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ABSTRACT

Fuzzy Cognitive Mapping (FCM) represents the ‘mental model’ of individuals as a causal network equipped
with an inference engine. As individuals may disagree or evidence be insufficient, causal links may be
assigned a range rather than one value. When all links have range, the massive search space is a challenge
to running simulations. In this paper, we presented, implemented, and evaluated a new approach to identify
which ranges are important and simplify models accordingly. Our approach uses a factorial design of
experiments, implemented using parallelism to offset its high computational cost. Our implementation
(including our new Python library for FCM) is freely available on a third-party repository. Our evaluation
on three previously published models shows that our approach can simplify almost half of a model under
common settings, and runs within seconds on entry-level hardware for small FCMs. Further research is
needed on simplifying the few FCMs having many links.

1 INTRODUCTION

Fuzzy Cognitive Mapping (FCM) is a modeling method that can represent the ‘mental model’ of individuals
by articulating different factors and the dynamics of their interactions. Intuitively, an FCM can be seen as
a causal network equipped with an inference engine. While FCM dates back to the late 80s (Kosko 1986)
and has been used in a variety of fields (Papageorgiou and Salmeron 2013), it is increasingly popular in
participatory modeling specifically. Indeed, modern platforms (e.g., MentalModeler.com) now allow
individuals to asynchronously and collaboratively develop simulation models by sharing their knowledge
into an accessible and standardized format (Gray et al. 2013, Giabbanelli and Crutzen 2014). This is
particularly used in ecological modeling, where FCMs allow us to synthesize the different perspectives of
the many participating stakeholders (Nyaki et al. 2014, Gray et al. 2015, Douglas et al. 2016), and in
health where complex problems may require a large number of experts for each sub-domain (Giabbanelli,
Torsney-Weir, and Mago 2012). While FCMs share broadly similar constructs with the modeling technique
of System Dynamics (capturing factors and dynamic interactions, use in participatory settings), FCMs are
specifically designed to handle situations with uncertainty and vagueness. By building on Fuzzy Logic,
FCMs can be seen as a formal tool to manage the imprecision found in real-world problems. For example,
participants would assess the strength of a causal link in the FCM using linguistic terms (e.g. ‘very high’,
‘medium’) which correspond to fuzzy membership functions. Fuzzy logic would transform their answers
into one number for this causal link, which the inference engine uses when updating factors.

However, in real-world problems, we may not be able to assign only one number to a causal link. This
may be due to conflicting evidence, a lack of agreement between participants, or the vagueness of what
a link may represent. For example, in our FCM of obesity, we found that experts’ assessments on one
third of the FCM’s links had significant variations (Giabbanelli, Torsney-Weir, and Mago 2012). Salmeron
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extended the formalism of FCMs into Fuzzy Grey Cognitive Maps (FGCMs) by giving a range to all links
rather than one number (Salmeron 2010) (Figure 1). While this provides a vehicle to represent vagueness,
it also creates a much larger search space in which to run the model: which value should be used for each
link in one simulation run? This problem may be avoided altogether by systematically taking the mid-point
of the range (Salmeron 2010), but this solution has two issues. First, it brings us back to a normal FCM,
thus defeating the purpose of capturing vagueness as a range to start with. Second, this simplification may
ignore a lot of the search space. That is, the conclusions made by running the model this way may not be
representative of what would have been obtained by running it with the other values included in each link’s
range. While this simplification can thus lead to erroneous conclusions, the other extreme of running the
model for all possible combinations of values would just be infeasible. In this paper, we analyze how to
simplify an FGCM while having a minimal impact on limiting the model’s outputs.

Figure 1: Fuzzy Grey Cognitive Maps for a security system (Salmeron 2015) (a) and a supervisor in
radiotherapy treatment planning (Salmeron and Papageorgiou 2012) (b). Nodes show initial values.

Design of Experiments (DoE) has long been used in the field of simulation to address questions of
that type (Jain 1990). For example, a 2k factorial design would inform modelers about how much of
their model’s variance is due to single parameters, or combinations of these parameters. Parameters that
contribute little to the variance (either directly or in combination with others) can then be simplified by
being set to one value. In our case, each link is a parameter, and the goal is to identify the links whose
range can be replaced by a single number. This simplifies the model after careful analysis, rather than
using the same approach for all links regardless of how sensitive they are for the model. Using the DoE
approach requires running a model many times. This is unusual for FCMs which are deterministic models
and thus only run once. Even when FCMs are used as part of stochastic simulations (e.g. to represent the
mental models of populations), the number of runs remains small (Giabbanelli et al. 2014). Consequently,
current software packages run FCMs sequentially, which means that running enough of them for a DoE
can be prohibitive time-wise. In addition, it is unknown whether FCMs would lend themselves well to
simplifications. In theory, one could design an FCM where all links contribute equally to variance, thus
our simplification after a DoE would be no better than taking the mid-point of all ranges to start with. Our
paper addresses these limitations as follows:

• We develop a new, open source library that runs Fuzzy Cognitive Maps in parallel.
• Using this library, we examine whether Design of Experiments techniques can help to simplify

three previously developed Fuzzy Grey Cognitive Maps (which extend FCMs with uncertainty on
each link).

• The time required to analyze and simplify the models is examined on different configurations
ranging from personal computers to high performance clusters.
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The remainder of this paper is organized as follows. In section 2, we provide a technical background
on the computations involved in running an FCM, and on the design of experiments. Then, we explain
the design of our solution in section 3. This includes our new library for FCMs, using it efficiently to
perform simulation runs in parallel over various hardware configurations, and analyzing results to simplify
the model. Section 4 provides an experimental evaluation of our approach to simplify three published
models, ranging from 8 to 25 links. Section 5 highlights some of the limitations of our approach, and
particularly when it comes to simplifying very large models. We conclude by summarizing our current
achievements in systematically simplifying small to medium models.

2 BACKGROUND

2.1 The Simulation Approach: Fuzzy Cognitive Maps

A Fuzzy cognitive map (FCM) models the behavior of a system through three key constructs:

(i) nodes, representing concepts of the system such as states or entities. Nodes have a weight in the
range [0, 1] indicating the extent to which the concept is present at a simulation step.

(ii) weighted directed links, representing causal relationships. Their weight is from the range [-1, 1]
where negative weights indicate that increases in the source node cause a decrease in the target
node. Conversely, positive weights indicate that increases in the source node cause an increase in
the target node.

(iii) an inference function, which updates the value of each node based on the weights of both the links
going into it and the nodes that these links connect to.

Formally, the number of nodes is denoted by n. The weights of the directed links can be represented as
an n×n adjacency matrix A, where Ai, j is the weight of the link from i to j. The value of each concept at
step t of the simulation is represented by Vi(t), i = 1 . . .n. At each step of the simulation, these values are
updated using the following standard equation:

Vi(t +1) = f

(
Vi(t)+ ∑

j=1, j 6=i
Vj(t)×A j,i

)
, (1)

where f is a clipping function (also known as transfer function) ensuring that the values of nodes remain
in the [0, 1] range. For example, in an ecological model, a node could stand for the density of fish in a
given space, where 0 means no fish and 1 means a maximal density. That value cannot go beyond 1 since
it is maximal, and the density cannot be negative either. The clipping function has to be monotonic (to
preserve the order of nodes’ values) and it is recommended to use a sigmoidal function when modeling
planning scenarios (Tsadiras 2008). In this paper, the function we employ is the widely used hyperbolic
tangent tanh (Groumpos and Stylios 2000, Giabbanelli, Torsney-Weir, and Mago 2012, Mago et al. 2013).

An FCM does not include the concept of time: its steps do not map to physical time (although extensions
exist to remedy this limitation). Consequently, an FCM does not run for a time period. Rather, equation 1
is applied until a subset of nodes reaches a stable value. The subset is determined based on the application
context. For example, in our previous FCM for obesity, we were interested in the long-term trends for
obesity and required this one concept to stabilize in order to stop iterating. Other concepts such as ‘food
intake’ or ‘weight discrimination’ did not have to stabilize in order to answer the question: how would
the level of obesity change in reaction to a new intervention? (Giabbanelli, Torsney-Weir, and Mago 2012)
Formally, consider that a subset S⊆V needs to stabilize. Then, the simulation will end when:

|Vi(t +1)−Vi(t)| ≤ ε,∀i ∈ S, (2)

where ε is set to a very small positive value. Simulation packages generally include an additional condition
whereby the simulation will stop after a set maximum number of steps, in case the condition stated by
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equation 2 is never met. This additional condition is rarely necessary in practice, as will be illustrated
in section 4. Consequently, an FCM is an asymmetrical network of continuous concepts, of which some
are required to converge to an equilibrium point or limit cycles. For a broader discussion on methods to
improve convergence velocity (e.g., particle swarm optimization), we refer the reader to (Papageorgiou and
Salmeron 2013, Napoles et al. 2016).

Since there is no randomness in equations (1) and (2), an FCM does not need repeated simulation
runs. The main simulation packages for FCMs, such as FCM TOOLS or MentalModeler.com thus
do not even mention parallelism (Gray et al. 2013, Napoles et al. 2015). While there has been research
on parallelism as it relates to FCM, it has mostly been on parallel implementations of techniques used
to design FCMs from data (e.g., genetic algorithms (Stach et al. 2007)) rather than on running the FCM
itself. Similarly, there have been extensions of the FCM framework which may then involve parallelism:
these typically propose to design models by combining multiple FCMs either through arbitrary network
topologies (Giabbanelli et al. 2014) or via the coordination of a central entity (Stach and Kurgan 2004).
However, a parallel implementation was not presented as the algorithms appear to run sequentially.

FCMs are designed to cope with uncertainty, which contributes to their popularity as a participatory
modelling technique (Nyaki et al. 2014, Gray et al. 2015, Douglas et al. 2016). Fuzzy Logic is indeed used
to compute the weight of each link based on linguistic variables (e.g., ‘very strong’) picked by participants
who evaluate its causal strength. However, participants may not agree; or interpret what the link represents
in different ways. Thus, there can be significant variations between participants’ assessment of causal
strength. In one of our FCMs, significant variations were observed on one third of the links (Giabbanelli,
Torsney-Weir, and Mago 2012). To represent these variations and deal with the uncertainty of real-world
problems, Salmeron extended the FCMs presented in this section. In particular, he equipped each link with
a range as seen in Figure 1. We will refer to this extension as Fuzzy Grey Cognitive Maps, or FGCMs.

2.2 Factorial Design of Experiments

As explained in the introduction, an FGCM may have uncertainty on too many links. Fixing the less
important ones would thus make the model more tractable. There are several approaches to assess the
importance of different parameters in a simulation model (Jain 1990). At one extreme, one may perform a
simple sensitivity analysis which varies one parameter at a time while others are fixed at typical values. This
is statistically inefficient and does not account for interactions. At the other extreme, one can generate all
possible combinations of parameter values, but exhaustively exploring this search space may be infeasible.
A good Design of Experiment (DoE) thus provides information about the contribution of parameters and
their interactions, in a way that is feasible given the resource requirements (e.g., computation time). In
particular, a 2k factorial design of experiments reduces the number of levels of each parameter to 2. It is
commonly used to determine the relative importance of parameters in a performance study, and readers
can refer to (Zhang et al. 2014, Giabbanelli and Crutzen 2013) for examples.

To prepare a 2k factorial design, one creates a table with all possible combinations of parameter values.
Each row defines the setting of a simulation run. The runs are performed, and results are stored in additional
columns. For example, in Table 1 we have 8 parameters (i.e. links of an FGCM) so we start with 8 columns
and 256 rows for all possible combinations. The first eight rows are shown in Table 1. Simulation results
in this example are the values of nodes C1 and C2 upon stabilization (equation 2).

Once results are generated, we can calculate the effects: how much of the variance in the results is
due to the parameters and their interactions. For example, if there are 2 parameters A and B, we would
calculate the effects from A, B, and AB (2nd order interaction). While using a 2k design allows to compute
effects up to the k-th order interaction, it is common to stop after the 3rd order if effects become very
small (Zhang et al. 2014, Giabbanelli and Crutzen 2013). Several textbooks detail how to calculate effects,
and for an updated coverage we refer to chapters 6 and 7 from (Montgomery 2013). While we are not aware
of previous work computing effects from a 2k design in parallel, it is important to understand why it can
be done for this paper as k can be large. In short, calculating effects involves (i) representing all parameter
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Table 1: Example of a factorial design with 8 links, showing the first 8 combinations out of 28 = 256.
Many entries are identical and represented by . . . to avoid displaying redundant information.

C2→C1 C5→C1 C6→C4 C3→C1 C3→C2 C5→C4 C4→C2 C6→C2 C1 C2

-.8 .8 .4 -.5 .4 -.3 -.5 .6 -.9678 .6107

... ... ... ... ...

...
-.5 .8 -.9744 .7472
-.3 .6 -.9758 .7822

-.3 -.3 .8 -.9781 .8430
-.1 -.5 .6 -.9698 .6478

...
-.5 .8 -.9752 .7662
-.3 .6 -.9762 .7915

-.8 .8 .4 -.5 .4 -.1 -.3 .8 -.9783 .8488

values as -1 and 1 (thus using a truth table), (ii) generating additional columns for interacting effects by
multiplying the respective columns (e.g., the signs for AB are obtained by multiplying the columns for A
and B), (iii) multiplying each binary column by results from the simulation runs and adding them. This
third step can intuitively be understood as a weighted sum, which qualifies as ‘embarrassingly parallel’
since computing a weighted sum can be divided into independently computing parts of that sum.

3 METHODS

3.1 New Open-Source Library for Fuzzy Cognitive Maps

The code for our library is publicly available on a third-party research repository at https://osf.io/qyujt/. The
library is written for Python 2, and builds on NetworkX (as data structure for the underlying network of an
FCM) and NumPy (to compute the matrix operations of equation 1). Note that the matrix operation from
equation 1 is already performed in parallel by NumPy (using the Basic Linear Algebra Subroutines) (van der
Walt, Colbert, and Varoquaux 2011). Additional parallelism may also be done at the level of the transfer
function ( f in equation 1), which consists of ensuring that the new values for the concepts are within the [0,
1] interval. We tested whether such parallelism was useful in our situation, by computing the average time
to apply the transfer function in parallel or sequentially, depending on the number of concepts. Results of
our benchmarking (Figure 3) suggest that parallel processing is slower than sequential processing (due to
associated overheads) when there are less than 50 concepts, similar up to 100 concepts, and faster after 100
concepts. As the case studies in this paper all have less than 50 nodes, we opted for the faster sequential
implementation in our library.

3.2 Proposed Process to Simplify Models

3.2.1 Overview
Our proposed process involves five main steps, depicted in Figure 2. In short, we open the file only once,
load the FCM, determine how many concepts to stabilize on, and how many links we need to assess for
possible simplification. All combinations of binary link values are then generated and the corresponding
FCMs are run in parallel, with each computing core running an approximately equal number of FCMs.
Rather than aggregating the raw results from each FCM to calculate the effects, each core calculates the
effects based on the FCMs that it ran. That is, each core generates the truth table with all factors (i.e.
individual links and their interactions), and computes the weighted sums between each factor and each FCM
concept to stabilize. The sums are then gathered across the cores so that we know how much of the overall
variance in each FCM concept is due to each factor, across all simulation runs. Links whose contribution
to variance (either directly or through interactions) is less than a given threshold can be simplified. The
next subsection details how experiments are performed in parallel, while the last subsection explains how
results are computed.
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Figure 2: General workflow for our approach (top). Each component of the workflow is exemplified using
our first case study and assuming a hardware with four cores. When several successive steps are necessary
for a component, they are listed as successive bullet points.

Figure 3: Average and standard deviation of the time to apply a transfer function, either sequentially or
in parallel, depending on the number of concepts. The inset shows all number of concepts from 1 to 100
included. The main figure shows concepts from size 5 to 500 by steps of 5. Each data point was computed
over 500 repeats. The benchmarking script is available at https://osf.io/qyujt/.
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3.2.2 Steps 1–3: Distributing and Running Experiments in Parallel

While one FCM may be considered a relatively small model in terms of the number of links k, using a 2k

factorial design means that the search space grows exponentially with k. It is thus important to efficiently
run FCMs in parallel. Our solution defines an FCM in a file listing the concepts, their initial values, the
links (with their two possible values), and the concepts that need to stabilize. Reading from this file for
each of the 2k runs would create a significant I/O bottleneck. This is avoided by reading the file once and
then distributing the computations among the c cores available on the current machine. The FCMs have
the same causal structure and initial value for the nodes: they only differ in the values of their links. Thus,
we treat all FCMs as equal1 by dividing the 2k experiments into c sets and allocating each set to a core2.

To further minimize I/O operations, we do not explicitly send to each core a list of all experiments in
its set. Instead, we only send the ID of the starting experiment, and how many experiments are in the set.
A core uses these two numbers to iteratively find the combination of parameter (link) values corresponding
to an experiment and generate the next one, until all of them have been performed. To do this, each
experiment has an ID (from 0 to 2k−1 included) which encodes the combination of parameter values. To
obtain these values, the ID is decoded in binary (over k bits), where the n-th bit specifies whether to use
the low (0) or high (1) value for the n-th link. For example, if we have an FCM with 3 links, we perform
23 = 8 experiments numbered from 0 to 7. Experiment 3 would be coded as 011 in binary, stating that the
1st link must be assigned its low value (0), the 2nd its high value (1), and the 3rd its high value (1).

3.2.3 Steps 4–5: Analyzing Experimental Results to Simplify the Model

The results of the simulations performed by one core produce a table similar to Table 1. The simplest
approach would be to aggregate all these tables and analyze them (i.e. calculate the effects). However, this
would have two significant drawbacks. First, given that we have an exponential time complexity to simulate
the combinations of an FCM with k factors, we would also have an exponential space complexity when
attempting to store and aggregate all raw results. Examples are provided at https://osf.io/qyujt/ with the
‘intermediate output’ files showing the aggregate tables for k=14 (20Mb file) and k=25 (2.5Gb file). This
significant burden on I/O operations would, in turn, slow down the process. Second, aggregating results
in a single table with 2k rows would mean that one core would then analyze the table, which is inefficient
and non-scalable. Our solution avoids both drawbacks: we do not store and combine raw results. Instead,
we use the fact that the analysis can be performed in parallel. That is, the three steps to calculate effects
(Section 2.2) are performed on each core based only on its simulation outputs. Each core thus produces a
partial weighted sum. These sums are then added on one core, which computes the final results; how much
of the variance in each stabilizing FCM concept is produced by each of the links and their interactions.

Once the variance has been analyzed, we have precisely quantified the importance of each link. If
a link has an almost negligible contribution to the variance, it means that using a high or low value for
that link has a negligible impact on simulation outputs. Such links can thus be set to any value within the
range (e.g., the mid-point) which allows for a careful simplification of the model. However, defining the
boundary for being ‘negligible’ depends on the simulation setting. The output of one model may be used
to continuously control a sensitive device (e.g., medication dosage), while the output of another informs
a binary decision (e.g., whether to embark on a given policy or not). Thus, we employ a user-defined
threshold Tvar. A link is simplified if the sum of its contributions to variance exceeds Tvar for at least one
stabilizing concept. For example, assume Tvar = 5% and three links A, B, C with the following contributions:
A : 91.8%, B : 3.2%, C : 2%, AB : 1%, AC : 1%, BC : 0.5%, ABC : 0.5%. The total contributions involving

1Some causal values may lead an FCM to converge faster, thus ending a simulation run sooner. However, additional research
would be needed to reliably identify such initial settings, and to use that information when distributing the computations.
Benefits may be limited as a single FCM runs within milliseconds as discussed in section 4.

2We rely on the multiprocessing library for Python, which uses logical cores to take advantage of hyperthreading.
For example, a workstation with 20 physical cores running 2 threads each will be seen as having 40 logical cores.
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Table 2: Characteristics of the three case studies.

#links #nodes #stabilizing nodes Description Reference
8 6 1 Controller for a security system. Concepts

include intruder localization accuracy or
distance to potential intruder.

(Salmeron 2015)

14 7 2 Supervises radiation therapy. Concepts in-
clude the final dose delivered to the patient
or the dose prescribed.

(Salmeron and Pa-
pageorgiou 2012)

25 15 1 Evaluates the trajectory of individuals in
terms of obesity. Involves food intake,
depression, or stress.

(Giabbanelli,
Torsney-Weir, and
Mago 2012)

Table 3: Number and percentage of links that can be set to a single value, depending on the threshold for
contributing to variance and whether all or a subset of factors had to stabilize.

Case Studies
Threshold 5%
Subset stabilizing

Threshold 5%
All stabilizing

Threshold 10%
Subset stabilizing

Threshold 10%
All stabilizing

1, 8 links 4 (50%) 0 (0%) 5 (62%) 0 (0%)
2, 14 links 6 (42%) 2 (14%) 8 (57%) 2 (14%)
3, 25 links 12 (48%) 11 (44%) 13 (52%) 11 (44%)

each link are: A+AB+AC+ABC = 94.3% > Tvar for A, B+AB+BC+ABC = 5.2% > Tvar for B, and
C+AC+BC+ABC = 4 < Tvar for C. In this situation, the link C would be simplified by setting its value
rather than using a range. We note that our approach produces a very conservative estimate (allowing
to confidently set a link’s value), as it counts contribution through interactions with the same impact as
contributions from the link alone.

4 EXPERIMENTAL EVALUATION

The contributions of this paper (as stated in section 1) are threefold: proposing a new method and
implementation to simplify models, and evaluating it with respect to (i) how much of a model can be
simplified and (ii) how long it takes to perform the computations. The previous section detailed the method
and its implementation, thus this section is devoted to the evaluation. The case studies for the evaluation
are three models (Table 2) published from 2012 to 2015. They were designed for widely different contexts,
and have from 8 to 25 links. The files specifying each case study are available at https://osf.io/qyujt/, using
the format shown in Figure 2 (first step). The two smaller models are also shown in Figure 1.

To evaluate how much of each model could be simplified, we used two thresholds: Tvar = 5% and
Tvar = 10%. We also examined how to stop a simulation in two ways. First, using the default scenario
designed by each model’s authors, in which only a designated subset of nodes must stabilize. Second, an
extreme setting in which we required all nodes to stabilize. This setting makes it much harder to simplify
a link’s value, because a link can now affect many more outputs other than the designated subset of nodes.
This extreme was chosen to assess whether, even in the most draconian situation, we would still be able
to simplify a model. Results are shown in Table 3. In the most common setting (column 1: Tvar = 5%,
stabilize the author-designated subset) we observe that about half of each model (42% to 50%) can be
simplified. That is, we do not need to use a range for about half of the links and can set their value without
significantly changing simulation outcomes. A more lenient setting (column 3 with increasing Tvar = 10%)
allows to simplify 52% to 62% of a model. An extremely strict alternative (column 2 where all concepts
are potential outcomes) has varied effects: no link can be set in the smaller model (versus half using a
subset of nodes as outcomes), while almost half of the links can still be set in the larger model.
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Figure 4: Results on case studies 1 and 2 with a threshold of 5% and a subset of concepts stabilizing (first
result column in Table 3). Values are rounded to the nearest two decimals.

Detailed results for the most common setting are provided in Figure 4, where each link is labeled with
its total contribution to variance (including interactions). While we may intuitively expect links directly
impacting the stabilizing concept(s) to be more important, Figure 4a exemplifies that it isn’t necessarily
the case: two of the links directly impacting the one stabilizing concept have a contribution of 0.52%
and 0.75% so they can be simplified (colored green). Similarly, we see in Figures 4b-c that links directly
impacting one of the stabilizing concepts (dashed) are not necessarily important. This shows that simulating
the system as a whole is important to adequately identify the contribution of each link.

Although results suggest that our approach can simplify half of a model under typical requirements,
our approach has significant computational costs. To evaluate in which settings these costs may constitute
an obstacle to the use of our approach, we computed the time it took to perform the computations on
different architectures ranging from an older personal laptop to a modern workstation or a high-performance
computer cluster (Table 4). The time for the first two case studies (8 links and 14 links) was computed
over 100 repeats, with the criterion that all nodes should stabilized. On average for the smaller case study,
it took 0.0238s±0.0243 on the laptop, 0.0058s±0.0057 on the workstation, and 0.0029s±0.0141 on the
cluster. For the medium-sized model, it took on average 5.5911s±2.0671 on the laptop, 0.4615s±0.1962
on the workstation, and 0.0928s±0.0949 on the cluster. Each of the individual 100 timings for both cases
are available online. Models with up to 14 links can thus be simplified almost instantaneously, even when
using entry-level laptops. The largest model with 25 links was run once on the cluster, where it took about
28 hours using only the author-defined subset of nodes to stabilize, and over 260 hours when all nodes
had to stabilize. It is thus increasingly infeasible to provide immediate model simplification as the number
of links grows beyond 14. Beyond this, a model can still be simplified (at least up to 25 links) but not
immediately, and only using specific hardware.
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Table 4: Three levels of hardware used to perform experiments.

CPU Memory Description (year of purchase)
Intel Core i5-3210M 2.50 GHz
2-core

6Gb 800Mhz (DDR3) Personal laptop (2012)

2 Intel Xeon E5-2650 v3 2.3 GHz
10-core

32Gb 2133MHz (DDR4) Professional workstation (2015)

20 nodes, each with 2 Intel
X5650 2.66 GHz 6-core

20 nodes, each with 72 GB RAM High-performance computer
cluster (2012)

5 DISCUSSION

We used different hardware configurations to evaluate the time necessary to perform all steps leading to the
simplification of model 1 (8 links) and 2 (14 links). The first model could be simplified in 0.02 seconds (on
average) using an entry-level laptop, while the second one took 5.59 seconds (on average) with the same
laptop. This has important practical implications. It means that facilitators can run a workshop, gather
ranges for each link from the participants, and immediately identify the important edges. This, in turn, can
be used to guide the conversation with participants on important edges, for example by devoting more time
to discussing their possible ranges. Model 3 (25 links) could only be handled using a computing cluster,
where it took about 28 hours when considering only one node as output, or over 260 hours when all nodes
could be output. This suggests that models between 15 and 25 links can become intractable on entry-level
hardware. We thus conclude that our approach is feasible on typical model sizes and standard hardware,
but becomes intractable as we start handling large FCMs.

While many FCMs tend to be relatively small, there exists a few with a large number of links. For
example, a radiotherapy model was proposed with 66 links (Salmeron and Papageorgiou 2012). This
would lead to 266 experiments, which is over 70 quintillion experiments. Similarly, our expanded version
of the obesity model had 269 links, and would count among the largest FCMs created to date (Drasic
and Giabbanelli 2015). Given their already massive number of links, such FCMs could benefit from a
simplification. Efficiently simplifying large FCMs should thus be an object of future research. We note
that, while small FCMs are typically generated within a facilitated workshop setting, large FCMs can be
created over weeks through an asynchronous collaborative process. Such setting does not require the ability
to simplify a model using entry-level hardware within seconds. Instead, it would tolerate longer processing
times (in the order of days to weeks) and may utilize higher-end hardware such as a computing cluster.

While our approach focused on simplifying the ranges associated to links, there can also be ranges
associated with nodes. For example, stakeholders may consider that a variety of settings exist for a given
concept, or policymakers may use population distributions rather than an ‘average person’ when initializing
a concept. Our approach can also be employed for this setting: instead of generating 2k experiments for the
k links, we would generate 2k+n experiments by also taking into account the n nodes. Results would then
show which nodes and links can be simplified. The main consequence is on computational requirements,
which in turn impacts the type of hardware that one needs. In model 1, there would be 2k+n = 28+6 = 214

experiments, which is feasible on an entry-level laptop within seconds. However, starting with model 2,
we would already have 214+7 = 221 experiments which may require a computing cluster and days. As
mentioned above, this would benefit from research on simplifying larger models.

The endpoints are typically the only information provided about a range (Salmeron and Papageorgiou
2012, Salmeron 2015). Our 2k factorial design of experiments thus assumes that these endpoints are
representative. However, additional data may be available. For example, when each participant has to
assign a weight to a link through a questionnaire, the set of questionnaires provides a distribution about the
link. If such distributions are heavy-tailed, then the two endpoints of the range may not be representatives
and could instead be outliers. As simplifying a model should make use of all available information, future
research may explore alternative design of experiments using distributions rather than just endpoints.
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6 CONCLUSION

Fuzzy Cognitive Maps (FCMs) can represent the mental model of stakeholders as a causal network equipped
with an inference engine. Stakeholders may have widely different views, feel unsure about specific aspects
of a complex problem, or wish to capture when the evidence is inconclusive. This can be represented by
using a range for each causal link, rather than assigning it a specific weight. The issue then becomes: if all
links have a range of values, which ones should we use when running a simulation? Similarly, stakeholders
often need to identify the parameters that ‘matter’ when they design interventions on complex problems.
This requires knowing which ranges are unimportant, and which ones strongly impact the model output.
Ranges have so far been dealt with by simplifying them to their mid-point (Salmeron 2010), but this
systematic simplification does not take into account which ranges matter and which ones do not. In this
paper, we presented, implemented, and evaluated a new approach to identify which ranges are important
and simplify models accordingly. Our approach uses a 2k factorial design, where k is the number of links,
to evaluate the contribution of each link to variance in the output (i.e., final value of selected nodes in the
model). Given the exponential cost of a 2k factorial design, our implementation uses parallelism not only
to run the simulations, but also to analyze the variance. Our evaluation assessed (i) whether our approach
can identify unimportant links in previously published models, and (ii) whether our approach is feasible
on typical model sizes and standard hardware.

Results from three previously published models show that, under a commonly used setting, almost half
of the models can be simplified (42% to 50% of the links contribute to less than 5% of the variance). A
more lenient setting allows to simplify an additional 10% of the model (52% to 62% of the links contribute
to less than 10% of the variance). Even in the extreme case where the lowest tolerance threshold is used
and all concepts of the model are considered as possible outputs, some models may be simplified. This
setting however exhibits more variability (0% to 44% of the links). We thus conclude that, on previous
models, our approach can successfully identify unimportant links. A closer investigation as to which links
could be simplified further demonstrated that they could not be straightforwardly identified, for example
by assuming that links directly impacting an output would be important to that output’s variance.
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