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ABSTRACT

We study the problem of the Monte Carlo estimation of the right tail of the distribution of the sum of
correlated log-normal random variables. While a number of theoretically efficient estimators have been
proposed for this setting, using a few numerical examples we illustrate that these published proposals may
not always be useful in practical simulations. In other words, we show that the established theoretical
efficiency of these estimators does not necessarily convert into Monte Carlo estimators with low variance.
As a remedy to this defect, we propose a new estimator for this setting. We demonstrate that, not only is
our novel estimator theoretically efficient, but, more importantly, its practical performance is significantly
better than that of its competitors.

1 INTRODUCTION

Consider the following setting. Let Σ ∈ Rd×d be a positive definite covariance matrix. Let Y ∼ N(ν,Σ)
be a normally distributed (We denote the multivariate normal density as φΣ(· − ν).) vector in Rd with
mean ν under probability measure P. Then, we wish to estimate accurately

`(γ) = P(exp(Y1) + · · ·+ exp(Yd) ≥ γ), (1)

where γ may be arbitrarily large, making ` a small rare-event probability.
Such a setting arises in many different settings: (1) in computing the probability of a large loss from

a portfolio with asset prices, say X = exp(Y ), driven by the Black-Scholes geometric Brownian motion
model (Milevsky and Posner 1998, Crow and Shimizu 1988); asset returns in finance and insurance claims
modelling (Bacry et al. 2013, Zuanetti et al. 2006, Limpert et al. 2001, Dufresne 2004). The lognormal
model has also been used in the analysis of social media (Doerr et al. 2013).

One of the challenges in estimating ` pertains to the heavy-tailed behavior of `(γ) as γ ↑ ∞,
namely: (The notation f(x) ' g(x) as x → a stands for limx→a f(x)/g(x) = 1. Similarly, we define
f(x) = O(g(x))⇔ limx→a |f(x)/g(x)| < const. <∞; f(x) = o(g(x))⇔ limx→a f(x)/g(x) = 0; also,
f(x) = Θ(g(x))⇔ f(x) = O(g(x)) and g(x) = O(f(x)).)

`(γ) ' `asymp
def
=

d∑
k=1

P(Yi ≥ ln γ) =
d∑

k=1

Φ((ln γ − νk)/σk), (2)

where σ2
k = Σk,k, and Φ(·) = 1−Φ(·) denotes the tail of the standard normal distribution, see (Asmussen

and Rojas-Nandayapa 2008). There is significant literature on efficient heavy-tailed probability estimation
of sums of independent log-normal increments, see, for example, (Asmussen and Kroese 2006, Asmussen
and Kortschak 2015, Nguyen and Robert 2014, Ortobelli et al. 2016), and a few proposals dealing with
sums of dependent heavy-tailed log-normal increments (Asmussen et al. 2011, Asmussen 2017, Kortschak
and Hashorva 2013).
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The purpose of this article is to show that the existing proposals for estimating (1) can be unreliable in
some simple examples of applied interest. More precisely, while the existing estimators work satisfactory
when Σ in (1) is diagonal (that is, when the log-normal factors X are independent), these estimators
exhibit very high variance in cases in which Σ induces positive correlation amongst the log-normal factors.
Unfortunately, dependence structures which induce strong positive correlation are precisely the cases of
practical interest — financial and insurance risk is typically underestimated with models that fail to account
for the co-dependence of market disturbances, which in turn may cause a cascading mode of defaults or
downside movements.

As a remedy to this defect of existing estimators, we propose a novel exponentially tilted estimator
for (1), which is logarithmically efficient, but, more importantly, can frequently enjoy superior practical
performance to alternative estimators. Typically, the exponential tilting method is effective in helping
estimate rare-event probabilities with light-tailed, but not heavy-tailed behavior (Kroese et al. 2011,
Chapter 10). For example, recently the exponential tilting method has been extensively used to deal with
the light-tailed left tail (or cumulative distribution function) of the sum-of-lognormals distribution, see
(Asmussen et al. 2014, Asmussen et al. 2016, Laub et al. 2016, Rached et al. 2016, Rached et al. 2017).

In summary, our findings that the exponential tilting method can sometimes be very effective for the
heavy-tailed right-tail in (1) is surprising. In fact, our numerical experiments in estimating (1) suggest that
the exponentially tilted estimator can outperform the conditional Monte Carlo estimators (Asmussen and
Kroese 2006, Kortschak and Hashorva 2013) that are commonly used in heavy-tailed settings due to their
excellent theoretical properties (vanishing relative error). Thus, our work also provides an example of how
efficiency in theory and efficiency in practical simulations do not always align perfectly.

The rest of the paper is organized as follows. In Section 2 we review the importance sampling vanishing
error (ISVE) estimator proposed in (Asmussen et al. 2011), and show numerically how in some cases it may
yield highly inaccurate and biased estimates. We give some intuitive explanations for the poor performance
of the estimator. Next, in Section 3 we describe our novel estimator and its theoretical properties. This is
followed by a numerical example, demonstrating the superior performance of the estimator, and, finally,
we draw some conclusions.

2 TWO THEORETICALLY EFFICIENT ESTIMATORS

The first estimator proposed in (Asmussen et al. 2011) is the variance boosted estimator defined as follows.
Let Pθ be a probability measure under which Y ∼ N(ν,Σ/(1 − θ)) for some θ ∈ [0, 1). Thus, by

taking a θ close to unity, the variance of Y can be boosted sufficiently to induce the event {S > γ}, where
S = exp(Y1) + · · ·+ exp(Yd). Then, the variance boosted estimator:

ˆ̀
θ(γ) =

exp(−θ(Y − ν)>Σ−1(Y − ν)/2)

(1− θ)d/2
I{S > γ}, Y ∼ Pθ (3)

is simply the result of using Pθ as an importance sampling measure. The asymptotically optimal choice of
θ is

θ = 1− σ2

2(ln(γ)− ν)
+ o(ln−1 γ), γ ↑ ∞. (4)

It is then not difficult to show, (Asmussen et al. 2011), that with this choice of θ

Eθ ˆ̀2
θ

`2
= Θ([ln γ]d/2+1γ1/4).

In other words,

lim inf
γ

lnVarθ(ˆ̀
θ)

ln `(γ)
= 2,
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which is the definition of a logarithmically efficient estimator. The efficiency label arises from the fact that
the relative error, Var(ˆ̀

0)/`2, of the crude Monte Carlo estimator,

ˆ̀
0 = I{S > γ}, Y ∼ P0,

is of the order
`−1(γ) = Θ

(
exp

(
(ln(γ)−ν)2

2σ2

)
ln γ−ν
σ

)
,

where σ = maxk σk and ν = max{νk : σk = σ}. Thus, while the error of ˆ̀
0 grows exponentially, the

error of ˆ̀
θ grows only polynomially.

Consider an simple example in which all log-normals are iid with Σ = I × 0.252,ν = 0, and we
have d = 30. Table 1 shows the estimated values for `(γ) for different values of γ using three different
estimators: the variance boosted ˆ̀

θ; the Asmussen-Kroese estimator (Asmussen and Kroese 2006),

ˆ̀
AK = dΦ

(
1
σ ln

[
(γ −

∑
j<dXj) ∨maxj<dXj

])
, lnX ∼ N(0, σ2I);

and our proposed estimator ˆ̀ in Section 3. The data was populated using n = 107 independent replications
of each estimator. The difference in the CPU run times for all methods was negligible (all between 7 to
10 seconds), and hence not reported here. The conclusion from the results in the table is that the variance
boosted estimator, ˆ̀

θ, is not useful due to its high variability.

Table 1: Comparative performance of the variance-boosted and Asmussen-Kroese estimators. The proposed
estimator ˆ̀ is given in column two and described in Section 3.

relative error %
γ ˆ̀ RE(ˆ̀) RE(ˆ̀

AK) RE(ˆ̀
θ)

30 0.742 0.199 0.0321 0.314
33 0.0797 0.26 0.0871 3.67
36 0.00052 0.403 0.684 39.8
39 2.94e-07 0.725 17.9 51.9
42 2.29e-11 1.45 54.6 99.9
45 3.92e-16 2.57 64.4 97.8
48 1.93e-21 4.44 31.7 97
51 3.98e-27 7.85 25.2 81.5
54 8.58e-33 3.22 15.3 100
57 3.44e-36 0.418 13.3 69.8
60 4.26e-39 0.203 5.21 99.7
63 1.06e-41 0.18 2.92 99
66 4.38e-44 0.162 1.58 64.8
69 2.75e-46 0.16 1.09 100
72 2.42e-48 0.155 0.686 98.3
75 2.83e-50 0.153 0.498 72.1
78 4.24e-52 0.151 0.414 95.7
81 7.87e-54 0.15 0.287 99.3
84 1.78e-55 0.15 0.26 100
87 4.74e-57 0.15 0.251 90.5
90 1.48e-58 0.15 0.189 100
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It is important to note that while the authors of (Asmussen et al. 2011) select the variance-minimal
value of θ heuristically using the so-called cross-entropy method, an exhaustive search shows that there
is no value for θ that yields reasonably low variance. For example, Figure 1 shows the estimated relative
error of ˆ̀

θ as a function of θ for γ = 45 and all other parameters being the same as in Table 1. The figure
suggests that even if we knew the true variance-minimizing θ∗ (obviating the need for approximating it),
the estimator will still not be useful.
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Figure 1: The estimated relative error of ˆ̀
θ as a function of θ using 107 replications. The smallest estimated

relative error was 23%, corresponding to θ = 0.71. Where the estimate of `(45) is 0, the relative error is
recorded as unity (100%).

2.1 A Vanishing Relative Error Estimator

Recognizing the deficiency of the variance boosted estimator (Asmussen et al. 2011) propose the superior
ISVE estimator. Let X = exp(Y ) and denote M = maxiXi. The main idea of the ISVE estimator is to
split (1) into two parts:

` = P(M > γ) + P(S > γ,M < γ),

and estimate `1 = P(M > γ) and `2 = P(S > γ,M < γ) separately using two different importance
sampling schemes. In particular, `1 is estimated via

ˆ̀
1 =

`asymp(γ)∑d
k=1 I{Xk > γ}

, X ∼ g(x), (5)

where g is the mixture density:

g(x)
def
=

φΣ(x− ν)
∑d

k=1 I{xk > γ}
`asymp(γ)

,

and the residual probability, `2, is estimated via a variance boosted estimator:

ˆ̀
2,θ(γ) =

exp(−θ(Y − ν)>Σ−1(Y − ν)/2)

(1− θ)d/2
I{S > γ,M < γ}, Y ∼ Pθ, (6)
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where θ = 1− ln−2(γ). With this setup the ISVE estimator is ˆ̀
ISVE = ˆ̀

1 + ˆ̀
2 and it enjoys the vanishing

relative error property (Asmussen et al. 2011):

Var(ˆ̀
ISVE)

`2(γ)
↓ 0, γ ↑ ∞.

Before we proceed to illustrate the practical performance of the ISVE estimator, we note that there are two
issues that may indicate problematic performance.

First, using the sample variance of n independent replications of (5) is not a robust estimator of the
true variance of ˆ̀

1 in the following sense.
Proposition 1 (Inefficiency of Sample Variance) Let S2

n be the sample variance based on n independent
replications of (5) . Then,

lim inf
γ↑∞

Var(S2
n)

Var2(ˆ̀
1)

=∞,

where the rate of growth to infinity can be as high as exponential: c1 ln(γ) exp(c2 ln2(γ)) for some positive
constants c1 and c2.

Proof. The proof is a straightforward adaptation of the proof of Proposition 2 in (?), where the same
statement holds for the estimator of the maximum of correlated Gaussian random variables, namely,
P(maxi Yi > γ) with Y ∼ N(ν,Σ). Since the maximum of d log-normal random variables, M , can be
linked to the maximum of d multivariate normal variables:

P(M > γ) = P(max
i

exp(Yi) > γ) = P(max
i
Yi ≥ ln γ),

the only necessary notational change in the proof of (Botev et al. 2015, Proposition 2) is to replace all
instances of γ with ln(γ). For the full details, see (Botev et al. 2017).

The practical consequence of the result above is that the relative error of ˆ̀
1 is underestimated during

simulation, and frequently reported as being zero.
Second, we already know that the variance boosted estimator (3) is unreliable for estimating `, and

that there is no value for θ that will render it a useful estimator. Upon examination of (6) we see that it
only differs from (3) with the addition of the constraint M < γ, and in the different choice of θ. Thus,
given that (3) is a bad estimator of ` for any θ, we should not be surprised to find that (6) is also a poor
estimator of `2. Indeed, the same numerical example again demonstrates that there is no good value for θ
that can make the relative error of (6) small enough. The behavior of the relative error of ˆ̀

2,θ as a function
of θ is qualitatively the same as that on Figure 1.

2.2 Quality of Asymptotic Approximation

One of the arguments in favor of the ISVE estimator is that, while ˆ̀
2 may be a noisy estimator, it is a very

small second order residual term, and will not affect noticeably the high accuracy of the leading order term
ˆ̀
1.

Unfortunately, more often than not, the leading contribution term of ` = `1 +`2 is not `1, but the residual
`2. This may appear to contradict the fact that asymptotically ` ' `1, but it makes sense when one takes into
account that, in the presence of a positive correlation, `1, or equivalently (Note that `asymp

d ≤ `1 ≤ `asymp)
the `asymp, can be an extremely poor approximation to `.

For example, consider the case with ν = 0 and Σ = ρ11> + (1− ρ)I for ρ ∈ [0, 1), then (Kortschak
and Hashorva 2014) show that

`(γ)− `asymp(γ) = `(γ)− dΦ(ln γ)

' d(d− 1) exp((1− ρ2)/2)
ln(γ)

γ1−ρ Φ(ln γ).
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Figure 2.2 shows a logarithmic plot of r(ρ) — the relative asymptotic deviation of ` from `asymp,

`− `asymp

`asymp
' r(ρ)

def
= (d− 1) exp((1− ρ2)/2)

ln(γ)

γ1−ρ

with d = 100, as function of ρ for three different values of `asymp(γ) ∈ {10−5, 10−10, 10−40}. What we
can gather from the plot is that for large ρ the relative deviation of ` from the asymptotic approximation
`asymp is of order 103 even for the most extreme of rare-events, for which we would have expected the
asymptotic approximation to be accurate.

Monte Carlo simulations actually show that the situation can be even worse. Take, for example, the
instances in Table 2.2, where d = 10 and ν = 0,Σ = 0.252 × (0.9 × 11> + (1 − 0.9) × I). The table
shows the asymptotic value `asymp for different γ (second column), together with its relative deviation
from the true ` (last column). The table also displays ˆ̀with its approximate 95% confidence interval based
on n = 106 independent replications of our method, described in the next section.

Figure 2: Asymptotic estimate of the relative deviation of ` from `1.

Table 2: Illustration of the inaccuracy of the asymptotic approximation for moderate values of `(γ). The
asymptotic approximation `asymp becomes useful only for probabilities smaller than about 10−233.

γ `asymp 95% CI for ˆ̀ (ˆ̀− `asymp)/`asymp

15 1.2113 . . .× 10−26 0.012± 0.001 1.0× 1024

20 2.1830 . . .× 10−32 (5.80± 0.013)× 10−5 2.66× 1027

40 1.4175 . . .× 10−48 (6.33± 0.016)× 10−15 4.5× 1033

60 1.3872 . . .× 10−59 (1.10± 0.017)× 10−23 8× 1035

100 4.4834 . . .× 10−75 (8.04± .018)× 10−38 1.8× 1037

500 1.0481 . . .× 10−135 (3.39± .02)× 10−105 3.2× 1030

1000 2.3594 . . .× 10−167 (6.94± .02)× 10−145 3× 1022

1500 2.0634 . . .× 10−187 (4.04± .03)× 10−171 2× 1016

2500 2.6294 . . .× 10−214 (2.94± .04)× 10−207 1.1× 107

3500 5.1912 . . .× 10−233 (5.45± .04)× 10−233 0.05
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The message from Table 2.2 is clear: the asymptotic approximation is useless for moderate values of
γ (deviating from the true value of ` by as much as 1037), and only becomes useful for extremely small
probabilities (smaller than 10−233). It is interesting that the relative deviation becomes much bigger before
finally improving for extremely small probabilities.

3 EXPONENTIALLY TILTED ESTIMATOR

In this section we introduce a novel estimator based on the method of exponential tilting. To this end,
we first define pk(γ)

def
= P(Yk ≥ ln(γ/d)) and p(γ) =

∑
k pk(γ). Recall that Xk = exp(Yk), then our

proposed unbiased estimator is:

ˆ̀(γ) =
I{K = k}
pk/p

exp(µ2
k/(2σ

2
k)− µk(Yk − νk)/σ2

k)I{S > γ,Xk = M},

where µk is the solution to

µ∗k = argminµ

{
µ2k
σ2
k

+ ln Φ
(

ln(γ/d)−νk+µk
σk

)}
(7)

and the vector (K,Yk,Y −k) is simulated sequentially from the joint pdf:

(K,Yk,Y −k) ∼ g(k,y) = pkφσ2
k
(yk − νk − µk)φΣ(y − ν|yk).

Implementation of one replication of the estimator is summarized in the following algorithm.

Algorithm 1 : Estimator of `(γ)

Require: ν, Σ, γ
ˆ̀← 0
Simulate K from the distribution P(K = k) = pk(γ)/p(γ) and set k ← K
Solve (7) to deliver µ∗k
Simulate Yk ∼ N(νk + µ∗k, σ

2
k) and set yk ← Yk

Simulate the Gaussian vector Y −k = (Y1, . . . , Yk−1, Yk+1, . . . , Yd)
> ∼ φΣ(y − ν|yk), given Yk = yk

X ← (exp(Y1), . . . , exp(Yd))
> and S ← X1 + · · ·+Xd

if S > γ and Xk = maxiXi then
ˆ̀← p/pk exp((µ∗k)

2/(2σ2
k)− µ∗k(Yk − νk)/σ2

k)

return ˆ̀

The next result ensures that the estimator, just like its competitors, is robust with respect to γ.

Theorem 1 (Logarithmic Efficiency) With the choice (7), the estimator ˆ̀is both unbiased and logarithmically
efficient, that is,

lim inf
γ

lnVarg(ˆ̀(γ))

lnEg ˆ̀(γ)
= 2,

where Eg and Varg denote expectation under the importance sampling density g.

Proof. First, recall that
`(γ) = Θ

(
Φ((ln γ − ν)/σ)

)
, γ ↑ ∞,

where σ = maxk σk and ν = max{νk : σk = σ}. Second, note that the estimator is unbiased, because

Eg ˆ̀(γ) =
∑
k

Eg(·|k) exp(µ2
k/(2σ

2
k)− µk(Yk − νk)/σ2

k)I{S > γ, exp(Yk) = M}

=
∑
k

P(S > γ,Xk = M) = P(S > γ).
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The second moment of the importance sampling estimator is then bounded from above as follows:

Eg ˆ̀2(γ) =
∑

k
p
pk
E exp(µ2

k/(2σ
2
k)− µk(Yk − νk)/σ2

k)I{S > γ, exp(Yk) = M}

= p(γ)
∑

k
exp(µ2k/σ

2
k)

pk(γ) Pµk(S > γ,Xk = M),

where under Pµk we have Yk = ln(Xk) ∼ N(νk − µk, σ2
k). Hence, using the fact that

Pµk(S > γ,Xk = M) ≤ Pµk(Xk > γ/d) = P(Yk − µk > ln(γ/d))

we obtain with µk = µ∗k in (7):

Eg ˆ̀2(γ) = p(γ)
∑

k
exp((µ∗k/σk)2)

pk(γ) Pµ∗k(S > γ,Xk = M)

≤ p(γ)
∑

k
exp((µ∗k/σk)2)

pk(γ) Φ
(

ln(γ/d)−νk+µ∗k
σk

)
(for any µk 6= µ∗k) ≤ p(γ)

∑
k

exp(µ2k/σ
2
k)

pk(γ) Φ
(

ln(γ/d)−νk+µk
σk

)
(substitute µk = ln(γ/d)− νk 6= µ∗k) ≤ p(γ)

∑
k

exp((ln(γ/d)−νk)2/σ2
k)

pk(γ) Φ
(

2 ln(γ/d)−νk
σk

)
.

Next, we set tk = (ln(γ/d) − νk)/σk as shorthand notation, and use the facts: first, φ(x)

Φ(x)
= Θ(x) for

x ↑ ∞; and second, with t def
= ln(γ/d)−ν

σ , p(γ) = Θ
(
Φ (t)

)
. Using these, we have

Eg ˆ̀2(γ) ≤ p(γ)
∑

k
exp(t2k)

pk(γ) Φ (2tk)

= Θ
(
Φ (t)

)∑
k

exp(t2k)

Φ(tk)
Φ (2tk)

= Θ
(
Φ(t)

)∑
k exp(t2k)Θ

(
φ(2tk)
φ(tk)

)
= Θ

(
Φ (t)

)∑
k Θ (φ(tk)) = Θ

(
Φ (t)φ(t)

)
.

Therefore, using the fact that ln Φ(x+c)

ln Φ(x)
→ 1 as x ↑ ∞ for any constant c, standard calculus shows that

lim
γ↑∞

lnEg ˆ̀2(γ)

ln `
= lim

γ↑∞

ln Φ (t(γ)) + lnφ(t(γ))

ln Φ ((ln γ − ν)/σ)
= 2.

This concludes the proof.

In examining the proof of the theorem, we can see that logarithmic efficiency can be attained whenever
the µk’s are of the form exp(µk) = Θ(γ), and that (7) is just one way to achieve this, not necessarily the
one with minimal variance. Following (Asmussen et al. 2011) we can thus use their cross-entropy heuristic
to reduce the variance of ˆ̀ to fine-tune the constant in exp(µk) = Θ(γ). The details of the implementation
are given in (Asmussen et al. 2011).

We remark that, with significantly more effort (Botev et al. 2017), one can show that the µk’s

can be chosen such that the rate of growth is Eg
ˆ̀2(γ)
`2

= O(ln(γ)), which compares favorably to the
O([ln γ]d/2+1γ1/4) rate of growth of the variance boosted estimator ˆ̀

θ.
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4 A NUMERICAL EXAMPLE

All the estimators discussed in this article are asymptotically efficient. Yet, the numerical experiments
suggest that some of them are not always useful in practice. Consider estimating `(γ) with ν = 0 and
Σ = 0.252 × (ρ × 11> + (1 − ρ) × I) for ρ = 0.9, d = 30 and different values of γ. Table 3 gives the
results using n = 106 replications. The work normalized relative variance of ˆ̀ is defined as τ ×Var(ˆ̀)/`2,
where τ is the total CPU time needed to deliver ˆ̀. For the ISVE estimator we attempted to optimize
the performance of the estimator by manually selecting the best possible θ. Our choice for this tuning
parameter is thus given in brackets in the third column.

Table 3: Comparative performance of the ISVE and exponentially tilted estimators with ρ = 0.9, d = 30.

relative error % work normalized relative variance
γ ˆ̀ ˆ̀

ISVE RE(ˆ̀) RE(ˆ̀
ISVE) WNRV(ˆ̀) WNRV(ˆ̀

ISVE)

40 0.116 0.114 (θ = 0.5) 0.63 2.0 0.00032 0.00080
100 2.17× 10−7 1.18× 10−7 (θ = 0.6) 0.98 40 0.00061 0.31
150 6.83× 10−12 5.75× 10−13 (θ = 0.75) 1.1 84 0.00093 1.12
200 7.75× 10−16 2.09× 10−17 (θ = 0.8) 1.2 95 0.0010 1.22
400 6.57× 10−28 3.08× 10−39 (θ = 0.9) 1.4 80 0.0011 1.34
103 1.61× 10−49 1.21× 10−80 (θ = 0.95) 1.7 100 0.002 2.02
104 3.60× 10−132 1.80× 10−294 (θ =?) 2.1 - 0.0024 -

A number of conclusions can be drawn from the table.
First, the ISVE estimator does not have acceptably low variance for both small γ (when the event is

not rare) and for large γ (when the event is rare).
Second, as with Figure 1, any attempt to optimize with respect to θ is fruitless, because there appears

to be no value for θ ∈ [0, 1) that yields low variance.
Third, in the last row of the table, it was not possible to induce the event {S > γ,M < γ} no matter

what the value of θ. In other words, {S > γ,M < γ} remains a rare-event for all values of θ ∈ [0, 1),
and with very high probability ˆ̀

ISVE = ˆ̀
1 + ˆ̀

2 = ˆ̀
1. Thus, despite the vanishing relative error property

of the ISVE estimator, its performance deteriorates as γ becomes smaller and smaller to the point that it
does not deliver meaningful estimates.

Of course, if γ is large enough, then we know from theory that ˆ̀
ISVE must ultimately yield a meaningful

result. However, in our case γ has to be so large and the rare event so rare, that it is not possible to store
the relevant numbers in computer memory due to numerical over- and under-flow issues. This is because
the asymptotic approximation (2) is, at least in this particular case, not useful for small to moderately large
γ.

5 CONCLUSIONS

We have presented a new exponentially tilted estimator, ˆ̀, for the estimation of the tail of the sum of
dependent log-normal variables (1). The proposed estimator is shown to be, not only asymptotically optimal,
but also useful in practical simulations. One of the observations we can draw from a number of numerical
experiments is that sometimes an estimator with a vanishing relative error property may not necessarily
exhibit low variance in practical simulations.

As future work, one would like to show that the estimator ˆ̀enjoys the bounded normal approximation
(Tuffin 1999). In other words, we would like to show that the sample standard deviation of an ensemble
of ˆ̀ is a robust estimator of the true error of ˆ̀, and inefficiencies like the one defined in Proposition 1 do
not hold for the estimator ˆ̀.
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