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ABSTRACT

Simulation from the tail of the multivariate normal density has numerous applications in statistics and
operations research. Unfortunately, there is no simple formula for the cumulative distribution function of the
multivariate normal law, and simulation from its tail can frequently only be approximate. In this article we
present an asymptotically efficient Monte Carlo estimator for quantities related to the tail of the multivariate
normal distribution. The estimator leverages upon known asymptotic approximations. In addition, we
generalize the notion of asymptotic efficiency of Monte Carlo estimators of rare-event probabilities to the
sampling properties of Markov chain Monte Carlo algorithms. Regarding these new notions, we propose
a simple and practical Markov chain sampler for the normal tail that is asymptotically optimal. We then
give a numerical example from finance that illustrates the benefits of an asymptotically efficient Markov
chain Monte Carlo sampler.

1 INTRODUCTION

The importance of the normal distribution in mathematics and the applied sciences is well-known. One of
the key properties of the univariate Gaussian distribution is Mill’s ratio (Mills 1926):

Φ(γ)

φ(γ)
' 1

γ
, γ ↑ ∞,

where φ and Φ denote the standard normal density and its right tail, respectively. (Here the notation
f(x) ' g(x) as x → a stands for limx→a f(x)/g(x) = 1. Similarly, we define f(x) = O(g(x)) ⇔
limx→a |f(x)/g(x)| < const. <∞; f(x) = o(g(x))⇔ limx→a f(x)/g(x) = 0; also, f(x) = Θ(g(x))⇔
f(x) = O(g(x)) and g(x) = O(f(x)).)

Given this univariate result, it is then natural to ask what its multivariate analogue is. The first result
in this direction was established by (Savage 1962) and states that in d-dimensions:

ΦΣ(γΣc)

φΣ(γΣc)
' 1

γd
∏d
k=1 ck

, c > 0, γ ↑ ∞, (1)

where φΣ(y) and ΦΣ(y) = P(Y ≥ y), Y ∼ N(0,Σ), denote the density and tail, respectively, of the
multivariate N(0,Σ) distribution with covariance matrix Σ ∈ Rd×d. This result is the simplest extension
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of Mill’s result to multiple dimensions. Note, however, that the form of the threshold vector, Σc, is a
weighted linear combination of the columns of Σ, and that this condition can be quite restrictive. It is for
this reason that more recently (Hashorva and Hüsler 2003) have sought a more general asymptotic version
of the multivariate Mill’s ratio.

This more general version of the Mill’s ratio can be stated as follows: we wish to estimate

`(γ) = P(Y ≥ l(γ)), Y ∼ N(0,Σ), (2)

where maxi li > 0 (li is the i-th component of vector l ∈ Rd), and at least one component of l(γ)
diverges to∞, that is, limγ↑∞ ‖l(γ)‖ =∞. Although (Hashorva and Hüsler 2003) provide the asymptotic
approximation to ` (see Section 2), it is desirable to also have an asymptotically efficient Monte Carlo
estimator of this quantity.

In this article we construct a novel unbiased and logarithmically efficient estimator for `. The logarithmic
efficiency is with respect to γ ↑ ∞, and refers to an estimator whose relative error grows subexponentially
as γ becomes larger and larger. Note that (Botev 2016) introduced a Monte Carlo estimator of (1) that
enjoys the much stronger vanishing relative error property in the limit as γ ↑ ∞ (see, for example, (Kroese
et al. 2011, Chapter 10)). Unfortunately, the results in (Botev 2016) do not apply to the more general
Mill’s ratio in (2). Thus, this aspect of the present work extends and complements the results in (Botev
2016, Botev and L’Ecuyer 2015, Botev et al. 2015).

In addition to this, we introduce a new notion called logarithmically efficient Markov chain Monte
Carlo (LE-MCMC). What distinguishes such an MCMC sampler from the usual MCMC is that LE-MCMC
provides a theoretical guarantee that the reduction of its mixing speed as γ ↑ ∞ can be countered by
growing the length of the Markov chain at a sub-exponential, or polynomial, rate.

In this article, we thus present a logarithmically efficient MCMC for simulating from the conditional
distribution:

π(y) =
φΣ(y)I{y ≥ l(γ)}

`(γ)
. (3)

There are a number of applications of Mill’s ratio in survival analysis and censored data, see, for example,
(Klein and Moeschberger 2005). Here, we provide an application of estimating (2) and simulating from
(3) from financial engineering (Kroese et al. 2011, Chapter 15). In particular, we show how we can price
with high accuracy a digital hindsight put option when the probability of being knocked out is very high.

The rest of the paper is organized as follows. In Section 2 we provide the notation and background
needed to state the asymptotic result of (Hashorva and Hüsler 2003). In Section 3 we present our novel
estimator of (2), and show that it is logarithmically efficient. Next, in Section 4 we introduce the concept
of LE-MCMC and describe a logarithmically efficient sampler. This is followed by a numerical example
with pricing a down-and-out option contract. Finally, we explain how the results can be generalized to
the setting of a multivariate normal density constrained to more general, but smooth, regions, and draw
conclusions.

2 ASYMPTOTIC BEHAVIOR OF THE MULTIVARIATE NORMAL TAIL

Let P be a permutation matrix which maps the vector (1, . . . , d)> into the permutationp = (p1, . . . , pd)
>, that

is, P(1, . . . , d)> = p. Note that `(γ) = P(PY ≥ Pl(γ)) for any permutation p, and PY ∼ N(0,PΣP>).
We will specify p shortly.

Define the convex quadratic programming:

min
x

1

2
x>(PΣP>)−1x

subject to: x ≥ Pl(γ).
(4)
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The Karush-Kuhn-Tucker (KKT) conditions are a necessary and sufficient condition to find the unique
solution:

(PΣP>)−1x− λ = 0

λ ≥ 0, Pl− x ≤ 0

λ>(Pl− x) = 0 ,

(5)

where λ ∈ Rd is the Lagrange multiplier. Denote the number of active constraints in (4) by d1 and the
number of inactive constraints as d2, so that d1 +d2 = d. Note that the number of active constraints d1 ≥ 1,
because otherwise the solution to (4) is x = 0, which implies Pl ≤ 0, thus reaching a contradiction.

Given the partition λ = (λ>1 ,λ
>
2 )> with dim(λ1) = d1 and dim(λ2) = d2, one can select the

permutation vector p and the corresponding matrix P in such a way that all the active constraints in (5)
correspond to λ1 > 0 and all the inactive ones to λ2 = 0.
Assumption 1 (Active Constraint Set.) Henceforth, we assume that this reordering of the variables via
the permutation operator P has been applied as a preprocessing step to both l and Σ so that Pl = l and
PΣP> = Σ.

If we partition x, l, and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

then the KKT equations tell us that the optimal solution x∗ is:

x∗1 = Σ11λ1 = l1(γ)

x∗2 = Σ21λ1 = Σ21Σ−1
11 l1(γ) > l2(γ)

(6)

with the global minimum 1
2(x∗)>Σ−1x∗ = 1

2(x∗1)>λ1 = 1
2 l
>
1 Σ−1

11 l1.
Note that x∗(γ) is implicitly a function of γ and that in general the active constraint set of (4) and its

size, d1, also depends on the value of γ through l(γ).
Assumption 2 (Independence of active set from γ) We henceforth assume that ‖l(γ)‖ diverges to infinity
as γ ↑ ∞ in such a way that, for large enough γ, the active constraint set of (4) becomes independent of γ.

With these definitions and assumptions we can now formulate the result of (Hashorva and Hüsler 2003).
Theorem 1 (Mill’s Ratio For Multivariate Normal) Under the assumptions above, if Y ∼ N(0,Σ) with
Y > = (Y >1 ,Y

>
2 ), dim(Y 1) = d1, then as γ ↑ ∞, we have:

P(Y ≥ l(γ)) =
P(Y 2 ≥ l∞ |Y 1 = 0)

(2π)d1/2|Σ11|1/2
∏d1
k=1 e

>
k Σ−1

11 l1
exp

(
− l
>
1 Σ−1

11 l1
2

)
(1 + o(1)),

where l∞
def
= limγ↑∞(l2(γ)−x∗2(γ)) with l∞ ≤ 0, and ek is the unit vector with a 1 in the k-th position.

Given this asymptotic result, we would like to construct a simple and unbiased Monte Carlo estimator
of `(γ), paying close attention to its error behavior as the tail probability becomes smaller and smaller
with increasing γ. In the next section we present one such estimator.

3 LOGARITHMICALLY EFFICIENT ESTIMATION OF GAUSSIAN TAIL

The crude Monte Carlo estimator of ` is, of course:

I{Y ≥ l},
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where Y ∼ N(0,Σ) is simulated under the original measure P. It is clear that this estimator is not efficient,
because Var(I{Y ≥ l})/`(γ)2 ' 1/`(γ) grows at an exponential rate as γ ↑ ∞.

Instead, we consider the change of measure Pµ, under which Y ∼ N(µ,Σ). This gives the importance
sampling estimator:

ˆ̀(γ) = exp
(

1
2µ
>Σ−1µ− µ>Σ−1Y

)
I{Z ≥ l(γ)}, Y ∼ Pµ. (7)

We then have the following efficiency result.
Theorem 2 (Logarithmic Efficiency) Suppose assumptions 1. and 2. in Section 2 hold. If we select
µ = x∗, where x∗ is the solution to (4), then the estimator ˆ̀ is asymptotically efficient:

lim inf
γ

lnEˆ̀2(γ)

ln `(γ)
= 2.

Proof. Since the estimator is unbiased, we need only consider its second moment. The second moment
under Pµ is:

Eµ ˆ̀2(γ) = E0 exp

(
1

2
µ>Σ−1µ− µ>Σ−1Y

)
I{Y ≥ l(γ)}

= exp
(
µ>Σ−1µ

)
P−µ(Y ≥ l(γ))

= exp
(
µ>Σ−1µ

)
P0(Y ≥ l+ µ), where µ = (l>1 , l

>
1 Σ−1

11 Σ21)>.

Next, we apply Theorem 1 on the term P(Y ≥ l̃), where

l̃ =

(
2l1

l2 + Σ12Σ−1
11 l1

)
.

Keeping in mind that l is such that l2 < Σ21Σ−1
11 l1, the solution to (4) is

x̃∗1 = l̃1(γ) = 2l1

x̃∗2 = Σ21Σ−1
11 l̃1(γ) = 2Σ21Σ−1

11 l1 > l̃2 = l2 + Σ12Σ−1
11 l1.

Theorem 1 then yields:

P(Y ≥ l̃(γ)) ' P(Y 2 ≥ l∞ |Y 1 = 0)

(2π)d1/2|Σ11|1/2
∏d1
k=1 e

>
k Σ−1

11 (2l1)
exp

(
−(2l1)>Σ−1

11 (2l1)

2

)
.

Therefore,

Eµ ˆ̀2(γ) =
P(Y 2 ≥ l∞ |Y 1 = 0)

(2π)d1/2|Σ11|1/2
∏d1
k=1 e

>
k Σ−1

11 (2l1)
exp

(
µ>Σ−1µ− 2l>1 Σ−1

11 l1

)
(1 + o(1))

=
c1∏d1

k=1 e
>
k Σ−1

11 (2l1)
exp

(
−l>1 Σ−1

11 l1

)
(1 + o(1)),

where c1, c2, . . . are generic constants that do not depend on γ. It follows that we have the asymptotic
inequality

Eµ ˆ̀2(γ)

`2(γ)
. c2

d1∏
k=1

e>k Σ−1
11 l1 = c2

d1∏
k=1

λk, γ ↑ ∞

and therefore the relative error grows only at a polynomial rate in l1, implying a logarithmically efficient
estimator.
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We will give an example of the practical performance of this estimator in Section 5. For the time
being, notice how the magnitude of the relative error depends on the product of the Lagrange multipliers,∏d1
k=1 λk, that correspond to the active constraint set. Thus, we can expect this estimator to work well

when there are few active constraints in (4), and to work poorly when the number of active constraints is
d1 = d.

4 LOGARITHMICALLY EFFICIENT MARKOV CHAIN MONTE CARLO

Next, suppose we wish to simulate from the conditional density (3), and we use an Markov chain independence
sampler (Kroese et al. 2011, Chapter 6) with proposal density φΣ(z −µ). Then, given the Markov chain
is in the state Y = y, we accept the proposal move Z ∼ φΣ(z − µ) with probability

α(Z|y) = 1 ∧ exp(−µ>Σ−1(Z − y)) I{Z ≥ l}.

This yields the following MCMC algorithm for approximate simulation from (3).

Algorithm 1 : LE-MCMC for π(y).
Require: µ,Σ, l; an initial state of the chain Y 0, and length of chain n.

for t = 1, . . . , n do
Simulate Z ∼ N(µ,Σ) and U ∼ U(0, 1), independently
if U < α(Z|Y t−1) then

Y t ← Z
else

Y t ← Y t−1

return Y 1, . . . ,Y n

A natural question then arises with this sampler. What is the mixing rate of the sampler as a function of
n and how is this mixing rate affected by the tail parameter γ? The answer to the first part of the question
has been known for a long time (Mengersen and Tweedie 1996). It is the answer to the second part of the
question that concerns us here.

To this end, let κt(A|x) be the t-step transition kernel of a Markov chain with limiting and stationary
density π. The total variation distance between the t-step distribution and the target is thus defined as:

Dt(x) = sup
A
|κt(A|x)− π(A)| ,

where π(A)
def
=
∫
A π(x)dx is the measure of a Borel set A on Rd. If we wish to keep the total variation

error below a given tolerance ε, we then need to take at least

T = min{t : Dt(x) ≤ ε}

number of steps. If π depends on the parameter γ, then so does T . Thus, we define the following efficiency
notion. We say that a Markov chain is strongly efficient if lim supγ T (γ) < ∞ and a Markov chain is
logarithmically efficient if

lim sup
γ

lnT (γ)

ln γ
<∞.

In addition, if the statements in the definition are true for T = min{t : supxDt(x) ≤ ε}, then, in keeping
with standard nomenclature, we say that we have a uniformly strongly (or logarithmically) efficient Markov
chain.

Thus, to ensure that we sample within a total variation error of ε from the target π, the length of a
strongly efficient chain need not increase as γ becomes larger. In contrast, the length of a logarithmically
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efficient chain has to increase at a polynomial rate in γ to keep the error in check, and the length of an
inefficient chain has to grow exponentially.
Proposition 1 (Logarithmically Efficient Markov Chain) The Markov chain in Algorithm 1 is (uniformly)
logarithmically efficient.

Proof. First note that y>Σ−1µ = y>λ = y1λ1 from (5), and hence

c(γ) = sup
y

π(y)

φΣ(y − µ)
= sup
y≥l

exp
(

1
2µ
>Σ−1µ− y>Σ−1µ

)
`γ

=
exp

(
1
2µ
>Σ−1µ

)
`γ

exp(− min
y1≥l1

y>1 Σ−1
11 l1) =

exp
(
−1

2 l
>
1 Σ−1

11 l1
)

`γ
.

Then, by (Mengersen and Tweedie 1996, Theorem 2.1) we know that the Markov chain is uniformly ergodic
and

sup
x
Dt(x) ≤ 2(1− c−1(γ))t ≤ 2

(
1− c1∏d1

k=1 λk
(1 + o(1))

)t
.

Thus, to ensure the bound remains below ε uniformly as γ ↑ ∞, we need to run the independence sampler
for

T &

⌈
ln(2/ε)

∏d1
k=1 λk
c1

⌉
number of steps. In other words, the length of the chain increases at a polynomial rate, and the chain is
uniformly logarithmically efficient.

5 NUMERICAL EXAMPLE:DOWN-AND-OUT CALL OPTION

We consider the pricing and simulation of a discretely-monitored digital down-and-out call option (Kroese
et al. 2011, Chapter 15) with payoff defined by

I{Stn > K}I{ min
1≤i≤n−1

Sti ≥ β},

where:

• under the risk-neutral measure Q, the stock price process {St, t ≥ 0} is governed by the geometric
Brownian motion model

St = S0 exp((r − σ2/2)t+ σWt)

with {Wt, t ≥ t} being a Wiener process; r being the annual interest rate; and σ being the volatility
parameter;

• β is a knock-out barrier;
• T is the time of maturity of the option with discrete monitoring over t1 < · · · < tn = T ;
• K > β is the strike price of the exotic option.

The value of the option at time t = 0 is given by the expected value of the discounted payoff:

C0 = exp(−rT )Q( min
i≤n−1

Sti ≥ β, Stn > K).
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We are interested in simulating from the law of Q, conditional on the option being worth something, that is,
the law of Q, conditional on the event {mini≤n−1 Sti ≥ β, Stn > K}. This is thus equivalent to simulating
from the conditional pdf:

π(z) =
φΣ(z)I{z ≥ l}

`(γ)
,

where:

• Σ is a covariance matrix with elements Σij = min{ti, tj}, corresponding to the covariance function
of the Wiener process;

• the vector l has components

lk =
ln(β/S0)− (r − σ2/2)tk

σ
, k ≤ n− 1, ln =

ln(K/S0)− (r − σ2/2)T

σ
.

Then, given a draw Z ∼ π, we can map it to a stock price trajectory for which the option is not worthless:

Stk = S0 exp((r − σ2/2)tk + σZk).

Figure 5 shows one such stock price trajectory, conditional on the event {mini≤n−1 Sti ≥ β, Stn > K},
where β = S0 = 100, σ = 0.1, r = 0.03, T = 4/12,K = 130, and d = 264.

The figure was created using the last state of the chain generated by Algorithm 1 with n = 105. Figure 5
shows the estimated auto-correlation function for Z3 in Z. The figure suggests that the chain becomes
stationary after approximately 100 steps.

0 0.05 0.1 0.15 0.2 0.25 0.3

100
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110

115
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125

130

Figure 1: Stock price trajectory conditional on positive payoff. The barrier, β = 100, and strike price,
K = 130, are shown in red. Here S0 = 100, σ = 0.1, r = 0.03, T = 4/12, and d = 264.

We compare our LE-MCMC sampler against the random walk Metropolis-Hastings sampler (Kroese
et al. 2011, Chapter 6). Given the current state, y, of the chain, the proposal move is generated via

Z = s× tν(0,Σ) + y, (8)

where:
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• s > 0 is a scale parameter to be tuned for optimal performance;
• tν(0,Σ) denotes a random variable drawn from the multivariate student distribution with ν degrees

of freedom with location 0 and scale matrix Σ.
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Figure 2: Estimated autocorrelation function of chain in Algorithm 1 with length n = 105.
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Figure 3: Independence sampler in Algorithm 1 versus the (optimized) random walk sampler with s = 0.03.
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In implementing the sampler, we attempted to optimize the mixing of the Markov chain by tuning the
scale parameter s for ν = 100. The fastest decaying (estimated) autocorrelation function was observed
for values of around s = 0.03. Figure 5 shows the resulting autocorrelation plot superimposed on the plot
from Figure 5. It appears that the proposed independence sampler achieves stationarity faster than the best
random walk sampler with proposal of the form (8).

Finally, we note that with n = 106 the logarithmically efficient estimator (7) yielded the following
estimate of Q(mini≤n−1 Sti ≥ β, Stn > K) with 95% (asymptotic) confidence interval:

[1.88± 0.014]× 10−6.

This small quantity is difficult to estimate efficiently via crude Monte Carlo.

6 EXTENSION TO SMOOTH DOMAINS

A possible extension of the approach has been suggested by (Gollwitzer and Rackwitz 1988), who consider
the following more general setting. Suppose one wishes to estimate:

p = P(g(Z) ≥ 0),

where Z ∼ N(0, Im), and g(z) = (g1(z), . . . , gd(z))> is a vector-valued function, g : Rm 7→ Rd, m > d,
such that all gj’s are twice continuously differentiable and gj(0) < 0 for at least one j. Let G(z) = ∇g(z)
be an d×m Jacobian matrix containing all gradients, ∇gj , j = 1, . . . , d, as row vectors.

Define the non-linear optimization program

min
z

1

2
z>z

subject to: g(z) ≥ 0,
(9)

whose solution, z∗ 6= 0, satisfies the necessary conditions (G = G(z∗)):

z∗ −G>η = 0

η ≥ 0, −g(z∗) ≤ 0

η>g(z∗) = 0 ,

We assume, again, that the first d1 elements, η1, of the Lagrange multiplier η are positive (corresponding
to the active constraints).

Then, as ‖z∗‖ ↑ ∞, we have the asymptotic result (Gollwitzer and Rackwitz 1988):

P(g(Z) ≥ 0) = Θ(P(Y ≥ l)),

where Y ∼ N(0,Σ) with Σ = GG>, and

l = Gz∗ − g(z∗) = Ση − g(z∗).

Due to our partitioning of active and inactive constraints, we have g1(z∗) = 0 and g2(z∗) > 0. Therefore,
the partitioned l = (l>1 , l

>
2 )> is given by

l1 = Σ11η1

l2 = Σ21η1 − g2(z∗) < Σ21η1.

The last applied to (4) with P = I yields the solution (see (6))

x∗1 = l1 = Σ11η1

x∗2 = Σ21Σ11−1l1 = Σ21η1 > l2.
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This implies that, in fact, P(Y ≥ l) = Θ(P(Y 1 ≥ l1)), and hence P(g(Z) ≥ 0) = Θ(P(Y 1 ≥ l1)), and
only the active constraints matter asymptotically.

The key consequence of the above discussion is that the asymptotically optimal estimation of p =
P(g(Z) ≥ 0) is equivalent to the asymptotically optimal estimation of P(Y ≥ l), which we already know
how to handle. Therefore, without further work, we can conclude that the following estimator of p:

p̂ = exp(‖µ‖22/2− µ>Z)I{g(Z) ≥ 0}, Z ∼ N(µ, I),

where µ = z∗ is the solution to (9), is logarithmically efficient as ‖z∗‖ ↑ ∞.

7 CONCLUSIONS

In this article we reviewed recent generalizations of the Mill’s ratio to the multivariate normal setting.
We then used these asymptotic results to motivate the construction of an exponentially tilted estimator
that is weakly efficient in a very general rare-event probability estimation setting. A financial application
shows that this simple estimator can sometimes yield low variance estimates in cases where the covariance
function Σ incorporates strong positive correlation.

In addition to generalizing the proposed estimator to the estimation of general Gaussian integrals as in
(Gollwitzer and Rackwitz 1988), another contribution of this article is the formulation of new qualitative
properties of Markov chain samplers. In particular, we find that asymptotic efficiency is desirable not only
in the robust estimation of rare-event probabilities, but also in the Markov chain Monte Carlo simulation
from the corresponding conditional measure (conditional on the rare event).

Given that here we have only analyzed the independence-Metropolis sampler, in future investigations we
would like to establish logarithmic or strong efficiency for the more sophisticated Gibbs and/or random-walk
Metropolis samplers.
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