specific implementation
that yields analytical solutions for the continuous problem. We present an example that suggests consistency
may exist under some simplified conditions. Future work needs to show what conditions are needed, and
how the discrete solution can be transformed to a continuous function that approximates the true solution.
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A CONTINUOUS PROBLEM PARTIAL SOLUTION

The derivation of the solution for the continuous problem follows the one provided in Tadelis and Segal
(2005). We assume the distribution of θ is continuous and bounded over [θ ,θ ]. Let vθ (q(θ),θ) be the
derivative of the value function with respect to θ . The problem in formulation (3) is equivalent to the
following:

max
{q(θ),∆(θ)}

Φ =
θ∫
θ

[v(q(θ),θ)−∆(θ)− s(q(θ))] f (θ)dθ

s.t. ∆(θ) = 0 (IRθ )

∆′(θ) = vθ (q(θ),θ) θ ∈ [θ ,θ ] (ICFOCθ )

q′(θ)≥ 0 θ ∈ [θ ,θ ] (MONθ ).

Constraints (ICFOCθ ) and (IRθ ) yield

∆
∗(θ) =

∫
θ

θ

vϑ (q(ϑ),ϑ)dϑ . (9)

Thus, the objective function becomes

max
q(θ)

θ∫
θ

[
v(q(θ),θ)−

θ∫
θ

vϑ (q(ϑ),ϑ)dϑ − s(q(θ))

]
f (θ)dθ

= max
q(θ)

θ∫
θ

[v(q(θ),θ)− s(q(θ))] f (θ)dθ −
θ∫
θ

θ∫
θ

vϑ (q(ϑ),ϑ)dϑ f (θ)dθ

= max
q(θ)

θ∫
θ

[v(q(θ),θ)− s(q(θ))] f (θ)dθ −

(
θ∫
θ

vϑ (q(ϑ),ϑ)dϑ ·F(θ)

∣∣∣∣θ
θ

−
θ∫
θ

vθ (q(θ),θ)F(θ)dθ

)

= max
q(θ)

θ∫
θ

[v(q(θ),θ)− s(q(θ))] f (θ)dθ −

(
θ∫
θ

vθ (q(θ),θ)dθ −
θ∫
θ

vθ (q(θ),θ)F(θ)dθ

)
= max

q(θ)

θ∫
θ

[
v(q(θ),θ)− s(q(θ))− vθ (q(θ),θ)

F(θ)
f (θ)

]
f (θ)dθ .

(10)
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B A SPECIAL CASE

In the case where p(x) =
α

2
x2, v(q,θ) = p(θ)− p(θ − q)− c(q), c(q) = γq, and s(q) = βq, we can

compute v(q,θ) =
α

2
θ

2− α

2
(θ −q)2− γq = αθq− α

2
q2− γq, vθ (q,θ) = αq, vq(q,θ) = α(θ −q)− γ and

∆
∗(θ) =

∫
θ

θ

αq(ϑ)dϑ .

The objective function in the last line of (10) achieves optimality when the integrand at each θ is
maximized. Taking the derivative of the integrand with respect to q for a fixed θ and setting it to zero, we
obtain the following:

∂

∂q

[
v(q,θ)− s(q)− vθ (q,θ)

F(θ)

f (θ)

]
= αθ −αq− (γ +β )−α

F(θ)

f (θ)
= 0,

and thus the quantity selected becomes a function of θ , that is, q(θ) = θ − γ+β

α
− F(θ)

f (θ) . In the special case

where θ follows a distribution Uni f [θ ,θ ], q(θ) = θ − γ+β

α
− (θ −θ) = 2θ −θ − γ+β

α
.

Because the derivative of q(θ) with respect to θ is constant and equals to 2, the (MONθ ) constraint
is satisfied. We can thus conclude that q∗(θ) = 2θ −θ − γ+β

α
. To ensure nonnegativity is satisfied, we set

the optimal quantity as

q∗(θ) =

{
0 if θ < θc, where θc = max

{
θ , 1

2

(
θ + γ+β

α

)}
2θ −θ − γ+β

α
if θ ≥ θc.

Using (9) we can derive

∆
∗(θ) =

{
0 if θ < θc

α(θ 2−θ 2
c )− (αθ + γ +β )(θ −θc) if θ ≥ θc.

The principal’s optimal profit is then

Φ
∗ =−α

3

(
θ

3−θ
3
c

)
+α

(
θ −θc

)[1
2

θ
2
+

1
2

(
γ +β

α

)2

+θc

(
θc−

γ +β

α

)]
.
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Özer, O., and W. Wei. 2006. “Strategic Commitment for Optimal Capacity Decision Under Asymmetric
Forecast Information”. Management Science 52 (8): 1238–1257.

Royset, J.O. and Wets, R. J-B. 2017. “Constrained Maximum Likelihood Estimators for Densities”.
https://arxiv.org/abs/1702.08109.

Shapiro, A. 2003. “Monte Carlo Sampling Methods”. Handbooks in Operations Research and Management
Science 10:353–425.

Singham, D., W. Cai, and J. White. 2015. “Optimal Carbon Capture and Storage Contracts using Historical
CO2 Emissions Levels”. Energy Systems 6 (3): 331–360.

Tadelis, S. and Segal, I. 2005. “Lectures in Contract Theory”. http://faculty.haas.berkeley.edu/stadelis/
econ 206 notes 2006.pdf.

Tsay, A. 1999, October. “The Quantity Flexibility Contract and Supplier-Customer Incentives”. Management
Science 45 (10): 1339–1358.
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