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ABSTRACT

Quantiles are often employed to measure risk. We combine two variance-reduction techniques, conditional
Monte Carlo and Latin hypercube sampling, to estimate a quantile. Compared to either method by itself, the
combination can produce a quantile estimator with substantially smaller variance. In addition to devising a
point estimator for the quantile when applying the combined approaches, we also describe how to construct
confidence intervals for the quantile. Numerical results demonstrate the effectiveness of the methods.

1 INTRODUCTION

For a random variable Y and fixed 0 < p < 1, the p-quantile of Y is a constant ξ such that p of the mass of
the distribution of Y lies below ξ . The median, which is the 0.5-quantile, provides a well-known example.
Many different fields measure risk through a p-quantile with p close to 0 or 1. In finance, a quantile
is called a value-at-risk, and it is employed to assess portfolio risk. For example, the Basel II Accord
(Basel Committee on Banking Supervision 2004) specifies capital requirements in terms of 0.99-quantiles.
The U.S. Nuclear Regulatory Commission (NRC) permits nuclear-plant licensees to use a 0.95-quantile to
demonstrate compliance with federal regulations (U.S. Nuclear Regulatory Commission 2010).

Our paper studies Monte Carlo simulation methods for quantile estimation. In addition to giving a point
estimate for a quantile, we also want to specify a confidence interval (CI) for ξ to account for sampling
error. Indeed, the NRC further requires providing a 95% CI for a 0.95-quantile (Section 3.2 of U.S. Nuclear
Regulatory Commission 2005; Section 24.9 of U.S. Nuclear Regulatory Commission 2011).

Quantile estimation via simple random sampling (SRS) is extensively studied (Chapter 2 of Serfling
1980), but SRS may result in an unusably wide quantile CI. Instead, we apply variance-reduction techniques
(VRTs) to estimate and construct a CI for ξ ; see Chapter V of Asmussen and Glynn (2007) for an overview
of VRTs to estimate a mean. Hong, Hu, and Liu (2014) survey simulation methods for quantile estimation.
We focus on two well-known VRTs: Latin hypercube sampling (LHS; McKay, Beckman, and Conover
1979) and conditional Monte Carlo (CMC; Section V.4 of Asmussen and Glynn 2007).

Simultaneously stratifying each input coordinate of the function used to produce the random output, LHS
is known to yield estimates of a mean with substantially reduced variance when the simulated response is
nearly an additive function of the input variables. For quantile estimation, the relevant response corresponds
to the indicator function that the output variable lies below the quantile. But an additive approximation to
the indicator function typically has a poor fit, so LHS by itself does not reduce variance by much. CMC
replaces the indicator with its conditional expectation, which is a smoother response. As the additive fit is
now often much better, the combination of CMC and LHS can greatly reduce variance, as our numerical
results show. Avramidis and Wilson (1996), Nakayama (2015), and Alban et al. (2017) observe similar
synergies between CMC and LHS when estimating a probability.

The rest of the paper progresses as follows. Section 2 provides an overview of quantile estimation. We
review how to use simple random sampling and LHS to estimate a quantile in Sections 3 and 4, respectively.
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We explain in Section 5 quantile estimation via CMC, and we combine CMC with LHS in Section 6.
Section 7 contains numerical results, and we close with some concluding remarks in Section 8.

2 OVERVIEW OF QUANTILE ESTIMATION

Let U [0,1] denote a uniform distribution on [0,1], and let U1,U2, . . . ,Ud be d independent and identically
distributed (IID) U [0,1] random numbers. Then for a deterministic function cY : [0,1]d →ℜ, define

Y = cY (U1,U2, . . . ,Ud). (1)

We can think of cY as being a computer code that, when fed d IID uniform random numbers as input,
produces an output random variable Y . The computer code cY may first convert the uniforms into a random
vector W = (W1,W2, . . . ,Wk) having some joint distribution, with possible dependence among the entries of
W , and then performs further computations using W to obtain the output Y . For example, nuclear engineers
employ computer codes in this manner (Hess et al. 2009) to perform probabilistic safety assessments of
nuclear power plants. Each run of the computer code may require substantial computation time; e.g., it
may numerically solve systems of differential equations. This motivates applying VRTs.

Let F be the cumulative distribution function (CDF) of Y , denoted by Y ∼F . We assume that the function
cY is sufficiently complicated that we cannot compute F directly, but we can sample Y ∼ F by (1). For a fixed
constant 0 < p < 1, we define the p-quantile of F (or equivalently of Y ) as ξ = F−1(p)≡ inf{y : F(y)≥ p}.
The goal is to use Monte Carlo simulation to estimate and construct a confidence interval (CI) for ξ .

The typical approach to estimate ξ via simulation first applies some Monte Carlo method with a sample
size of n to construct an estimator F̂n of F . Because the true p-quantile satisfies ξ = F−1(p), we then invert
F̂n to get a quantile estimator ξ̂n = F̂−1

n (p). This idea works for many Monte Carlo methods, including
simple random sampling, conditional Monte Carlo, and Latin hypercube sampling, among others.

Although the quantile estimator ξ̂n is not a sample average, it still typically satisfies a central limit
theorem (CLT). Proving a CLT for ξ̂n requires that f (ξ )> 0, where f is the derivative (when it exists) of
F . One way to establish a CLT for ξ̂n employs a Bahadur (1966) representation, which roughly states that
ξ̂n ≈ ξ +[p− F̂n(ξ )]/ f (ξ ), so ξ̂n can be approximated as a linear transformation of F̂n(ξ ). As F̂n(ξ ) is
usually a sample average, it obeys a CLT, which implies ξ̂n also does.

To prove his representation for SRS, Bahadur (1966) first shows that F̂n(y) ≈ F̂n(ξ )+F(y)−F(ξ )

uniformly for y in some neighborhood Bn of ξ , and that ξ̂n ∈ Bn for all sufficiently large n. Thus, we get

p≈ F̂n(ξ̂n)≈ F̂n(ξ )+F(ξ̂n)−F(ξ )≈ F̂n(ξ )+ f (ξ )[ξ̂n−ξ ],

where the last step holds by a Taylor approximation. Rearranging terms, Bahadur (1966) formalizes the
argument when f (ξ )> 0 and F has bounded second derivative in a neighborhood of ξ , establishing that

ξ̂n = ξ +[p− F̂n(ξ )]/ f (ξ )+Rn, (2)

where the remainder Rn =O(n−3/4 logn) almost surely (a.s.) as n→∞. Only assuming that f (ξ )> 0, Ghosh
(1971) shows the remainder satisfies

√
nRn⇒ 0 as n→ ∞, where ⇒ denotes convergence in distribution

(Chapter 5 of Billingsley 1995). Sun and Hong (2010) prove an a.s. rate at which the remainder Rn vanishes
in (2) for an importance-sampling quantile estimator. Chu and Nakayama (2012) establish that

√
nRn⇒ 0

under a general set of conditions on the Monte Carlo method applied, which is satisfied by many VRTs,
including importance sampling, stratified sampling, antithetic variates, and control variates. Dong and
Nakayama (2017b) verify that the conditions of Chu and Nakayama (2012) hold for LHS, so the LHS
quantile estimator obeys the Bahadur representation in (2) with

√
nRn⇒ 0.

Returning now to establishing a CLT for the quantile estimator ξ̂n, we rearrange (2) and multiply
through by

√
n to obtain √

n[ξ̂n−ξ ] =
√

n[p− F̂n(ξ )]/ f (ξ )+
√

nRn. (3)
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Now assume that the CDF estimator F̂n satisfies a CLT
√

n[p− F̂n(ξ )]⇒ N(0,ψ2) (4)

as n→ ∞, where N(a,s2) denotes a normal random variable with mean a and variance s2, and ψ2 is the
asymptotic variance in the CLT (4). For many Monte Carlo methods, (4) holds (under appropriate regularity
conditions) because F̂n is a sample average. Hence, putting (4) into (3) and using that

√
nRn⇒ 0 as n→∞

from a Bahadur representation, Slutsky’s theorem (p. 19 of Serfling 1980) ensures

√
n[ξ̂n−ξ ]⇒ N(0,τ2) (5)

as n→ ∞, where the asymptotic variance in (5) satisfies

τ
2 = ψ

2/ f 2(ξ ). (6)

The numerator ψ2, which is the asymptotic variance in the CLT for F̂n(ξ ) in (4), depends on the Monte
Carlo method employed to estimate the CDF, but the denominator f 2(ξ ) in (6) is the same for all Monte
Carlo methods, as long as the technique first estimates the CDF and then inverts it to get a quantile estimator.
Thus, we want VRTs that reduce the asymptotic variance ψ2 of the estimator F̂n(ξ ) of F(ξ ).

We can also exploit the Bahadur representation (2) with
√

nRn⇒ 0 and the quantile estimator CLT
(5) to construct various confidence intervals for ξ . If we have a consistent estimator τ̂2

n of the asymptotic
variance τ2 in (6) (i.e., τ̂2

n ⇒ τ2 as n→ ∞), then we can unfold the CLT in (5) to obtain an asymptotic
γ-level CI for ξ as

Jn = (ξ̂n± zγ τ̂n/
√

n), (7)

where the constant zγ = Φ−1(1− (1− γ)/2) is the upper (1− (1− γ)/2)-critical point of a standard (mean
0 and variance 1) normal (e.g., z0.95 = 1.96), and Φ is the N(0,1) CDF. The CI Jn, which is asymptotically
valid in the sense that its coverage P(ξ ∈ Jn)→ γ as n→∞, critically depends on τ̂2

n consistently estimating
τ2. While this can be accomplished by constructing separate consistent estimators for the numerator and
denominator in (6) (e.g., see Bloch and Gastwirth 1968, Chu and Nakayama 2012, and Dong and Nakayama
2017b), devising such consistent estimators in practice can be nontrivial.

We can avoid the complications of consistently estimating τ2 in (6) to construct a CI for ξ by instead
applying batching (also known as subsampling) or sectioning. In each method, the basic idea is to divide the
overall sample of size n into b≥ 2 (nonoverlapping) batches (e.g., b = 10), each of size m = n/b. For each
batch r = 1,2, . . . ,b, let F̂r,m be the estimator of CDF F from batch r, and compute the corresponding p-
quantile estimator ξ̂r,m = F̂−1

r,m (p). Also, let ξ̄b,m = (1/b)∑
b
r=1 ξ̂r,m and S2

b,m = (1/(b−1))∑
b
r=1(ξ̂r,m− ξ̄b,m)

2

be the sample average and sample variance of the ξ̂r,m, 1≤ r ≤ b. Then we obtain

Jb,n = (ξ̄b,m± tb−1,γSb,m/
√

b) (8)

as an asymptotic γ-level batching CI, where the critical point tb−1,γ satisfies P(Tb−1 ≤ tb−1,γ) = 1−(1−γ)/2
for Tb−1 a Student-t random variable with b−1 degrees of freedom.

While the batching CI in (8) is asymptotically valid (limn→∞ P(ξ ∈ Jb,n) = γ), it may have poor coverage
when the overall sample size n is not large; i.e., P(ξ ∈ Jb,n) may differ substantially from the nominal
confidence level γ . The problem arises because quantile estimators are generally biased: E[ξ̂n] 6= ξ for
fixed n. Although the bias of the batching point estimator ξ̄b,m vanishes as n→∞, it can be substantial for
fixed n as it is determined by the batch size m = n/b, which is small when the overall sample size n is not
large. Hence, the batching CI in (8) is not properly centered on average, which can cause poor coverage.

Sectioning, originally proposed in Section III.5a of Asmussen and Glynn (2007) for SRS and extended
to some VRTs by Nakayama (2014a), addresses this shortcoming by instead centering the CI at a point
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estimator that is typically less biased than ξ̄b,m. Let F̃b,m(y) = (1/b)∑
b
r=1 F̂r,m(y) be the sectioning CDF

estimator constructed from all n = bm sampled outputs across the b batches, and compute the sectioning
p-quantile estimator as ξ̃b,m = F̃−1

b,m(p). Many Monte Carlo methods have F̃b,m(y) = F̂n(y) and ξ̃b,m = ξ̂n,
but this is not always the case, e.g., as for LHS. Then the sectioning CI is

J̃b,n = (ξ̃b,m± tb,γSb,m/
√

b), (9)

which can be shown to be asymptotically valid when the Bahadur representation (2) holds with
√

nRn⇒ 0
as n→∞. The key point is that because J̃b,n is better centered on average than Jb,n in (8), the sectioning CI
often has coverage closer to γ than does the batching CI when the overall sample size n is not very large.

3 SIMPLE RANDOM SAMPLING

Chapter 2 of Serfling (1980) provides a thorough treatment of SRS quantile estimation, which we now
review for our context when the output random variable Y is defined by (1). We first generate n IID copies
of Y ∼ F as follows. Let Ui, j, 1≤ i≤ n, 1≤ j ≤ d, be IID U [0,1] random numbers, which we arrange in
an n×d grid. We then apply the function cY from (1) to each row to obtain the sample Y1,Y2, . . . ,Yn, with

Y1 = cY (U1,1, U1,2, . . . , U1,d),
Y2 = cY (U2,1, U2,2, . . . , U2,d),
...

...
...

...
. . .

...
Yn = cY (Un,1, Un,2, . . . , Un,d).

(10)

Each Yi ∼ F by (1) because row i of (10) has d IID uniform random numbers Ui, j, 1≤ j ≤ d. Moreover,
the n rows of uniforms in (10) are independent, so Y1,Y2, . . . ,Yn, are independent.

The CDF F of Y satisfies F(y) = P(Y ≤ y) = E[I(Y ≤ y)], where I(·) denotes the indicator function,
which equals 1 (resp., 0) when its argument is true (resp., false). Thus, we can obtain an unbiased estimator
of F(y) by averaging identically distributed copies of I(Y ≤ y). When SRS is used, the CDF estimator (at y)
is F̂SRS,n(y) = (1/n)∑

n
i=1 I(Yi ≤ y). The SRS p-quantile estimator is then ξ̂SRS,n = F̂−1

SRS,n(p). An equivalent

way to compute ξ̂SRS,n first sorts the sample to get Y1:n ≤ Y2:n ≤ ·· · ≤ Yn:n, and then sets ξ̂SRS,n = Ydnpe:n,
where d·e is the ceiling function. (For simplicity, we consider only the quantile estimator ξ̂SRS,n, but variants
can also be constructed, e.g., by interpolating the CDF estimator; see Avramidis and Wilson 1998.)

If f (ξ )> 0, the SRS p-quantile estimator ξ̂SRS,n obeys the CLT in (5) (Section 2.3.3 of Serfling 1980).
The numerator ψ2

SRS of the asymptotic variance τ2
SRS in (6) of the SRS quantile estimator appears as the

asymptotic variance in the CLT for F̂n(ξ ) = F̂SRS,n(ξ ) in (4), which averages IID I(Yi ≤ ξ ), i = 1,2, . . . ,n.
Hence, we see that

ψ
2
SRS = Var[I(Y ≤ ξ )] = p(1− p), (11)

and the asymptotic variance in (6) of the SRS CLT for the p-quantile estimator ξ̂SRS,n is τ2
SRS = p(1− p)/ f 2(ξ ).

Bloch and Gastwirth (1968) apply a finite difference to consistently estimate 1/ f (ξ ) = d
d p F−1(p),

which can then be used to build the CI in (7). For the batching and sectioning CIs, let batch r = 1,2, . . . ,b,
consist of outputs Y(r−1)m+i, 1≤ i≤ m = n/b. Then F̂SRS,r,m(y) = (1/m)∑

m
i=1 I(Y(r−1)m+i ≤ y) is the CDF

estimator at y for batch r, and ξ̂SRS,r,m = F̂−1
SRS,r,m(p) is the corresponding p-quantile estimator. Then (8)

and (9) with ξ̂r,m = ξ̂SRS,r,m and ξ̃b,m = ξ̂SRS,n give the batching and sectioning CIs, respectively, for SRS.

4 LATIN HYPERCUBE SAMPLING

McKay, Beckman, and Conover (1979) devised LHS, which separately stratifies each input coordinate
of (1). Reducing variance by producing negatively correlated outputs, the method can be thought of as
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an efficient way of extending stratified sampling to high dimensions. Stein (1987) further analyzes the
technique, and Owen (1992) proves a CLT for the LHS estimator of the mean of bounded outputs.

We implement LHS to generate a dependent sample of size n as follows. For each input coordinate
j = 1,2, . . . ,d, of (1), let π j = (π j(1),π j(2), . . . ,π j(n)) be a random permutation of (1,2, . . . ,n). In other
words, each of the n! permutations is equally likely, and π j(i) is the integer to which i is mapped in
permutation π j. Then for each 1≤ i≤ n and 1≤ j ≤ d, define

Vi, j =
π j(i)−1+Ui, j

n
(12)

for Ui, j in (10). Next arrange the Vi, j into an n×d grid, and apply function cY from (1) to each row to get

Y ′1 = cY (V1,1, V1,2, . . . , V1,d),
Y ′2 = cY (V2,1, V2,2, . . . , V2,d),
...

...
...

...
. . .

...
Y ′n = cY (Vn,1, Vn,2, . . . , Vn,d).

(13)

It is straightforward to show that in each row i of (13), the d entries Vi, j, 1 ≤ j ≤ d, are IID U [0,1], so
Y ′i ∼ F by (1). But as all of the n entries Vi, j, 1≤ i≤ n, in each column j of (13) share the same permutation
π j, the rows of (13) are dependent, making Y ′1,Y

′
2, . . . ,Y

′
n dependent. As seen from (12), each column j in

(13) forms a stratified sample of size n of the unit interval, i.e., with probability 1,

for each 1≤ j ≤ d and 1≤ k ≤ n, exactly one Vi, j, 1≤ i≤ n, lies in subinterval [(k−1)/n,k/n]. (14)

By (12), the one Vi, j from column j lying in [(k−1)/n,k/n] is uniformly distributed within that subinterval.
The LHS estimator of the CDF F(y) is

F̂LHS,n(y) =
1
n

n

∑
i=1

I(Y ′i ≤ y), (15)

which, because each Y ′i ∼ F , is an unbiased estimator of F(y), despite Y ′1,Y
′
2, . . . ,Y

′
n being dependent. We

then obtain the LHS p-quantile estimator as ξ̂LHS,n = F̂−1
LHS,n(p). Avramidis and Wilson (1998) prove that

the LHS quantile estimator ξ̂LHS,n obeys the CLT in (5), and the next paragraph will give an expression
for the numerator ψ2

LHS in the LHS CLT’s asymptotic variance (6). Dong and Nakayama (2014) construct
the LHS batching and sectioning CIs in (8) and (9), respectively, for ξ when applying replicated LHS
(Iman 1981), in which the b≥ 2 batches are independent LHS samples, each of size m = n/b. Dong and
Nakayama (2017b) provide consistent estimators of ψ2

LHS and τ2
LHS from a single LHS sample of size n by

extending a variance estimator of Owen (1992) to estimate the numerator ψ2
LHS of (6) and using a finite

difference to handle 1/ f (ξ ) = d
d p F−1(p) from the denominator, enabling the construction of the CI in (7).

We now give an expression for the numerator ψ2 = ψ2
LHS in (6); recall that the denominator f 2(ξ )

in (6) remains the same for each simulation method. Also recall that ψ2
LHS comes from the CLT for

F̂n(ξ ) = F̂LHS,n(ξ ) in (4), which holds by the LHS CLT of Owen (1992) for the average of bounded
responses. Deriving an expression for ψ2

LHS is complicated by the fact that F̂LHS,n(ξ ) in (15) with y = ξ

averages dependent copies of the SRS response I(Y ≤ ξ ). By (1), we can write the SRS response as

I(Y ≤ ξ ) = I(cY (U1,U2, . . . ,Ud)≤ ξ )≡ w(U1,U2, . . . ,Ud) (16)

for U1,U2, . . . ,Ud IID U [0,1], and E[w(U1,U2, . . . ,Ud)] = E[I(Y ≤ ξ )] = F(ξ ). Applying an analysis-
of-variance (ANOVA) decomposition as in Stein (1987) and Avramidis and Wilson (1998), we express
w(U1,U2, . . . ,Ud) using an additive (or separable) approximation

w(U1,U2, . . . ,Ud) = F(ξ )+
d

∑
j=1

w j(U j)+ ε(U1,U2, . . . ,Ud), (17)
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where w j(U j)≡ E[w(U1,U2, . . . ,Ud) |U j]−F(ξ ) is a function of only U j as the other Ul , l 6= j, have been
integrated out through the conditional expectation, and the residual ε(U1,U2, . . . ,Ud) is defined so that the
equality in (17) holds. Then Avramidis and Wilson (1998) show that

ψ
2
LHS = Var[ε(U1,U2, . . . ,Ud)] = ψ

2
SRS−

d

∑
j=1

Var[w j(U j)], (18)

with ψ2
SRS = p(1− p) by (11). Thus, LHS removes the variance from the additive part of the SRS response.

To gain additional insight into why (18) holds, we adapt to our setting the following heuristic argument
from Section 10.3 of Owen (2013). We want to determine the asymptotic variance ψ2

LHS of F̂LHS,n(ξ ), so
the ith summand in (15) for y = ξ becomes I(Y ′i ≤ ξ ) = w(Vi,1,Vi,2, . . . ,Vi,d) by (13) and (16). Putting (17)
with each U j replaced with Vi, j into F̂LHS,n(ξ ) in (15) then leads to

F̂LHS,n(ξ ) =
1
n

n

∑
i=1

w(Vi,1,Vi,2, . . . ,Vi,d) = F(ξ )+
d

∑
j=1

1
n

n

∑
i=1

w j(Vi, j)+
1
n

n

∑
i=1

ε(Vi,1,Vi,2, . . . ,Vi,d). (19)

On the right side of (19), the middle term w̄ j,n ≡ (1/n)∑
n
i=1 w j(Vi, j) for each j estimates the 1-dimensional

integral ζ j ≡
∫ 1

0 w j(u)du. But by (14), LHS stratifies the unit interval of each input coordinate j, so w̄ j,n
is a (random) Riemann approximation to the integral ζ j. When the integrand w j is sufficiently smooth, a
1-dimensional Riemann sum converges much faster than the ordinary Monte Carlo rate of n−1/2. On the
other hand, the last term in (19), which is the average of the residuals, converges at rate n−1/2. Thus, the
asymptotic variance of F̂LHS,n(ξ ) is determined by the variance of the residual, as in (18).

As a consequence, when the response is nearly additive, in the sense that the residual ε(U1,U2, . . . ,Ud)
in (17) has small variance, LHS can substantially lower variance. But because the response in (16) is an
indicator function, the additive approximation in (17) is typically a poor fit, leading LHS by itself to not
reduce variance by much. To address this, we next introduce conditional Monte Carlo, which replaces the
response in (16) with its conditional expectation, which can be a smoother function of its inputs.

5 CONDITIONAL MONTE CARLO

CMC is a VRT that reduces variance by analytically integrating out some of the variability through iterated
expectations; e.g., see Section V.4 of Asmussen and Glynn (2007) for an overview of CMC for estimating a
mean. We now review CMC quantile estimation, as developed in Nakayama (2014b). Let X be an auxiliary
random vector that is generated along with the output Y in a simulation run. (We later give in (27) the
assumed exact form of X as it relates to Y defined by (1).) Using iterated expectations (e.g., p. 448 of
Billingsley 1995) by conditioning on X , we express the CDF F of Y at each y as

F(y) = E[I(Y ≤ y)] = E[E[I(Y ≤ y) |X ]] = E[q(X ,y)], (20)

where q(x,y) = E[I(Y ≤ y) |X = x] = P(Y ≤ y |X = x). (21)

Hence, (20) implies that averaging IID copies of q(X ,y) produces an unbiased estimator of F(y). Specifically,
for IID copies X1,X2, . . . ,Xn of conditioning vector X , the CMC estimator of the CDF F of Y is given by

F̂CMC,n(y) =
1
n

n

∑
i=1

q(Xi,y), (22)

which assumes that the conditional expectation q(x,y) in (21) can be computed (analytically or numerically)
for each possible x and y. We finally invert F̂CMC,n to obtain the CMC p-quantile estimator

ξ̂CMC,n = F̂−1
CMC,n(p). (23)
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Computing ξ̂CMC,n typically requires applying an iterative root-finding algorithm, such as the Newton,
secant, and false-position methods; see Chapter 7 of Ortega and Rheinboldt (1987).

The benefit of CMC quantile estimation becomes apparent by examining the asymptotic variance τ2
CMC

in (6) of ξ̂CMC,n. When CMC is applied, the numerator ψ2
CMC of (6) is the asymptotic variance in the CLT

in (4) for F̂CMC,n(ξ ). Because F̂CMC,n(ξ ) in (22) averages IID q(Xi,ξ ), 1≤ i≤ n, we see that

ψ
2
CMC = Var[q(X ,ξ )] = Var[E[I(Y ≤ ξ ) |X ]] (24)

≤ Var[E[I(Y ≤ ξ ) |X ]]+E[Var[I(Y ≤ ξ ) |X ]] = Var[I(Y ≤ ξ )] = ψ
2
SRS (25)

from a variance decomposition (e.g., p. 456 of Billingsley 1995) and (11). As a consequence, we have

τ
2
CMC = ψ

2
CMC/ f 2(ξ )≤ ψ

2
SRS/ f 2(ξ ) = τ

2
SRS.

In other words, the asymptotic variance in (6) of the CLT for the CMC p-quantile estimator ξ̂CMC,n is no
greater than that of the SRS quantile estimator ξ̂SRS,n.

But as noted earlier, applying CMC critically relies on being able to compute (analytically or numerically)
the conditional expectation q(x,y) in (21) for each x and y, which can be done in certain settings. A simple
example when this may be possible arises in structural reliability (Section 1.4.2 of Melchers 1999). Let C
and L be independent ℜ-valued random variables denoting the capacity and load, respectively, of a structure
(e.g., a bridge), and Y = C−L is the structure’s safety margin. Let X = L be the (scalar) conditioning
vector, and assume that the CDF G of C is (analytically or numerically) computable. Then (21) becomes

q(x,y) = P(C−L≤ y |L = x) = P(C ≤ x+ y |L = x) = G(x+ y) (26)

by the independence of C and L, so q(x,y) is computable.
Returning now to the general setting, we next explain our assumed form of the conditioning vector X

in (20) for the framework of (1). Assume that X is ℜd′X -valued, where d′X ≥ 1, and recall that the function
cY in (1) uses d IID U [0,1] inputs U1,U2, . . . ,Ud to generate Y ∈ℜ. Then we suppose that there exist two
more deterministic functions c∗ : [0,1]d →ℜ1+d′X and cX : [0,1]dX →ℜd′X with 1≤ dX ≤ d such that

(Y,X) = c∗(U1,U2, . . . ,Ud) = (cY (U1,U2, . . . ,Ud),cX(U1,U2, . . . ,UdX )). (27)

Thus, the function c∗ produces both the original output variable Y ∈ℜ and the conditioning vector X ∈ℜd′X

from the same d IID uniforms, so Y and X are dependent. Moreover, the ℜ1+d′X -valued function c∗
decomposes into two functions cY and cX , where the ℜ1-valued function cY in (1) computes Y from all
d uniforms, and the ℜd′X -valued function cX generates X using only the first dX ≤ d of them, which may
require relabeling the inputs. Avramidis and Wilson (1996) make a similar assumption in their study of
combined VRTs to estimate a mean.

Now for the framework of (27), we explain how to construct the CMC quantile estimator ξ̂CMC,n in
(23). Because the CMC CDF estimator F̂CMC,n in (22) averages IID copies of q(X ,y), we need to generate
IID copies of only the conditioning vector X and not the original output Y , which has been (partially)
integrated out through the conditional expectation in (21). Thus, to generate n IID copies of X , (27) implies
that we can use just the first dX columns of the grid of IID U [0,1] numbers Ui, j in (10), and apply function
cX from (27) to each row to obtain the sample X1,X2, . . . ,Xn, with

X1 = cX(U1,1, U1,2, . . . , U1,dX ),
X2 = cX(U2,1, U2,2, . . . , U2,dX ),
...

...
...

...
. . .

...
Xn = cX(Un,1, Un,2, . . . , Un,dX ).

(28)
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The first dX of the Ui, j in each row i of (10) are IID U [0,1], so Xi
D
= X by (27), where D

= denotes equality in
distribution. Further, the independence of the rows of Ui, j in (10) ensures that X1,X2, . . . ,Xn are independent.
We then put X1,X2, . . . ,Xn in (22) to compute F̂CMC,n, which is inverted to obtain ξ̂CMC,n in (23).

As for a CMC CI for ξ , estimating the variance ψ2
CMC in (24) is complicated by the fact that q(X ,ξ ) is not

directly observable because ξ is unknown. Although it is possible to construct consistent estimators of ψ2
CMC

and f (ξ ) to build the CI in (7) for ξ when applying CMC, we can avoid the issue by instead using batching
or sectioning. Specifically, divide the sample X1,X2, . . . ,Xn, into b≥ 2 batches, where batch r = 1,2, . . . ,b,
comprises X(r−1)m+i, 1≤ i≤ m = n/b. For batch r, we compute F̂CMC,r,m(y) = (1/m)∑

m
i=1 q(X(r−1)m+i,y)

as the CDF estimator, and ξ̂CMC,r,m = F̂−1
CMC,r,m(p) is the corresponding p-quantile estimator. Then (8) and

(9) with ξ̂r,m = ξ̂CMC,r,m and ξ̃b,m = ξ̂CMC,n give the CMC batching and sectioning CIs, respectively, for ξ .

6 COMBINING CMC AND LHS

We now combine CMC with LHS to estimate ξ . To do this, (20) implies we can obtain an unbiased
estimator of F(y) by averaging identically distributed but dependent observations of q(X ,y). To generate
n (dependent) observations of X using LHS, we apply the function cX from (27) to the first dX columns
of the LHS grid of Vi, j in (13) to get the LHS sample X ′1,X

′
2, . . . ,X

′
n, with

X ′1 = cX(V1,1, V1,2, . . . , V1,dX ),
X ′2 = cX(V2,1, V2,2, . . . , V2,dX ),
...

...
...

...
. . .

...
X ′n = cX(Vn,1, Vn,2, . . . , Vn,dX ).

(29)

As the first dX values of Vi, j in each row i of (13) are IID U [0,1], we have that X ′i
D
= X by (27). But as

before, the rows of Vi, j in (13) are dependent, making X ′i , 1≤ i≤ n, in (29) dependent.
The CMC+LHS estimators of the CDF F of Y at y and the p-quantile ξ = F−1(p) are respectively

F̂CMC+LHS,n(y) =
1
n

n

∑
i=1

q(X ′i ,y) and ξ̂CMC+LHS,n = F̂−1
CMC+LHS,n(p). (30)

The numerator ψ2
CMC+LHS of the asymptotic variance τ2

CMC+LHS in (6) of the CMC+LHS p-quantile estimator
ξ̂CMC+LHS,n is the asymptotic variance in the CLT for F̂CMC+LHS,n(ξ ) in (4). Deriving an expression for
ψ2

CMC+LHS is complicated by the fact that F̂CMC+LHS,n(ξ ) in (30) averages dependent copies of the CMC
response q(X ,ξ ) defined in (21) with y = ξ . By (27), we can write the CMC response as

q(X ,ξ ) = q(cX(U1,U2, . . . ,UdX ),ξ )≡ w′(U1,U2, . . . ,UdX ) (31)

for IID U [0,1] numbers U1,U2, . . . ,UdX , and E[w′(U1,U2, . . . ,UdX )] = E[q(X ,ξ )] = F(ξ ) by (20) with y = ξ .
For each coordinate 1 ≤ j ≤ dX , let w′j(U j) = E[w′(U1,U2, . . . ,UdX ) |U j]−F(ξ ). Applying an ANOVA
decomposition as in Owen (1992), we express w′(U1,U2, . . . ,UdX ) using an additive approximation

w′(U1,U2, . . . ,UdX ) = F(ξ )+
dX

∑
j=1

w′j(U j)+ ε
′(U1,U2, . . . ,UdX ), (32)

where the residual ε ′(U1,U2, . . . ,UdX ) is defined so that the equality in (32) holds. Then we have that

ψ
2
CMC+LHS = Var[ε ′(U1,U2, . . . ,UdX )] = ψ

2
CMC−

dX

∑
j=1

Var[w′j(U j)], (33)

with ψ2
CMC = Var[q(X ,ξ )] as in (24). Hence, CMC+LHS removes the variance from the additive part of

the CMC response. The following result is proven in Dong and Nakayama (2017a).
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Theorem 1 When (1) and (27) hold, we have that τ2
CMC+LHS ≤ τ2

CMC ≤ τ2
SRS and τ2

CMC+LHS ≤ τ2
LHS ≤ τ2

SRS.
Theorem 1 shows that the asymptotic variance of the CMC+LHS quantile estimator is no larger than

those of both the LHS and CMC quantile estimators, which in turn are no greater than the asymptotic
variance of the SRS quantile estimator. But the key point about this result becomes clear from comparing
(33) to (18). As Section 4 noted, (18) shows that LHS removes the variability of the additive part of the
SRS response I(Y ≤ ξ ), corresponding to F(ξ ) = E[I(Y ≤ ξ )]. Because the SRS response is an indicator
function, the additive approximation (17) is typically a poor fit, so LHS does not reduce variance by much
compared to SRS. In contrast, (33) implies that CMC+LHS removes the variability of the additive part of
the CMC response q(X ,ξ ), arising from F(ξ ) = E[q(X ,ξ )]. By (21) the CMC response is a conditional
expectation, which we can think of as a smoothing operation, so the additive approximation in (32) can be
much better than that in (17). Because of this, CMC+LHS can substantially reduce variance compared to
CMC, which has smaller variance than SRS by (24). The numerical results in Section 7 demonstrate this.

We build the CMC+LHS batching and sectioning CIs for ξ as follows. Create b≥ 2 independent LHS
samples as in (29) but each with m = n/b rows instead of n, and treat each LHS sample r = 1,2, . . . ,b, as
a batch. For each batch r, let F̂CMC+LHS,r,m be the estimator of CDF F , computed as in (30) but for sample
size m rather than n, and compute the corresponding p-quantile estimator ξ̂CMC+LHS,r,m = F̂−1

CMC+LHS,r,m(p).
The batching CI is then in (8). The sectioning CDF estimator F̃CMC+LHS,b,m combines the outputs (29)
from all b batches, i.e., F̃CMC+LHS,b,m(y) = (1/b)∑

b
r=1 F̂CMC+LHS,r,m(y). We then compute the sectioning

p-quantile estimator as ξ̃CMC+LHS,b,m = F̃−1
CMC+LHS,b,m(p), leading to the sectioning CI in (9).

7 NUMERICAL RESULTS

We ran numerical experiments with (Y,X) as bivariate normal (so the function cX in (27) is ℜ1-valued,
i.e., d′X = 1) to study the performance of quantile estimation via SRS (Section 3), LHS (Section 4),
CMC (Section 5), and CMC+LHS (Section 6). To evaluate d-dimensional integrals, Monte Carlo methods
become attractive alternatives to quadrature as d grows (see Chapter 7 of Owen 2013), so we inflate
our problem’s dimension by generating (Y,X) as follows. In (27), let (Y,X) = c∗(U1,U2, . . . ,Ud) =

(∑d
j=1 Φ−1(U j),∑

dX
j=1 Φ−1(U j)) for U1,U2, . . . ,Ud IID U [0,1] and dX ≤ d. Thus, Y is the sum of d IID

standard normals, and X sums the first dX of them. The bivariate normal (Y,X) has marginal means
0, marginal variances Var[Y ] = σ2

Y = d and Var[X ] = σ2
X = dX , and correlation ρ = Cov[Y,X ]/(σY σX) =√

dX/d. In our experiments, we chose d = 30 and varied dX = 5, 10, 20, to study the impact of ρ . The
experiments estimated the p-quantile ξ = σY Φ−1(p) of Y for p = 0.5, 0.8, 0.95. CMC and CMC+LHS
use X as the (scalar) conditioning vector, and we can compute the conditional expectation in (21) as
q(x,y) = Φ([y−ρ(σY/σX)x]/[σY (1−ρ2)1/2]); e.g., see p. 68 of McNeil, Frey, and Embrechts (2005).

We constructed confidence intervals having nominal confidence level γ = 0.9 through batching (8) and
sectioning (9) with b = 10 batches and batch size m = 160. Table 1 presents the CI coverage estimated from
104 independent experiments. For SRS and LHS, the sectioning CI attains better coverage than batching,
especially for p = 0.95, which agrees with the discussion in the last paragraph of Section 2.

The variance-reduction factor (VRF) of a method x is the ratio of the sample variance of SRS p-quantile
estimates across the 104 experiments to that of method x. The VRF of LHS is not very large, and it decreases
as p approaches 1 for fixed dX . Thus, LHS is not too effective by itself and becomes even less so when
estimating extreme quantiles. In contrast, the VRF for CMC improves as p→ 1 for fixed dX . To see why, for
fixed correlation ρ , a bivariate normal becomes asymptotically independent in the tails (see Example 5.32
of McNeil, Frey, and Embrechts 2005), so CMC integrates out more of the variability as p→ 1; see (25).
On the other hand, for fixed p, the VRF for CMC decreases as dX grows, i.e., as ρ =

√
dX/d increases.

In this case, X and Y become more dependent as ρ→ 1, so conditioning on X integrates out less variance.
But combining CMC+LHS can lead to substantially smaller variance than either method by itself.

Indeed, the VRF for CMC+LHS often far exceeds the product of the individual VRFs for CMC and LHS,
demonstrating a synergy of the two applied together. For example, for dX = 5 and p = 0.5, the VRFs for
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Table 1: The results compare p-quantile estimation via SRS, LHS, CMC, and CMC+LHS for a bivariate
normal using 104 independent experiments, each with b = 10 batches and batch size m = 160. We used
batching (columns labeled “batch”) and sectioning (columns labeled “section”) to construct confidence
intervals having nominal confidence level γ = 0.9. We vary dX to study the effect of the correlation ρ .

SRS LHS CMC CMC+LHS
dX (ρ) p batch section batch section batch section batch section

5 0.5 coverage 0.891 0.902 0.866 0.902 0.898 0.898 0.896 0.896
(0.41) VRF 1.0e+00 1.0e+00 2.8e+00 2.7e+00 9.4e+00 9.6e+00 1.7e+03 1.7e+03

5 0.8 coverage 0.886 0.904 0.875 0.904 0.893 0.893 0.902 0.902
(0.41) VRF 1.0e+00 1.0e+00 2.0e+00 2.0e+00 1.1e+01 1.2e+01 2.4e+02 2.5e+02

5 0.95 coverage 0.826 0.897 0.827 0.907 0.893 0.893 0.904 0.905
(0.41) VRF 1.0e+00 1.0e+00 1.3e+00 1.3e+00 2.0e+01 2.2e+01 1.3e+02 1.4e+02

10 0.5 coverage 0.891 0.902 0.870 0.900 0.900 0.900 0.899 0.899
(0.58) VRF 1.0e+00 1.0e+00 2.7e+00 2.7e+00 4.6e+00 4.7e+00 2.3e+02 2.4e+02

10 0.8 coverage 0.880 0.900 0.875 0.901 0.901 0.901 0.902 0.901
(0.58) VRF 1.0e+00 1.0e+00 2.0e+00 2.0e+00 5.4e+00 5.5e+00 5.2e+01 5.3e+01

10 0.95 coverage 0.831 0.903 0.832 0.904 0.900 0.903 0.903 0.903
(0.58) VRF 1.0e+00 1.0e+00 1.3e+00 1.3e+00 8.5e+00 9.0e+00 2.7e+01 2.9e+01

20 0.5 coverage 0.894 0.903 0.868 0.906 0.899 0.898 0.904 0.905
(0.82) VRF 1.0e+00 1.0e+00 2.7e+00 2.7e+00 2.1e+00 2.2e+00 2.4e+01 2.5e+01

20 0.8 coverage 0.884 0.904 0.879 0.905 0.897 0.898 0.902 0.903
(0.82) VRF 1.0e+00 1.0e+00 2.0e+00 2.0e+00 2.3e+00 2.4e+00 1.0e+01 1.0e+01

20 0.95 coverage 0.827 0.902 0.830 0.901 0.896 0.899 0.901 0.900
(0.82) VRF 1.0e+00 1.0e+00 1.3e+00 1.3e+00 2.9e+00 3.0e+00 5.4e+00 5.8e+00

LHS and CMC are about 2.7 and 8.8, respectively, but the VRF for CMC+LHS is roughly 1700. The VRFs
of CMC+LHS in the other cases are not nearly as dramatic, but they still are impressive. As explained in
the penultimate paragraph of Section 6, the CMC response q(X ,ξ ) = E[I(Y ≤ ξ ) |X ] is a smoother function
of the uniform inputs than the SRS response I(Y ≤ ξ ) is, leading to a better additive fit in (32) for CMC
than the corresponding SRS approximation in (17). As LHS removes the variability from the additive part
of the response, CMC+LHS can work extremely well when the CMC response is nearly additive.

8 SUMMARY AND CONCLUDING REMARKS

We combined conditional Monte Carlo with Latin hypercube sampling to estimate a quantile ξ of a random
variable Y , and we explained how to use sectioning to construct an asymptotic confidence interval for ξ .
The application of LHS requires that Y has the form in (1), so an observation of Y can be generated from
a fixed number of independent uniform random numbers. This precludes models for which sampling Y
needs an unbounded number of uniforms, e.g., if Y is a functional of a compound Poisson process, even
over a finite time horizon. As noted in Section 5, applying CMC critically relies on being able to compute
(analytically or numerically) the conditional expectation q(x,y) in (21). This often necessitates that the
stochastic model has some level of analytic tractability, which places practical restrictions on when CMC
can be employed. We provided a simple example when this can be done in (26).

Our numerical experiments in Section 7 demonstrate that the combination of the CMC and LHS can
synergistically reduce variance compared to each method by itself. Section 6 also provides insight into
why the combination can be so effective for quantile estimation.
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