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ABSTRACT

In this paper, we introduce a sequential procedure for the Multi-Objective Ranking and Selection (MOR&S)
problems that identifies the Pareto front with a guaranteed probability of correct selection (PCS). In particular,
the proposed procedure is fully sequential using the test statistics built upon the generalized sequential
probability ratio test (GSPRT). The main features of the new proposed procedure are: 1) a unified framework,
the new procedure treats the multi-objective problems in the same way as the single-objective problems;
2) an indifference-zone-free formulation, the new procedure eliminates the necessity of indifference-zone
parameter; 3) asymptotically optimality, the GSPRT achieves asymptotically the shortest expected sample
size among all sequential tests; 4) general distribution, the procedure uses the empirical likelihood for
generally distributed observation. A numerical evaluation demonstrates the efficiency of the new procedure.

1 INTRODUCTION

The Ranking and Selection problems (R&S) are to select the best system(s) among a finite set of alternatives.
This paper considers the multi-objective R&S (MOR&S) problems. In the context of multi-objectives, the
”best” systems are characterized by the Pareto front that systems within the Pareto front are not dominated
by any other alternatives. According to Pasupathy and Ghosh (2013), most procedures on R&S fall into
two categories: (a) class P procedures that guarantee a lower bound for the probability of correct selection
(PCS), (b) class L procedures that efficiently allocate a finite computing budget. In this paper, we propose
a class P procedure for the MOR&S.

Most previous studies on MOR&S are class L procedures. These procedures include the multi-objective
optimal computing budget allocation (Lee, Chew, and Teng 2007; Lee et al. 2010), which proposes a
computing allocation framework for MOR&S under the assumption of normally distributed outputs and
independent objectives; optimal sampling laws proposed by Feldman, Hunter, and Pasupathy (2015) that
allocates sampling budget accounting for dependence between the objective vector estimates for a single
system in the context of bi-objective; myopic strategy M-MOBA (Branke and Zhang 2015; Branke, Zhang,
and Tao 2016) that targets to minimize the difference in hyper-volume between the observed means of the
perceived Pareto front and the true Pareto front.

To the best of the authors’ knowledge, this work is the first class P procedure on MOR&S. There are
many established procedures that control PCS for the single-objective R&S problems, i.e., KN procedure
(Kim and Nelson 2001), KN++ procedure (Kim and Nelson 2006), BIZ procedure (Frazier 2014), and
IZ-free procedure (Fan, Hong, and Nelson 2016). These procedures, however, cannot be easily extended
to MOR&S since there could be more than one best systems in the Pareto front. Therefore, their common
strategy that compares an alternative with the single perceived best system fails.
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To solve this problem, we directly test on whether an alternative is in the Pareto front or not. We call
such a test the candidacy test and approach it using the generalized sequential probability ratio test (GSPRT)
(Kiefer and Weiss 1957; Li, Liu, and Ying 2014). To achieve the desired level of error probabilities, the
GSPRT continues to gather samples until the likelihood ratio statistic crosses one of two decision boundaries.
The proposed procedure has following characteristics.

1. An indifference-zone-free formulation. This formulation eliminates the necessity to specify the
indifference-zone parameter.

2. A GLR-based procedure for multi-objective R&S problems. We propose to test directly on
whether an alternative is ”best”, i.e., in the Pareto front. We call such a test the candidacy test and
approach it using the sequential probability ratio test (SPRT) (Wald 1945, Wald 1945, Kiefer and
Weiss 1957, Pavlov 1988, Pavlov 1991). To achieve the desired level of error probabilities, the
SPRT continues to gather samples until the test statistic crosses one of the decision boundaries.

3. Adaptive implementation for various distributions. Most classic R&S procedures are valid only
when observations are from normal distributions. In many cases, normality assumption is reasonable.
Nonetheless, there are special situations when this is not the case. The proposed procedures are
flexible to be implemented under various assumptions of distributions.

The rest of the paper is organized as follows. We introduce the notations and definitions in section
2. In Section 3, we present and justify the sequential procedure to identify the Pareto front for MOR&S
under the normality assumption. In section 4, we relax the normality assumption and propose a sequential
procedure based on empirical likelihood. A special case of single-objective R&S is considered in Section
5. Section 6 presents numerical evaluations.

2 PROBLEM STATEMENT

Multi-objective R&S (MOR&S) is a natural extension of single-objective R&S. Let us consider a MOR&S
problem with K independent candidate systems and d objectives for each system. Denote Ω = {1, ...,K}
as the candidate set. The mean vector of the alternative i is µµµ i = [µi1,µi2, ...,µiD]

′ ∈ RD. We assume that
µµµ i is unknown and can only be observed with noise. When the alternative i is sampled, a random vector
Xi ∈ RD with E[Xi] = µµµ i is observed. Throughout this thesis, we assume following condition hold:

A1 Systems are unique in all objectives, i.e., µid 6= µ jd for all i, j ∈ {1,2,3, ...,K} and d ∈ {1,2,3, ...,D}.

Condition A1 is critical for the finite-time termination of the proposed procedure as it avoids the situations
when two or more systems have the same mean performances.

The R&S problems are to identify the ”best” system(s). In the context of multi-objective, the ”best”
systems are alternatives that are not-dominated, which are defined as below
Definition 1 An alternative i is dominated by an alternative j (denoted by µµµ i � µµµ j), if µid ≤ µ jd for all
objectives d = 1,2, ...,D.

An alternative i is not dominated by an alternative j (denoted by µµµ i � µµµ j), if µid > µ jd for at least
one objective.

An alternative is called Pareto optimal if it is not dominated by all other alternatives, and the set of
Pareto optimal alternatives is called the Pareto front.

Denote the Pareto front as S1 , {i|∀ j ∈Ω, i� j} and the non-Pareto-front as S0 , {i|∃ j ∈Ω, i� j}.
Remark In multi-objective optimization, the definition of dominated above is also called the weakly
dominated, as opposed to the concept of strongly dominated that requires µid < µ jd for all objectives. This
distinction, in stochastic optimization, however, is impractical as a sharp distinction is not possible due to
sampling error. Therefore, we do not distinguish these two concepts.
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The objective of the proposed procedures is to identify the Pareto front, S1, correctly with a guaranteed
probability of correct selection. Denote the perceived Pareto front as S̃1, the PCS can be written as
PCS = P(S̃1 = S1)≥ 1−α , where α is a pre-specified error probability. The proposed procedures deliver
the guarantee of PCS through conduct two types of hypothesis tests, namely, pairwise test and candidacy
test.
Definition 2 The pairwise test between i and j determines whether system i is dominated by j.

H0 : µµµ i � µµµ j and H1 : µµµ i � µµµ j (1)

The candidacy test of i determines whether an alternative i is in the Pareto front.

H0 : i ∈ S0 and H1 : i ∈ S1 (2)

Remark The pairwise test defined above differs from pairwise comparison in single-objective R&S
procedures (i.e. KN, KN++, and IZ-free) in two aspects. First, those procedures only compare an
alternative with the practical best alternative; whereas the pairwise test in our procedures consider all pairs.
Second, pairwise comparisons in those procedures are reflexive: µi > µ j is equivalent to µ j > µi; whereas
µµµ i � µµµ j doesn’t imply µµµ j � µµµ i in our procedures.

3 METHODOLOGY

A common modeling strategy in other leading frequentist approaches is to approximate the sum of differences
between two alternatives as a Brownian motion with a drift term, where the drift term is determined by
the true difference between their means (Kim and Nelson 2001; Kim and Nelson 2006; Fan and Hong
2014; and Fan, Hong, and Nelson 2016). These procedures construct the continuation region and make an
elimination decision when the BM process exist the region. This strategy, however, is an indirect approach
to compare systems, and thus conservative.

In this thesis, we propose a direct modeling method using the Sequential Probability Ratio Test (SPRT).
The classic Sequential Probability Ratio Test (SPRT) was proposed by Wald and others (Wald 1945,
Wald and Wolfowitz 1948) in response to the need of efficient testing tools. The SPRT is a sequential
procedure that does not fix the sample size. Let X1,X2, ... be i.i.d. random variables with the same
distribution f . The SPRT tests a simple hypothesis H0 : f = f0 versus a simple alternative hypothesis
H1 : f = f1. It tracks the likelihood ratio (LR) statistic Λn = ∏

n
i ( f1(Xi)/ f0(Xi)), and terminates at stopping

time τ = inf{n : Λn ≥ B or Λn ≤ A}, where A and B are decision boundaries satisfying 0 < A < 1 < B < ∞.
At termination, the null hypothesis H0 is rejected if Λτ ≥ B or is accepted if otherwise. Let α1 be the type
I error probability and α2 be the type II error probability, Wald (1945) shows the explicit solution of A
and B in terms of α1 and α2 are approximately: A = α2

1−α1
and B = 1−α2

α1
. It is proved that SPRT is optimal

in terms of minimizing the average sample size among all tests under both H0 and H1 at a given level of
type I and type II error probabilities (Wald and Wolfowitz 1948).

The Generalized Sequential Probability Ratio Test (GSPRT) is an extension of SPRT is to test two or
more composite hypotheses. Let Θ be the parameter space of the probability density function f . In this
paper, GSPRT tests two composite hypotheses

H0 : θ ∈Θ0 and H1 : θ ∈Θ1 (3)

where Θ1 and Θ2 are disjoint subsets of Θ.
The GSPRT uses the generalized likelihood ratio (GLR) statistics instead of simple likelihood ratios.

In this paper, we use the GSPRT of the following form,

Λn =
supθ1∈Θ1 ∏

n
i=1 fθ1(Xi)

supθ0∈Θ0 ∏
n
i=1 fθ0(Xi)

(4)
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Essentially, the GLR statistic ”self-tunes” to information about the true θ over the course of the test. The
GSPRT stops sampling after the nth observations if the GLR crosses either of the two boundaries Λn ≥ Bn
or Λn ≤ An. The null hypothesis is rejected if Λn ≥ Bn and is accepted if Λn ≤ An. For a pair of An and
Bn, denote the stopping time as

τ = inf{n : Λn ≥ Bn or Λn ≤ An} (5)

The classification error at the stopping time τ is determined by An and Bn together.

max{ sup
θ∈Θ1

Pθ (Λτ ≤ Aτ), sup
θ∈Θ0

Pθ (Λτ ≥ Bτ)} (6)

where Pθ represents the probability measure for a given θ .
For the validity of the GSPRT in the context of the R&S problem, we introduce following technical

conditions:

A2 The sample spaces of X is compact;
A3 The density fθ (x) is continuous in (θ ,x);
A4 ρ(θ0,θ1)> 0 for all θ0 6= θ1, where ρ(θ0,θ1) is the Kullback-Leibler distance from θ0 to θ1:

ρ(θ0,θ1) = Eθ0{log fθ0(X)− log fθ1(X)} (7)

where Eθ represents taking the expectation with respect to f (θ).

Under these conditions, we have the following theorem to show that the GSPRT with the time-invariant
testing boundaries (A,B) = (α, 1

α
) controls the type I and type II error probabilities at the level of α .

Theorem 1 (Theorem 2.1 in Li, Liu, and Ying (2014)) Consider the composite null hypothesis against
composite alternative hypothesis given as in (3). With testing boundaries A = α and B = 1

α
, the GSPRT

admits stopping time (5) and the GLR statistic (4). Under Conditions A1-5, the maximal error probability
is asymptotically bounded above by

max{ sup
θ∈Θ1

Pθ (Λτ ≤ α), sup
θ∈Θ0

Pθ (Λτ ≥
1
α
)} ∼= α (8)

where Pθ represents the probability measure for a given θ .
Remark In the classic SPRT method, the thresholds A = α2

1−α1
and B = 1−α2

α1
, where α1 and α2 are the

pre-specified type I and type II error probabilities, have the same decay rate as in 8.
The choice of testing boundaries (A,B) = (α, 1

α
) is not only valid to control the error probability at α

level, but also asymptotically optimal in the sense that it achieves the shortest expected sample size as α

tends to zero. The next theorem states the asymptotic approximation of the expected stopping time.
Theorem 2 (Theorem 2.3 in Li, Liu, and Ying (2014)) Under the setting and the conditions of Theorem 1, the
expected stopping time of the GSPRT with (A,B) = (α, 1

α
) admits the following asymptotic approximation

Eθ0(τ)≤
logα−1

infθ1∈Θ1 ρ(θ0,θ1)
(1+o(1)) and Eθ1(τ)≤

logα−1

infθ0∈Θ0 ρ(θ1,θ0)
(1+o(1)) (9)

as α → 0 for all θ0 ∈Θ0 and θ1 ∈Θ1.
The asymptotic optimality of the GSPRT is proved by showing that the expected stopping time stated

in Theorem 2 asymptotically achieves the lower bound of the stopping time of any sequential procedures
with guaranteed error probabilities.
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4 THE SEQUENTIAL PROCEDURE FOR MOR&S

In this section, we present the GLR-based framework that controls PCS for R&S . This framework is valid
for both the single-objective and the multi-objective situations. The framework makes no assumption on
the underlying distributions and thus could be implemented under various assumptions on distributions.
Section 4.1 presents the framework, and Section 4.2 focuses on the calculation of the statistics. Statistical
validities are given in Section 4.3.

4.1 The Framework

The framework is illustrated in Algorithm 1. The first step in the framework is divide the PCS using the
Bonferroni method. Recall that the objective is to identify the Pareto front S1 with a guaranteed PCS.
Denote the perceived ”best” systems as S̃1 and the perceived ”inferior” alternatives S̃0. Thus, we can
decompose the PCS as:

PCS = P(S̃1 = S1)

= 1−P{S̃1 6= S1}
= 1−P{[∪i∈S1 i ∈ S̃0]∪ [∪i∈S0 i ∈ S̃1]}
≥ 1− ∑

i∈S1

P(i ∈ S̃0)− ∑
i∈S0

P(xi ∈ S̃1)

= 1−∑
i∈Ω

P(i is selected incorrectly)

Algorithm 1 The GSPRT Framework for Ranking and Selection
Inputs:

1: PCS = 1−α . Desired PCS level
2: Ω = {1, ...,K} . Pool of candidate systems

Procedure:
1: set αi =

α

K
2: set S̃0 = /0 and S̃1 = Ω;
3: set Ai = αi and Bi = 1/αi; . A and B are the GSPRT test boundaries
4: generate n0 samples for each system in S̃1;
5: set n = n0;
6: repeat
7: generate 1 more sample for all systems in S̃1;
8: set n = n+1;
9: for i ∈ S̃1 do

10: calculate the GLR statistic Λi
n for i;

11: if the Λi
n crosses the lower boundary then

12: set S̃1 = S̃1/{i} and S̃0 = S̃0∪{i}
13: end if
14: end for
15: until Λi

n are above upper boundary for all i ∈ S̃1
16: return S̃1

Let us denote the error probability of the candidacy test on the alternative i is αi, the PCS is bounded
below by 1−∑αi. Therefore, to deliver the PCS = 1−α guarantee, we use αi =

α

K . Note that αi =
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P(xi is selected incorrectly) is both the maximal type I and type II error probabilities of the candidacy test
of xi. Note that this decomposition is valid without the independent assumptions. Thus, the framework is
robust against any dependency or topological structures.

According to Theorem 1, the framework sets the testing boundaries as A = αi and B = 1/α . Then, the
framework conducts the candidacy tests on the remaining systems in S̃1 and eliminates inferior systems
sequentially. It terminates when all of the remaining systems are found as the ”best” systems. Next
subsection shows how to calculate the GLR statistic for the candidacy test.

4.2 The GLR Statistic

The GLR statistic of the candidacy test is the cornerstone of the framework. Recall that the candidacy
test of the alternative i is on whether an alternative is in the Pareto front S1 or not, i.e., H0 : i ∈ S0 and
H1 : i ∈ S1. Let us denote Λi

n as the generalized likelihood ratio (GLR) statistic of the candidacy test on
the alternative i after accumulating n observations, and state Λi

n as

Λ
i
n =

L (i ∈ S1)

L (i ∈ S0)
(10)

where L (i ∈ S1) (L (i ∈ S0)) is the maximized likelihoods under the condition that the alternative i is (not)
in the Pareto front.

L (i ∈ S1) = sup
{µ1,...,µK}∈{i∈S1}

L(µ1, ...,µK |all observations accumulated to the nth round)

L (i ∈ S0) = sup
{µ1,...,µK}∈{i∈S0}

L(µ1, ...,µK |all observations accumulated to the nth round)

The closed-form expression of Λi
n is hard, if possible, to obtain analytically, since the event that the

alternative i is not in the Pareto front contains all possible scenarios that alternative i is dominated by
another system. Instead, we consider a conservative approximation of Λi

n using the fact that {i ∈ S1} =
{i� j for all j 6= i} and {i ∈ S0}= {i� j for at least one j 6= i}.

Denote Λ
i j
n as the GLR statistic of the pairwise test between the alternative i and the alternative system

j:

Λ
i j
n =

L (µµµ i � µµµ j)

L (µµµ i � µµµ j)
(11)

where L (µµµ i � µµµ j) (L (µµµ i � µµµ j)) is the maximized likelihood under the condition that the alternative x
is (not-)dominated by x.

L (i ∈ S1) = sup
{µ1,...,µK}∈{i∈S1}

L(µ1, ...,µK |all observations accumulated to the nth round)

L (i ∈ S0) = sup
{µ1,...,µK}∈{i∈S0}

L(µ1, ...,µK |all observations accumulated to the nth round)

Define Λi?
n as

Λ
i?
n , min

j∈Ω/i
Λ

i j
n (12)

Λi?
n is the minimum of Λ

i j
n over all j 6= i and provides a good estimation of Λi

n. We claim that Λi?
n is a

conservative approximation of Λi
n in the sense that decision made upon Λi?

n admits less error rate than Λi
n.

Theorem 3 Under the definition of Λi?
n as in 12, Λi

n and Λi?
n are in favor of the same decision, and the

absolute value of the logΛi?
n is bounded above by the absolute value of logΛi

n.
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Remark | logΛi
n| ≥ | logΛ

i,?
n | indicates Λi

n overshoot when Λ
i,?
n crosses the boundaries. Therefore, Λi?

n is a
less powerful GLR statistic than Λi

n. Although conservative, this approximation is found very tight through
simulations (See numerical evaluation section).

The GLR statistic of the pairwise test is much easier to calculate than its counterpart of the candidacy
test. The calculation, however, requires the assumptions of the underlying distributions. We will come
back to the detailed calculations in the next two sections.

4.3 The Statistical Validity

Combining Theorem 1 and Theorem 3, we establish the statistical validity of Framework 1 and summarize
it as the following theorem.
Theorem 4 Under the settings of Theorem 1 and Theorem 3 and Assumptions A1 and A2, the Procedure
2 terminates in finite time with probability 1 and selects the Pareto front with probability at least 1−α in
asymptotically sense, i.e.,

lim sup
α→0+

1−P(CS)
α

≥ 1 (13)

The above theorem states that the Framework 1 selects the entire Pareto front at the stopping time τ .
Nonetheless, if the procedure stops before τ , it is still guaranteed that the Pareto front is retained in the
candidate pool S̃1. The result is summarized as the following Theorem.
Theorem 5 Under the settings of Theorem 1 and Theorem 3 and Assumption A1 and A2, if the Framework
1 terminates at n before τ , then the candidate pool S̃1 retains the Pareto front with S1 with probability at
least 1−α , in asymptotically sense, i.e.,

lim sup
α→0+

S1 ∈ S̃1

α
≥ 1 (14)

4.4 The Implementation under Normality Assumption

The proposed framework is valid for a variety of distributions. For demonstration purposes, we consider
a MOR&S problem with observations from multivariate normal distributions.

Let us denote {Xi,1, ...,Xi,n} as the i.i.d. random observations obtained from the alternative i. Assume
{Xi,n} are from multivariate normal distribution N(µµµ i,Σi) with unknown mean and unknown covariance.
Hence, the differences between {Xi,n} and {X j,n} are also normally distributed. Denote Zi j,n = Xi,n−X j,n.
Therefore, Zi j,n ∼ N(µµµ i j = µµµ i−µµµ j,Σi j = Σi +Σ j). Let Z̄i j , 1

N ∑
N
n=1 Zi j,n be the sample mean of Zi j,· and

Si j , ∑
N
n=1(Zi j,n− Z̄i j)(Zi j,n− Z̄i j)

′ be the sample covariance. We have following result to compute Λ
i j
n .

Lemma 1 (Wang and Wan 2014) Under the normality assumption, the likelihood ratio in Equation 11 is
given by

Λ
i j
n ,

L (µµµ i � µµµ j)

L (µµµ i � µµµ j)
=

maxµ̂µµ i j�000

∣∣∣Si j
N +(Z̄i j− µ̂µµ i j)(Z̄i j− µ̂µµ i j)

′
∣∣∣−N

2

maxµµµ i j�−000

∣∣∣Si j
N +(Z̄i j− µ̂µµ i j)(Z̄i j− µ̂µµ i j)

′
∣∣∣−N

2
(15)

where 000 is vector of 0.
Using Lemma 1, Λ

i j
n can be easily calculated and updated using quadratic programming techniques.

With these formulations, we state the procedure in Algorithm 2.

5 NUMERICAL STUDIES

In this section, we run numerical experiments to test the performance of the proposed procedure.
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Algorithm 2 The Sequential Procedure with Normally Distributed Observations
Inputs:

1: PCS = 1−α . Desired PCS level
2: Ω = {x1, ...,xK} . Set of candidate systems

Procedure:
1: set S̃0 = /0 and S̃1 = Ω;
2: set αi =

α

K , Ai = αi, and Bi =
1
αi

;
3: set n = n0;
4: generate n0 samples for each system;
5: repeat
6: generate 1 more sample for all systems in S̃1;
7: set n = n+1;
8: for i ∈ S̃1 do
9: for j ∈ S̃1 do

10: calculate Λ
i j
n using 15; . GLR statistic for the pairwise test

11: end for
12: end for
13: for i ∈ S̃1 do
14: approximate Λi

n using 12; . GLR statistic for the candidacy test
15: if Λi

n ≤ Ai then
16: set S̃1 = S̃1/i and S̃0 = S̃0∪{i}
17: end if
18: end for
19: until Λi

n > Bi for all xi ∈ S̃1
20: return S̃1

5.1 Numerical Study on Single-objective R&S

The first experiment uses the same setting as the experiment in Fan and Hong (2014) and Fan, Hong,
and Nelson (2016). Consider a single-objective R&S problem with various number of alternatives, with
µi = 1.5− 0.5i and σ2

i = 10 for all i = 1, ...K. For K = 20, 50, 100, 500, we report the estimated PCS
and average sample sizes over 1,000 independent evaluations in Table 1.

Although the proposed procedure is indifference-zone free, it has the flexibility to take the IZ parameter
as an input. If a valid IZ parameter is provided, it will account for the minimum distance between two
systems in pairwise test. In the numerical study, we denote the IZ parameter as δ and vary it from 0 to
0.5, the gap between the best system and the other systems.

From Table 1, we obtain the following three findings. Firstly, the average sample size increases as
the δ increases. The same pattern is also found in KN++. Secondly, under the same IZ setting, the new
procedure consistently outperforms both the IZ-free procedure and KN++ procedure in terms of using less
samples. Thirdly, the relative difference between the average sample sizes tends to be narrower as the
number of alternatives K increases. Note that the third finding is due to newly added alternatives are likely
to be screened out very fast.

5.2 Numerical Study on MOR&S

The second experiment is on MOR&S. We consider bi-objective R&S problems with 20, 50, 100 candidates.
True means are generated randomly and depicted in Figure 1. We consider three variance configurations: (1)

2005



Wang and Wan

Table 1: Comparison of IZ-free procedure, KN++ procedure, and the proposed sequential procedure
for single-objective R&S to select the largest mean from K normal variables with (µ1,µ2, ...µK) =
(0.5,0,−0.5, ...,1.5− 0.5K), σ2

i = 10, PCS = 0.95, and IZ = δ . (In each cell, the first line is the es-
timated PCS, the second line is the average sample size Navg.)

K
KN++ procedure

IZ-free
Sequential Procedure

δ = 1
2 δ = 1

4 δ = 1
8 δ = 1

16 δ = 1
2 δ = 1

4 δ = 1
8 δ = 1

16 δ = 0

20
PCS 0.99 1.00 1.00 1.00 0.99 0.994 0.998 0.999 0.998 1.00
Navg 1371 3247 7045 14700 2816 871 1272 1659 1962 2396

50
PCS 1.00 1.00 1.00 1.00 0.99 0.999 0.996 0.999 1.00 0.999
Navg 2014 4454 9779 20700 3588 1352 1814 2331 2615 3120

100
PCS 0.99 1.00 1.00 1.00 1.00 1.00 0.999 1.00 1.00 1.00
Navg 2710 5506 11790 25140 4388 1997 2516 2954 3403 3947

500
PCS 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Navg 7217 10770 18770 36280 9138 6611 7276 7919 8469 9058

Independent, Σ1 =

[
4 0
0 4

]
, (2) Positive-Correlated, Σ2 =

[
4 1
1 4

]
, (3) Negative-Correlated, Σ3 =

[
4 −1
−1 4

]
.

We conduct 1,000 independent macroreplications for each scenario and report the estimated PCS and the
average sample size in Table 2. The results indicate the proposed procedure is valid for various types of
covariance structure.

Figure 1: True means of 2-Dimensional candidates. Values along each objective are generated by randomly
shuffling [1,2...,K]. For K = 20, the Pareto front are S1 = {x2,x3,x14}; for K = 50, S1 = {x3,x42}; and for
K = 100, S1 = {x61,x65,x72,x73,x88}.

We continue the numerical study on MOR&S by considering R&S problems with 20 or 50 candidates
and 2 to 5 objectives. For simplicity, We take the independent variance configuration Σ = IK . The true
means are randomly generated. We conduct 1,000 macroreplications and report the estimated PCS and
average sample size in Table 3.

These two studies test the validity of the proposed procedure from two important aspects: (1) covariance
structure, (2) number of objectives. From Table 2 and Table 3, we have two interesting findings. Firstly,
independent covariance structure uses the less samples than dependent covariance structure (Note that the
proposed procedure does not assume a particular covariance structure). It makes sense since dependent
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Table 2: The proposed sequential procedure for Bi-Objective R&S to select the Pareto front from K normal
variables with PCS = 0.95 and three variance structures. (In each cell, the first line is the estimated PCS,
the second line is the average sample size with 95% confidence interval over 1,000 macroreplications.)

K
Sequential Procedure (D = 2)

Σ1 =

[
4 0
0 4

]
Σ2 =

[
4 1
1 4

]
Σ3 =

[
4 −1
−1 4

]
20

1.000 1.000 1.000
283.3±3.6 381.5±6.1 397.9±5.9

50
1.000 1.000 1.000

368.7±2.7 422.6±3.9 423.6±4.5

100
1.000 0.999 1.000

816.6±4.6 998.8±8.2 993.5±7.9

samples provide redundancy due to correlation and thus, to achieve the same amount of information, the
procedure needs less independent samples. Secondly, the sample size increases as the number of objective
increases.

Table 3: The proposed sequential procedure for MOR&S to select the Pareto front from K normal variables
with PCS = 0.95 and three variance structures. (In each cell, the first line is the estimated PCS, the second
line is the average sample size with 95% confidence interval over 1,000 macroreplications.)

K
Sequential Procedure (Σ = IK)

D = 2 D = 3 D = 4 D = 5

20
1.000 0.994 1.000 0.996

266.0±4.0 376.8±4.6 478.4±6.4 494.4±8.0

50
1.000 0.996 0.999 1.000

636.6±6.4 1061.5±12.4 1812.3±23.6 1939.2±30.9

6 CONCLUSION

In this paper, we propose a new sequential testing procedure for MOR&S with a guaranteed PCS. To
our best knowledge, this is the first class P procedure for MOR&S. For future research, we identify two
opening questions.

1. Bonferroni-free procedure. To account for multiple comparison, most Class P procedures (except
BIZ procedure (Frazier 2014)) adjust the error rates for multiple alternatives. This is conservative
for large-scale problems. We are experimenting with the MSPRT , which is a sequential testing
procedure that considers more than two arms simultaneously.

2. Truncated procedure. Although the stopping time in our proposed procedure is finite with probability
1, it is still possible that the procedure takes too long to stop. We are developing a truncated procedure
that guarantees to terminate at a predefined stopping time while maintains the PCS.
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