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ABSTRACT

Developing metamodels for quantiles can be inaccurate when the input estimates of the quantiles used to
fit the model are noisy. In this paper, a multiple response model is developed to jointly model the quantile
with a correlated and less-noisy expectation to improve the fit and predictions from the quantile metamodel.
We first extend the standard stochastic Gaussian process model to the multi-response case and then use a
simple m-design-point example to analytically study the benefits of the joint model over the single model.
Several other numerical experiments are also conducted, and the results show that the joint model can
provide better performance and thus improve quantile predictions.

1 INTRODUCTION

Although the mean of a simulation response distribution is typically used as an output measure of a system,
the quantiles of the distribution have also become an increasingly important performance measure in many
fields, including engineering safety, finance and healthcare. When the computer simulations are expensive, it
is, however, very costly to conduct sufficient simulation replications (especially for heavy tailed distributions)
to estimate the quantiles for every considered design or situation. To overcome this problem, metamodels,
which in general provide an approximation to the input-output relationship of computer models, have been
applied to provide global predictions for quantiles (Koenker 2005; Chen 2009; Dabo-Niang and Thiam
2010; Chen and Kim 2016).

The Gaussian process (GP) model, also termed as kriging model, has become a popular choice of
metamodels. Although often used in deterministic computer experiments (Pham and Wagner 1999; Gupta
et al. 2006; Joseph 2006), kriging has been more recently extended to approximate stochastic simulation
models. These include the stochastic kriging (SK) model by Ankenman, Nelson, and Staum (2010) and the
modified nugget effect kriging (MNEK) model by Yin, Ng, and Ng (2011). Most of these works, however,
focused on developing GP models for mean performance measure as it is an easy measure to estimate from
the simulation outputs with nice properties and decision approaches based on them are comparable to their
deterministic counterpart.

To facilitate prediction of risk measures, Chen and Kim (2016) extended the SK model to approximate
quantiles from stochastic simulation models. They studied various point and variance estimators of quantiles
for inputs to the extended SK model, including batching (Seila 1982), sectioning (Asmussen and Glynn
2007), sectioning-batching (Nakayama 2014) and jackknifing (Nance and Sargent 2002; Gordy and Juneja
2010; Kleijnen 2008) methods for quantile estimates. They concluded that this extended SK approach for
quantiles is promising and can provide competitive predictions when compared to the quantile regression
approach.
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As noted in Yin, Ng, and Ng (2009) and Hernandez and Grover (2013), the noise levels in the stochastic
simulation can greatly affect the parameter estimates of the stochastic Gaussian process models and thus
influence the performance of these models. When applying these models for quantile prediction, these
issues can be more severe as the variance and biases of the quantile input estimates to the model can be large
when the number of simulation replications is limited. One way to reduce the biases and variances of these
quantile estimators is to increase the number of simulation replications. However, the improvements are
limited when the simulation is expensive. In this paper, we propose an alternative approach to model and
enhance the prediction of quantiles by developing a joint metamodel for the quantile and expectation. The
main idea is to leverage and learn from more stable estimators of the expectation to enhance the prediction
of the quantile. These two variables are likely to be correlated as they come from the same underlying
distribution. For example, in the M/M/1 queueing system, the expected number of customers at a steady
state will be highly correlated with the α-quantile, where the true distribution is geometric with parameter
1−λ/µ (λ is the arrival rate, µ is the service rate). In portfolio analysis, larger risks are likely to bring
larger expected returns with higher variations, i.e. larger mean values of return tend be associated with
larger upper-α-quantile. In addition, the expectation estimator is unbiased with a noise level decreasing
with the rate 1

n(n−1) while the quantile estimator is biased with a noise level decreasing with the rate 1
n .

Hence, with this joint model, we investigate further whether the quantile prediction can be improved with
the information learned from this correlated, less-noisy and unbiased expectation prediction.

The multiple response Gaussian process model is a popular way to jointly model a number of output
responses and provide an estimation of the correlations among them. It has also been applied to jointly
model multiple output measures of deterministic computer models. Following the work by Kennedy and
O’Hagan (2001), a lot of researchers have used the multiple response GP to model the dependencies between
outputs (Conti and OHagan 2010; McFarland et al. 2008; Rougier 2008; Álvarez and Lawrence 2011;
Kleijnen and Mehdad 2014). Fricker, Oakley, and Urban (2013) provide a review of the different types of
multiple response GP models including the separable model (Conti and OHagan 2010), the convolution
method model (Ver Hoef and Barry 1998; Higdon 2002) and the linear model of coregionalization (LMC)
(Journel and Huijbregts 1978; Goulard and Voltz 1992). From their study, it was found that LMC model
performed better than the others as it is more able to capture the complexities of the responses. In this
paper, we also adopt this model for better flexibility to model quantile and expectation.

This paper is organized as follows. In section 2, we extend the traditional single response stochastic
GP model into the multiple response case to build a joint model for quantile and expectation. In section
3, we use a m-design-point problem to give some insights of this model. In section 4, some numerical
examples are provided to show the power of this model. In section 5, we summarize the work and present
some future research topics.

2 MULTIRESPONSE STOCHASTIC GAUSSIAN PROCESS

In this section, we first review the basics of the stochastic GP and LMC models and then extend them to
build a joint model for quantile and expectation.

2.1 Stochastic Gaussian Process Model Basics

The standard stochastic GP model assumes that the response of stochastic simulation can be represented
in the following form:

Y (x) = Z(x)+ ε(x) = fff (x)T
βββ +η(x)+ ε(x),

where Z(x) represents the noise-free response which can be further decomposed into the mean function,
fff (x)T

βββ , and a second-order stationary GP, η(x), (Cressie 2015). fff (x) is a p×1 vector of known functions and
βββ is a p×1 vector of model parameters. In this work, we consider the Gaussian correlation function to capture
the spatial correlation of the GP, η(x): cov(η(x1),η(x2)) = σ2

z corr(x1,x2) = σ2
z exp∑

d
j=1 θ j(x1, j− x2, j)

2,
where σ2

z = var(η(x)), xi, j is the jth coordinate of xi and θθθ is the sensitivity parameter. ε is the random
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noise with mean zero and variance σ2
ε (x). This noise is assumed to be independent of η(x). Here we also

assume that no common random numbers are applied and hence the noise at different input levels are also
independent, i.e., cov(ε(xi),ε(x j)) = 0, for i 6= j.

Typically, the stochastic GP model is used to predict the mean function at an unknown input point x0,
Z(x0), given a series of observations at design point x1, ...,xm. Suppose there are ni independent simulation
replications at point xi, then the predictor Ẑ(x0) and the associated mean square error (MSE) could be
expressed as follows based on the sample mean YYY = (Y (x1), ...,Y (xm))

T :

Ẑ(x0) = fff (x)T
β̂ββ + ccc(x0)

T RRR−1(YYY −FFF β̂ββ ), (1)

MSE(Ẑ(x0)) = σ
2
z − ccc(x0)

T RRR−1ccc(x0)− ( fff (x0)−FFFT RRR−1ccc(x0))
T
(FFFT RRR−1FFF)

−1
( fff (x0)−FFFT RRR−1ccc(x0)), (2)

where ccc(x0) is the covariance vector of x0 with existing design points: ccc(x0)=σ2
z (corr(x0,x1), ...,corr(x0,xm))

T ,

FFF = ( fff (x1)
T , ..., fff (xm)

T )
T

. β̂ββ = (FFFT RRR−1FFF)
−1

FFFT RRR−1YYY is the generalized least squares estimators for βββ ,
and RRR is the covariance matrix of the design points:

RRR = RRRz +RRRε = σ
2
z


1 corr(x1,x2) · · · corr(x1,xm)

corr(x2,x1) 1 · · · corr(x2,xm)
...

...
. . .

...
corr(xm,x1) corr(xm,x2) · · · 1

+σ
2
z


s2

1 0 · · · 0
0 s2

2 · · · 0
...

...
. . .

...
0 0 · · · s2

m

 , (3)

where s2
j represents the ratio of the noise variance over the spatial uncertainty, i.e., s2

j = var(ε(x j))/σ2
z =

σ2
ε (x j)/(n jσ

2
z ). When the remaining parameters are unknown, σ2

ε (xi) can be estimated by the sample
variance of the simulation runs at point xi. σ2

z and θθθ can be estimated by maximizing the likelihood (details
can be found in Ankenman, Nelson, and Staum (2010); Yin, Ng, and Ng (2011)).

As mentioned above, the standard stochastic GP model is developed to model and predict the mean
of a stochastic simulation and requires the point estimates of the mean and their respective variance at the
m design points. To apply it for quantile prediction, Chen and Kim (2016) proposed to replace the point
estimates of the mean (which is the YYY in (1)) and the corresponding variance (RRRε in (3)) with the quantile
estimates and its noise variance. They then compared different types of point and variance estimators to
measure the predictive performance of VaR and CVaR. As their study found that the sectioning method
provides better predictive properties and results, in this paper, we adopt this same method to estimate the
quantiles and their corresponding variances. Below, we briefly introduce the sectioning methods applied
to estimate these values.

Denote the ni simulation runs at xi as H1(xi), ...,Hni(xi). The point estimator of the α-quantile is just
the sample quantile: q̂α(xi) = H(dαnie)(xi), where H( j) is the jth order statistic. The resulting predictor will
share the similar formula as (1) except that the YYY is replaced with Q̂QQα , where Q̂QQα = (q̂α(x1), ..., q̂α(xm)).
The corresponding noise variance matrix RRRε is also modified with s2

i = var(q̂α(xi))/σ2
z . However, as the

sample quantile estimators are biased (Chen and Kim 2014), the MSE of quantile predictor will be larger.
Specifically, the bias of quantile predictor at x0 can be derived to:

bias(Ẑ(x0))=E[Ẑ(x0)−Z(x0)]= { fff (x)T (FFFT RRR−1FFF)
−1

FFFT RRR−1 + ccc(x0)
T RRR−1(III−FFF(FFFT RRR−1FFF)

−1
FFFT RRR−1)}

T
ξξξ ,

where ξξξ represents the bias of Q̂QQα , i.e., ξi = E[q̂α(xi)−qα(xi)]. (The details of this derivation can be found
in Chen and Kim (2014)). Hence, the overall MSE of quantile predictor consists of (2) plus the square of
the bias term given above. In the sectioning method applied, the variance var(q̂α(xi)) is estimated in the
following manner. First, the simulation runs H1(xi), ...,Hni(xi) are divided into nb non-overlapping groups
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with nc replications in each group. Then, the sample α-quantile within each group, q̂α, j(xi), j = 1, ...,nb,
is obtained. The variance estimator is then computed as:

v̂ar(q̂α(xi)) =
1

nb(nb−1)

nb

∑
j=1

(q̂α, j(xi)− q̂α(xi))
2. (4)

2.2 Linear Model of Coregionalization Basics

In this subsection, we briefly review the LMC model for the deterministic case before extending it to
the stochastic case in the next subsection. In this model, each output can be represented by “a linear
combination of ‘building block’ processes” (Fricker, Oakley, and Urban 2013). These ‘building block’
processes are a series of independent Gaussian processes. An LMC with k blocks is given as:

ZZZ(x) = (IIIk⊗ fff (x)T )βββ +AAAηηη , (5)

where ZZZ is an k×1 vector of deterministic responses, IIIk is a k-dimensional identity matrix, ⊗ represents
Kronecker product, and βββ is a kp×1 vector of model parameters. (IIIk⊗ fff T (x))βββ indicates that the mean
part of these k outputs share the same set of known functions fff , but different mean parameters. ηηη is a
k× 1 vector of independent zero-mean and single variance GPs and AAA is a k× k full-rank matrix. The
covariance matrix of ZZZ(xi) and ZZZ(x j) is:

cov(ZZZ(xi),ZZZ(x j)) = AAAdiag{cov(ηl(xi),ηl(x j))}k
l=1AAAT .

It is easy to see that the between-output covariance is RRR0 = cov(ZZZ(xi),ZZZ(xi)) = AAAAAAT . According to Kleijnen
and Mehdad (2014), the cross-correlation of the ith and jth output can be defined as:

ri j =
∑

k
l=1 AAAilAAA jl√

∑
k
l=1 AAAilAAAil

√
∑

k
l=1 AAA jlAAA jl

,

where larger value of ri j indicates a larger correlation between ith and jth output.

2.3 A Joint Model for Quantile-Expectation Using LMC

In this subsection, we extend the stochastic GP model to a multivariate case based on the LMC model, so
that the dependency of quantile and expectation can be captured. Denote Y1(x) and Y2(x) as the α-quantile
and expectation of the stochastic simulation at x, while Z1(x) and Z2(x) represent their noise-free versions.
The multivariate GP model for Y1,Y2 could be expressed as follows:

YYY (x) = ZZZ(x)+ εεε(x) = (III2⊗ fff (x)T )βββ +δδδ (x)+ εεε(x),

where YYY (x) = (Y1(x),Y2(x))
T , ZZZ(x) = (Z1(x),Z2(x))

T . III2 is a 2-dimensional identity matrix. βββ is a 2p×1
vector of model parameters. εεε(x) = (ε1(x),ε2(x))

T represent the noises of the performance measures
following multivariate normal distribution, which is a new term added to the deterministic LMC (5) to
capture the stochastic behavior of the responses in this work. Since the sample mean and sample quantile
might be estimated from the same simulation runs, these two noises ε1(xi) and ε2(xi) are dependent and
should not be modeled independently. δδδ (x) is assumed to be a realization of a 2-variate GP with zero mean.
Following the LMC approach, δi(x) could be modeled as a linear combination of independent single-variate
GPs:

δ1(x) = A11η1(x)+A12η2(x),

δ2(x) = A21η1(x)+A22η2(x),
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where η1,η2 are two independent GP with zero mean and unit variance: cov(ηi(x1),ηi(x2))= corri(x1,x2), i=
1,2. The covariance functions of this model are:

cov11(xi,x j) = cov(Z1(xi),Z1(x j)) = A2
11corr1(x1,x2)+A2

12corr2(x1,x2),

cov22(xi,x j) = cov(Z2(xi),Z2(x j)) = A2
21corr1(x1,x2)+A2

22corr2(x1,x2),

cov12(xi,x j) = cov(Z1(xi),Z2(x j)) = A11A12corr1(x1,x2)+A12A22corr2(x1,x2),

σ
2
z1 = A2

11 +A2
12, σ

2
z2 = A2

21 +A2
22, σ

2
z12 = A11A21 +A12A22.

The cross-correlation between these two responses is:

r := corr(Z1(x),Z2(x)) =
A11A21 +A12A22√

(A2
11 +A2

12)(A
2
21 +A2

22)
.

The predictor of ZZZ(x0) is:

ẐZZ(x0) = (III2⊗ fff (x)T )β̂ββ +CCC(x0)
T RRR−1(Y −FFF β̂ββ ), (6)

where Y = (Q̂QQ
T
α ,YYY

T
)

T
is the vector of point estimators of quantile and mean, FFF = III2⊗( fff (x1)

T , ..., fff (xm)
T )

T
,

CCC(x0) is the covariance matrix between ZZZ(x0) and observations Y . β̂ββ = (FFFT RRR−1FFF)
−1

FFFT RRR−1Y . RRR=RRRz+RRRε

is the covariance matrix for Y with

RRRz =



σ2
z1 cov11(x1,x2) · · · cov11(x1,xm) σ2

z12 cov12(x1,x2) · · · cov12(x1,xm)
cov11(x2,x1) σ2

z1 · · · cov11(x2,xm) cov12(x2,x1) σ2
z12 · · · cov12(x2,xm)

...
...

. . .
...

...
...

. . .
...

cov11(xm,x1) cov11(xm,x2) · · · σ2
z1 cov12(xm,x1) cov12(xm,x2) · · · σ2

z12
σ2

z12 cov21(x1,x2) · · · cov21(x1,xm) σ2
z2 cov22(x1,x2) · · · cov22(x1,xm)

cov21(x2,x1) σ2
z12 · · · cov21(x2,xm) cov22(x2,x1) σ2

z2 · · · cov22(x2,xm)
...

...
. . .

...
...

...
. . .

...
cov21(xm,x1) cov21(xm,x2) · · · σ2

z12 cov22(xm,x1) cov22(xm,x2) · · · σ2
z2


RRRε =

[
σ2

z1diag{s2
j,1}m

j=1 σz1σz2diag{ρ js j,1s j,2}m
j=1

σz1σz2diag{ρ js j,1s j,2}m
j=1 σ2

z2diag{s2
j,2}m

j=1

]
,

where s2
j,1 = var(q̂α(x j))/σ2

z1, s2
j,2 = var(Y (x j))/σ2

z2, which represent the ratio of the noise variance over the
spatial uncertainty for output 1 (quantile) and output 2 (expectation), respectively. ρ j = corr(q̂α(x j),Y (x j)),
which represents the correlation between the noises for output 1 and 2 at point x j. When the estimators for
quantile and expectation are drawn from the same simulation runs, this correlation will be non-zero. We
propose the following method to estimate this correlation given simulation replications at xi. Following
the same procedures as sectioning method, these replications will first be divided into nb groups. Then
the correlation can be estimated based on the sample quantile and mean, q̂α, j(xi) and Y j(xi), j = 1, ...,nb,
within each group:

ρ̂i =
∑

nb
j=1(q̂α, j(xi)− q̂α(xi))(Y j(xi)−Y (xi))√

∑
nb
j=1 (q̂α, j(xi)− q̂α(xi))

2
√

∑
nb
j=1 (Y j(xi)−Y (xi))

2
. (7)

As quantile prediction (Ẑ1(x0)) is our main interest, we derive below the predictor and associated
variance and bias for Z1(x0):

Ẑ1(x0) = (eee1⊗ fff (x)T )β̂ββ + ccc(x0)
T RRR−1(Y −FFF β̂ββ ),
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var(Ẑ1(x0)) = E[Ẑ1(x0)
2]−E[Ẑ1(x0)]

2

= σ
2
z1− ccc(x0)

T RRR−1ccc(x0)− (eee1⊗ fff (x0)−FFFT RRR−1ccc(x0))
T
(FFFT RRR−1FFF)

−1
(eee1⊗ fff (x0)−FFFT RRR−1ccc(x0)),

bias(Ẑ1(x0)) = E[Ẑ1(x0)−Z1(x0)]

= {eee1⊗ fff (x)T (FFFT RRR−1FFF)
−1

FFFT RRR−1 + ccc(x0)
T RRR−1(III−FFF(FFFT RRR−1FFF)

−1
FFFT RRR−1)}

T
ξξξ ,

where eee1 =(1,0), ccc(x0)= {cov11(x0,x1), ...,cov11(x0,xm),cov12(x0,x1), ...cov12(x0,xm)}T . ξξξ =(ξξξ 1
T
,000T

m×1)
T

,
where ξξξ 1 represents a vector of bias of the quantile estimators.

In this model, the parameters AAA,θθθ 1,θθθ 2 are estimated by maximizing the likelihood (Álvarez and
Lawrence 2011). Fricker, Oakley, and Urban (2013) proposed an alternative approach to estimate AAA by
choosing AAA as an eigendecomposition of the between-output covariance matrix RRR0 = AAAAAAT . This approach
can reduce the number of parameters to be estimated when number of responses is large.

To summarize, the steps to estimate the inputs and parameters of the joint model are as follows:
1. Estimate the variance of quantile estimator by sectioning method (4) and the variance of expectation

estimator by 1/ni times the sample variance of the simulation runs at xi. The correlation ρi of these
estimators would be estimated by (7).

2. Estimate AAA,θθθ 1,θθθ 2 by maximizing the likelihood function(Álvarez and Lawrence 2011).
3. The predictor (6) can be obtained by plugging in all the estimated parameters.

3 A m-DESIGN-POINT PROBLEM

In this section, we use a similar example from Mitchell, Morris, and Ylvisaker (1994) and Chen, Ankenman,
and Nelson (2013) to gain some insights on the benefits of the joint model over a single response model
of the quantile. We make the following assumptions to simplify the analysis:

1. The two ‘building block’ GPs, η1,η2, share the same parameters: θθθ 1 = θθθ 2 = θθθ , cov(ηi(x1),ηi(x2)) =

corr(x1,x2) = exp∑
d
j=1 θ j(x1, j− x2, j)

2, i = 1,2.
2. In this example, the m design points are distant enough so that the spatial correlation between any

two points are negligible: cov11(xi,x j) = cov22(xi,x j) = cov12(xi,x j) = 0, for i 6= j.
3. The unknown point x0 is equally correlated to every design point: cov11(x0,xi) =σ2

z1r0,cov12(x0,xi) =

σ2
z12r0, where r0 represents the spatial correlation between the unknown point and design points in η1,η2.

4. All model parameters are known. The noise variances are equal for all design points, and the
correlation between the noises are assumed to be zero: s2

i,1 = s2
1, s2

i,2 = s2
2, ρi = 0, i = 1, ...,m.

5. The bias vector ξξξ = (ξξξ 1
T
,000T

m×1)
T

, and ξξξ 1 > 000, where ξξξ 1 is a vector of bias of quantile estimators.
The first assumption is to simplify the joint model (Kleijnen and Mehdad 2014) and make it comparable

with the stochastic GP model. The second and third assumptions would be plausible if all design points
are in the extreme regions of the input space while the unknown point is in the center (Ankenman, Nelson,
and Staum 2010). Although the fourth assumption indicates that ρi = 0, which can be accomplished if the
quantile and expectation are estimated from separate sets of simulation replications, and all parameters are
given, we would relax this restriction in our numerical examples in the next section, i.e., all parameters
are estimated and ρi 6= 0, i = 1, ...,m. Assumption 5 indicates that the biases for the quantile estimators are
all positive for xi, i = 1, ...m. In fact, the empirical quantile estimators would be positively (or negatively)
biased depending on the convexity of the distribution function (Kim and Hardy 2007). In other words, it
is reasonable to assume these biases share the same sign if the underlying distributions are of the same
family or share the same convexity at all input points. Therefore, we assume positive bias since only the
absolute value of bias is of interest to calculate the MSE. Moreover, assumption 5 also ensures that the
expectation estimators are unbiased. This simplifying example will enable us to analytically study the
benefits of leveraging on information from a correlated model with lower variance and bias to learn and
improve on the quantile model and prediction.
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Based on these assumptions, the covariance matrix RRR and ccc(x0) can be simplified:

RRR =

[
RRR1 RRR2
RRR3 RRR4

]
=

[
RRRz1 RRRz2
RRRz3 RRRz4

]
+

[
RRRε 1 RRRε 2
RRRε 3 RRRε 4

]
, ccc(x0) = {ccc1(x0)

T ,ccc2(x0)
T}T

,

where
RRRz1 = σ

2
z1IIIm, RRRz2 = RRRz3 = σ

2
z12IIIm, RRRz4 = σ

2
z2IIIm,

RRRε 1 = σ
2
z1s2

1IIIm, RRRε 2 = RRRε 3 = 000m×m, RRRε 4 = σ
2
z2s2

2IIIm,

ccc1(x0) = σ
2
z1r0eeem×1, ccc2(x0) = σ

2
z12r0eeem×1,

where eeem×1 is a m×1 vector whose components are all 1.
Denote varsingle,biassingle,MSEsingle and varjoint,biasjoint,MSEjoint as the variance, bias and MSE for

quantile predictor at x0 in the stochastic GP and the joint model, respectively. The following properties
and results can be obtained for these two models (detailed derivations are provided in the appendix A):

biassingle = ccc1(x0)
T RRR1

−1
ξξξ 1 =

r0

1+ s2
1

m

∑
i=1

ξ1(xm),

biasjoint = biassingle−(ccc2(x0)
T−ccc1(x0)

T RRR1
−1RRR2)PPPRRR3RRR1

−1
ξξξ 1 =

r0

1+ s2
1
(1− r2s2

1

(1+ s2
1)(1+ s2

2)− r2 )
m

∑
i=1

ξ1(xm),

varsingle = σ
2
z1− ccc1(x0)

T RRR1
−1ccc1(x0) = σ

2
z1(1−

mr2
0

1+ s2
1
),

varjoint = varsingle−ΓΓΓ
T PPPΓΓΓ = σ

2
z1(1−

mr2
0

1+ s2
1
− m

1+ s2
1

r2r2
0s4

1

(1+ s2
1)(1+ s2

2)− r2 ),

where ΓΓΓ = RRR3RRR−1
1 ccc1(x0)− ccc2(x0). PPP = (RRR4−RRR3RRR−1

1 RRR2)
−1

, which is a positive definite matrix. Therefore,
ΓΓΓ

T PPPΓΓΓ > 0 and varjoint < varsingle. It is also easy to show that 0 < biasjoint < biassingle (see appendix A).
Hence, it follows that MSEsingle > MSEjoint. This example clearly shows the benefits of the joint model for
the quantile predictor as it is better able to leverage on additional lower variance and unbiased information
of the mean to provide a better predictor (in terms of lower MSE, lower variance and lower bias).

Next, we further investigate the influence of r and s2
2 on the ratio varjoint

varsingle
and biasjoint

biassingle
. From the above,

we get:
varjoint

varsingle
= 1− m

1+ s2
1−mr2

0

r2r2
0s4

1

(1+ s2
1)(1+ s2

2)− r2 ,

biasjoint

biassingle
= 1− r2s2

1

(1+ s2
1)(1+ s2

2)− r2 .

Here, we note that smaller values of this two ratios indicate a larger benefit from the joint model. The results
above show the following: First, both ratios will decrease as r increases, i.e., the larger cross-correlation
the two variables have, the larger benefit of the joint model. This is intuitive as the more highly correlated
the responses are, the more information can be ‘drawn’ from the other response to improve the quantile
predictor. Second, both ratios will decrease as s2

2 decreases, i.e., the less noisy the expectation estimator
is, the larger benefit we get. This is also intuitive as the noisier response (quantile) can benefit from the
more accurate data of other response (expectation). To better illustrate the influence of s2

1,s
2
2,r, we assess

the change of the two ratios with these parameters numerically. In this numerical test, we set m = 10 and
r0 =95% of the maximum value it could take (to make the covariance matrix of Z1(x0),Z1(x1), ...,Z1(xm)
positive definite, r2

0 < 1/m). The results are shown in Figure 1. In the first test (top two figures in Figure
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1), s2
2 is set to be 0.1. It is easy to see that both ratios will decrease as s2

1 increases for fixed r. In the second
test (bottom two figures in Figure 1), the cross-correlation r is set to be 0.7. Here again, it is very clear that
both ratios will decrease as s2

1 increases for fixed s2
2. These results indicate that under similar conditions,

a quantile function with larger noise will receive larger benefits from the joint model. In addition, these
numerical results can also confirm our aforementioned conclusion about the influence of r and s2

2.
It is noteworthy that the joint model may not provide satisfying performance when the cross-correlation

r is too small. This is intuitive as this implies that the correlation between Z1(x) and Z2(x) is very small.
For example, in the top figure in Figure 1, the two ratios are equal to 1 when r = 0, indicating no benefit
from joint model. Moreover, when s2

1 = 0, i.e., the problem becomes deterministic, the benefit of joint
model will also vanish. This result agrees with the conclusions of Kleijnen and Mehdad (2014) and further
illustrates that the joint model can be useful when the response of interest (quantile) is noisier, in that we
could leverage and learn from a less noisy response (expectation).

Figure 1: Change of the two ratios with s2
1 (Top figures show the results with s2

2=0.1, bottom figures show
the results with r = 0.7).

4 NUMERICAL EXPERIMENT

In the simplifying example above, we assume that all parameters are known and ρ = 0. Here we relax
this constraint and compare the joint model with the single model numerically where all the parameters
of the models have to be estimated. The input space for this example is X = [0,1]. At each input, the
simulation output follows normal distribution with the following mean and variance:

mean: L(x) = (1+ x2)sin(2x(5x+5))− x,

variance: σ
2(x) = (6−5(x−0.75)2)

2
.

The 0.9-quantile and 0.95-quantile are to be determined in this example. The true mean and quantile
functions are shown in Figure 2. Here, we also consider two different number of simulation runs, 500 and
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5000. Within each experiment, there are 15 evenly distributed design points with identical runs at each
point. Another 50 different points are selected to be the test points, and the root mean square error (RMSE)
of these test points is used to compare the two models:

RMSE =

√
1
50

50

∑
i=1

(Ẑ1(xi)−qα(xi)
2
,

where qα(xi) represent the true α-quantile at xi. Each experiment has been conducted by M = 100 micro-
replications. The averaged results for each experiment is summarized in Table 1, where RMSEsingle and
RMSEjoint stands for the RMSE for stochastic GP and joint models, respectively.

Figure 2: The true mean and quantile functions.

Table 1: The averaged results for each experiment with M=100 replications.

Test scenario α simulation runs RMSEsingle RMSEjoint s2
1 s2

2 r
A 0.9 500 0.3712 0.3254∗ 0.0938 0.0569 0.686
B 0.9 5000 0.1317 0.09882∗ 0.00826 0.00576 0.704
C 0.95 500 0.4432 0.3622∗ 0.156 0.0590 0.688
D 0.95 5000 0.1594 0.1149∗ 0.0128 0.00584 0.703

From Table 1, we observe that the RMSE for both models are much smaller in test scenario B than
that in A, which indicates that the predictions improve when the simulation replications increase. Similar
results are observed from test scenarios C and D. In addition, the quantile prediction is enhanced in the
joint model by the expectation information, providing a statistically smaller RMSE than the single model
for all four test scenarios (RMSE∗joint represents a statistically smaller RMSEjoint at 0.05 significance level).
Besides, if we compare test A and C (or test B and D), the ratio RMSEjoint/RMSEsingle in A is 0.877
while it is 0.817 in test C with similar r and s2

2 in these two experiments. The only difference between
test A and C is that test C has a much larger value of s2

1 (as the probability density of the 0.95 quantile
is likely to be smaller and result in larger variance of the estimator, since this variance is approximately
α(1−α)/(n f (qα)

2) (Bahadur 1966), where α is the quantile level, n is the number of simulation runs
and f (qα) is the probability density of the true quantile). This comparison agrees with our conclusion in
the m-design-point problem that the benefit of joint model will be larger with noisier quantile estimation.
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Based on this numerical experiment, we can easily see the advantage of the joint model in predicting
quantiles, especially when the number of simulation replications is small and limited, resulting in noisier
quantile input point estimates. From this numerical example and the m-design-point problem, we see that
when the correlation between quantile and expectation is high (which is true in many situations), the joint
model will provide much better performance compared with a single model.

5 CONCLUSION

In this paper, we investigate quantile prediction with a joint quantile-expectation model. The idea is to
leverage on the less noisy and unbiased expectation information to improve on the estimation and prediction
of the quantile model. To develop this joint model, we first extend the standard stochastic GP model to
the multi-response case for the quantile and expectation. To estimate the inputs to the model, we choose
the sectioning method to obtain the point and variance estimators for the quantile and propose a similar
method to estimate the correlation between the sample quantile and sample mean. Next, we analytically
analyze a simple m-design-point problem to study the benefit of the joint stochastic GP model over a single
response stochastic GP model and also numerically study a more complicated model where the parameters
are unknown. The results from these two examples indicate that the larger the variances of the quantile input
estimates are with respect to the variances of the mean, and the larger the correlations between responses,
the larger the benefit of the joint model over the single response quantile model. This suggests that the
joint model is promising and can be very useful if the expectation response (which is cheaper and easier
to estimate) is highly correlated and less noisy than the quantile estimates.

In the analytical examples studied in this paper, we assumed that the correlation between the noises
ρ equals to 0. In practice, however, the noises from the responses are likely to be correlated if they are
estimated from the same simulation runs, hence further research can be done to study the effect of ρ . In
addition, further investigations should also be conducted to study the impact of the noises on the parameter
estimates, and the trade-offs between the additional parameters to estimate in the joint model and the
precision of the estimates.

A Derivations For the m-Design-Point Problem

RRR−1 =

[
RRR−1

1 (IIIm +RRR2PPPRRR3RRR−1
1 ) −RRR−1

1 RRR2PPP
−PPPRRR3RRR−1

1 PPP

]
.

Therefore

bias2 = ccc(x0)
T RRR−1

ξξξ = (ccc1(x0)
T ,ccc2(x0)

T )

[
RRR−1

1 (IIIm +RRR2PPPRRR3RRR−1
1 ) −RRR−1

1 RRR2PPP
−PPPRRR3RRR−1

1 PPP

](
ξξξ 1
000

)
= ccc1(x0)

T RRR−1
1 (IIIm+RRR2PPPRRR3RRR−1

1 )ξξξ 1−ccc2(x0)
T−PPPRRR3RRR−1

1 ξξξ 1 = bias1−(ccc2(x0)
T−ccc1(x0)

T RRR1
−1RRR2)PPPRRR3RRR1

−1
ξξξ 1

=
r0

1+ s2
1
(1− r2s2

1

(1+ s2
1)(1+ s2

2)− r2 )
m

∑
i=1

ξ1(xm).

Since r2 ≤ 1, then,

(1+ s2
1)(1+ s2

2)− r2− r2s2
1 = (1+ s2

2− r2)(1+ s2
1)> 0⇒ 1− r2s2

1

(1+ s2
1)(1+ s2

2)− r2 > 0⇒ bias2 > 0.

Also,

bias1−bias2 =
r0

1+ s2
1

r2s2
1

(1+ s2
1)(1+ s2

2)− r2 > 0,
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it follows that 0 < bias2 < bias1.

var2 =σ
2
z1−ccc(x0)

T RRR−1ccc(x0)=σ
2
z1−(ccc1(x0)

T ,ccc2(x0)
T )

[
RRR−1

1 (IIIm +RRR2PPPRRR3RRR−1
1 ) −RRR−1

1 RRR2PPP
−PPPRRR3RRR−1

1 PPP

](
ccc1(x0)
ccc2(x0)

)
= σ

2
z1− ccc1(x0)

T RRR1
−1ccc1(x0)−ΓΓΓ

T PPPΓΓΓ = var1−ΓΓΓ
T PPPΓΓΓ,

where,

PPP−1 = RRR4−RRR3RRR−1
1 RRR2 = σ

2
z2(1+ s2

2)IIIm−
σ4

z12

σ2
z1

1
1+ s2

1
IIIm = σ

2
z2(1+ s2

2−
r2

1+ s2
1
)IIIm,

since 1+ s2
2 > 1 > r2

1+s2
1
, it follows that PPP−1 is a diagonal matrix whose diagonal entries are all positive.

Therefore PPP−1 is positive definite, and so as PPP.
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