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ABSTRACT

Virtual performance is a class of time-dependent performance measures conditional on a particular event
occurring at timet0 for a (possibly) nonstationary stochastic process; virtual waiting time of a customer
arriving to a queue at time t0 is one example. Virtual statistics are estimators of the virtual performance.
In this paper, we go beyond the mean to propose estimators for the variance, and for the derivative of
the mean with respect to time, of virtual performance, examining both their small-sample and asymptotic
properties. We also provide a modified K-fold cross validation method for tuning the parameter k for the
difference-based variance estimator, and evaluate the performance of both variance and derivative estimators
via controlled studies. The variance and derivative provide useful information that is not apparent in the
mean of virtual performance.

1 INTRODUCTION

“Virtual statistics,” as we define them, are estimators for performance measures that are conditional on the
occurrence of an event at a particular time, say t0. The class of measures of interest we call virtual performance
at time t0, denoted by V (t0). Lin and Nelson (2016) and Lin et al. (2017) focus on estimating the mean
of some time-dependent virtual performance, denoted by v(t0) = E[V (t0)], for a (possibly) nonstationary
stochastic process using the output of computer simulation, and they propose a k-nearest-neighbors (knn)
estimator of it. In this paper, we extend the study of mean estimation to variance and derivative estimation
for V (t0).

To motivate the study of virtual statistics, we consider a specific example of virtual waiting time
described in Smith and Nelson (2015). Smith and Nelson (2015) consider the case of a traveler who wants
to know how long it might take them to clear security if they arrive to the airport at, say, 7:30 AM. The knn
estimator proposed by Lin and Nelson (2016) estimates the mean of the virtual waiting time for the traveler.
Of course, the traveler is unlikely to experience exactly the mean of the virtual waiting time. The standard
deviation of the virtual waiting time provides a more complete description of the distribution of their delay.
When the mean of virtual performance (i.e., the true regression function) is unknown, a typical approach
is to first estimate the regression function, and then derive the response variance from the residuals; this is
also called residual variance estimation. There exists substantial research on residual variance estimation
when the true regression function is unknown. For example, Liitiäinen et al. (2010) describe a residual
variance estimator using nearest neighbor statistics, and Liitiäinen et al. (2008) study variance estimation
for a general setting that covers non-additive heteroscedastic noise under non-iid sampling.

Residual variance estimation requires estimating the unknown regression function first and then comput-
ing the sample variance based on the estimated regression function. If simulation users are only interested
in the variance of virtual performance, then there is another class of variance estimator, called difference-
based variance estimator, that does not require estimation of the unknown regression function. Rice (1984)

1856978-1-5386-3428-8/17/$31.00 ©2017 IEEE



Lin and Nelson

presents a difference-based variance estimator for a fixed design. Gasser et al. (1986) provide a variation of
difference-based variance estimator by introducing the concept of pseudo-residuals. In this paper, we apply
both residual variance and difference-based variance estimation schemes to the virtual statistics problem.

Another performance measure of interest is the derivative of v(t0). The derivative information is quite
useful since it reveals how the system will respond to a change in the time that the trigger event occurs. Take
the airport check-in problem as an example. If the traveler arrives at the airport slightly earlier or later than
their planned arrival time t0, then the traveler probably wants to know whether or not this change would
lead to a much longer expected waiting time; that is, is v(t0) changing rapidly? Additionally, simulation
users can obtain some idea on how often they should estimate v(t0) from the derivative information. For
example, if the derivative of v(t0) is close to 0 at some time t = t0, then it is not necessary to estimate the
mean of virtual performance at times close to t0 because we know v(t) changes very slowly.

The finite difference (FD) method has been widely used for derivative estimation in simulation. Although
FD is well known, we show later why it is incompatible with a nonparametric knn approach. In addition to
FD, there are many other types of derivative estimation approaches. One of them is similar to the idea of
the residual variance estimation scheme; that is, one should estimate the unknown regression function first
by using some smooth functions such as polynomials or splines and then compute the estimator by taking
the derivative of the estimated regression function with respect to time. For example, Zhou and Wolfe
(2000) study the estimation of derivatives using spline estimators. Gasser and Müller (1979) and Gasser and
Müller (1984) describe kernel-based derivative estimators. A more recent derivative estimation method is
based on weighted slopes of symmetric observations around the time t = t0 of interest. De Brabanter et al.
(2013) and De Brabanter and Liu (2015) study this type of estimator and show its asymptotic properties.
Although all of these approaches can apply to virtual performance settings, we focus on the weighted-slopes
type of derivative estimator because it can be treated as an extension of our existing knn mean estimation
results; see Lin and Nelson (2016).

The remainder of this paper is organized as follows. We start with a summary of work on mean
estimation for virtual performance in Section 2, which includes important assumptions and results from Lin
et al. (2017). In Section 3, we formally define our variance and derivative estimators for virtual performance.
The asymptotic properties of the proposed estimators under specific conditions on the system of interest
and the growth rate of the tuning parameter k are offered in Section 4. We introduce a modified K-fold
cross validation method for tuning the parameter of the difference-based variance estimator in Section 5.
To evaluate the performance of the proposed variance and derivative estimators, we apply our method to
controlled studies in Section 6, comparing the estimators with the true variance and derivative of virtual
performance. Some conclusions are provided in Section 7.

2 kNN METHOD FOR THE MEAN

We first present the definition of virtual performance given in Lin et al. (2017). Consider a stochastic point
process that begins at time Tstart ≡ 0 and ends at time Tend ≡ T where E(T 2)< ∞. The random event times
are 0 ≤ t1 < t2 < · · · < tM ≤ T ; in the simulation setting these will typically be the times that a common
type of event occurs, such as “customer arrival” or “machine failure,” although that is not essential. We
will call all of these events “arrivals” later even though they may not be. Associated with event time ti is a
random performance variable Y (ti); in the simulation setting this might be the waiting time for a customer
who arrives at time ti, or the time until the system is restored after a failure that happens at time ti. Thus,
{(ti,Y (ti)); i = 1,2, . . . ,M} is a marked point process (typically with a complicated joint distribution).

For a fixed time 0 ≤ t0 ≤ T , let i0 = argmini|ti − t0| (we handle the case of M = 0 events below). Then

we define the virtual performance at t0 to be V (t0)
D
= Y (ti0) | ti0 = t0 and its mean to be v(t0) = E(V (t0)).

If M = 0, then define Y (ti0) = 0, and let ti0 = 0 if t0 > T/2, and ti0 = T , otherwise.
Lin et al. (2017) propose a knn method for estimating v(t0) from n independent simulation replications

and provide two approaches for measuring the error of the knn mean estimator. Therefore, the simulation
data are {(ti j,Y (ti j)); i = 1,2, . . . ,Mj}, j = 1,2, . . . ,n, where the subscript j denotes the jth replication. We
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assume that E[Y 2(ti j)]< ∞ for all ti j. For notational simplicity, we refer to this assumption as E[Y 2(t)]< ∞
from here on. In this paper, we focus on the same type of stochastic point process but will study different
virtual statistics. The development is based on some important results from Lin et al. (2017). Therefore,
we restate the relevant assumptions and results in this section.

Denote the superposed process of all the observed arrivals by Tn =
{

ti j : i = 1,2, . . . ,Mj, j = 1,2, . . . ,n
}
.

The knn estimator of v(t0), V̄ (t0), proposed by Lin et al. (2017) is

V̄ (t0) =
1

k

k

∑
�=1

Y (t(�,n)0 ), t(�,n)0 ∈ Tn, (1)

where t(1,n)0 < t(2,n)0 < · · ·< t(k,n)0 are the sorted k nearest neighbors to t0 from the superposed process Tn,

and Y (t(�,n)0 ) is the corresponding observed output for � = 1,2, . . . ,k. Notice that the “closeness” here is

based on |t(�,n)0 − t0| regardless of replication and ties are broken arbitrarily.
The system of interest analyzed in this paper satisfies the same properties assumed in Lin et al. (2017).

Let the arrival-counting process associated with ti j from a generic replication of the dynamic system to be
denoted by {N(t) : t ≥ 0}. For any time interval (t −w/2, t +w/2] with w > 0, let the number of arrivals
within (t −w/2, t +w/2] to be denoted by Nw(t) = N(t +w/2)−N(t −w/2). If t0 is very close to the
endpoint 0, then t −w/2 might be negative so that N(t −w/2) is not defined. A similar issue occurs for
t0 that is close to T . Thus, we further define N(t) = N(0) for t ≤ 0, and N(t) = N(T ) for t ≥ T . For each
replication, suppose {N(t) : t ≥ 0} satisfies the following properties for all t ∈ [0,T ]:

Pr{Nw(t)≥ 1}= λtw+o(w) and Pr{Nw(t)≥ 2}= o(w), (2)

where λt > 0 is the arrival process intensity at time t. Note that (2) is weaker than the condition for a
Poisson arrival process because the latter also requires independent increments.

Lin et al. (2017) show that if k/n → 0 as n → ∞, then the smallest symmetric interval that contains the
k nearest neighbors of t0, denoted by W k

n (t0), converges to 0 in L2 norm; and the k nearest neighbors are
asymptotically from distinct replications, implying that they are asymptotically independent. These results
are used to prove consistency of V̄ (t0) for v(t0) in Lin et al. (2017).

3 VIRTUAL VARIANCE AND DERIVATIVE ESTIMATION

In this section, we define the variance and derivative for the virtual performance of our stochastic process,
and propose our variance and derivative estimators.

3.1 Variance Estimation

The variance of the virtual performance V (t0) is σ2(t0) = Var(Y (t0)). We define a class of knn variance
estimator:

σ̂2(t0) = ∑
(�,m)∈V (t0)

φ�m

[
Y (t(�,n)0 )−Y (t(m,n)

0 )
]2

, (3)

where the set V (t0) contains the indices of the pairs (t(�,n)0 , t(m,n)
0 ) used for computing σ̂2(t0). If V (t0) =

{(�,m)|� �= m ∈ {1,2, . . . ,k}} (i.e., all the pairs of observations are used) and φlm = 1/(2k(k−1)) for all
(�,m), then σ̂2(t0) coincides with the sample variance of the k nearest neighbors, and it is also called a
residual-based variance estimator, denoted by σ̂2

RB
(t0) with V (t0) = V

RB
(t0); i.e.,

σ̂2
RB
(t0) = ∑

(�,m)∈V
RB

(t0)

1

2k(k−1)

[
Y (t(�,n)0 )−Y (t(m,n)

0 )
]2

=
1

k−1

k

∑
�=1

[
Y (t(�,n)0 )−V̄ (t0)

]2

. (4)
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Our residual-based variance estimator σ̂2
RB
(t0) is different from a typical sample variance which is

computed from k independent measurements at t = t0. Since it is very unlikely we will obtain any, much
less multiple, observations at t0 due to the nature of virtual performance, our proposed residual-based
variance estimator is constructed based on the k nearest neighbors around t0 and these k observations are
usually dependent.

The residual-based variance estimator in (4) involves the pairs (t(�,n)0 , t(m,n)
0 ) from the k nearest neighbors.

By contrast, Rice (1984) proposes a first-order difference-based variance estimator, denoted by σ̂2
DB
(t0),

that only contains the pairs of any two successive observations such that the corresponding index set V (t0)
becomes V

DB
(t0) = {(�,m)|m = �−1, � ∈ {2,3, . . . ,k}} and the weight φ�m = 1/(2(k−1)), so

σ̂2
DB
(t0) = ∑

(�,m)∈V
DB

(t0)

1

2(k−1)

[
Y (t(�,n)0 )−Y (t(m,n)

0 )
]2

=
1

2(k−1)

k

∑
�=2

[
Y (t(�,n)0 )−Y (t(�−1,n)

0 )
]2

. (5)

Compared with the residual-based variance estimator defined in (4), a difference-based variance estimator
like (5) removes the trend in the mean. There exist other variations of difference-based variance estimators.
For example, Gasser et al. (1986) introduce pseudo-residuals to construct their difference-based variance
estimator which assigns each squared difference its own weight based on their distances to the point of
interest. Typically, equally-weighted difference-based variance estimators are applied for problems with
equispaced design points, and many related papers like Rice (1984) assume independence among the
observations. Nevertheless, the superposed arrivals in Tn could be very dense if either the arrival intensity
or the number of replications n is large, so all observations within the superposed sample path Tn are
close to each other such that the impact of the distance will be less significant. As for the independence
assumption, we will establish the asymptotic independence for the k nearest neighbors around t0 under
certain conditions on the system and the growth rate of k. Therefore, we suggest the equally-weighted
difference-based variance estimator defined in (5).

To further compare these two knn variance estimators, σ̂2
RB
(t0) and σ̂2

DB
(t0), we establish their asymptotic

properties in Section 4, and propose a parameter-tuning approach for σ̂2
DB
(t0) in Section 5.

3.2 Derivative Estimation

The derivative of v(t) evaluated at t = t0 is v′(t0) = dv(t)/dt|t=t0 . As mentioned in Section 1, the traditional
FD method cannot be effectively used in our virtual statistics problem. If the FD δ is small, as it should
be for low bias, then the arrival times ti j in the interval [t0, t0+δ ] or [t0−δ , t0+δ ] maybe nearly the same,
and therefore cancel in a FD estimator.

A näive derivative estimator for v′(t) at t = t0 is (Y (t(�,n)0 )− Y (t(m,n)
0 ))/(t(�,n)0 − t(m,n)

0 ), where

(t(�,n)0 ,Y (t(�,n)0 )) and (t(m,n)
0 ,Y (t(m,n)

0 )) are two observations near t0. Motivated by this example, we de-
fine a class of derivative estimators for v′(t0):

β̂ (t0) = ∑
(�,m)∈D(t0)

ω�m

[
Y (t(�,n)0 )−Y (t(m,n)

0 )

t(�,n)0 − t(m,n)
0

]
, where ω�m =

(t(�,n)0 − t(m,n)
0 )2

∑(r,s)∈D(t0)(t
(r,n)
0 − t(s,n)0 )2

. (6)

The derivative estimator defined in (6) is the weighted average of the slopes of two neighbors within D(t0),
and the weight ωlm is proportional to the difference between t(�,n)0 and t(m,n)

0 . Similar to the index set V (t0)
in the variance estimator, D(t0) contains the indices of all pairs (t(�,n)0 , t(m,n)

0 ) used for computing β̂ (t0).
A natural choice of D(t0) is to employ the same k nearest neighbors used in the mean V̄ (t0). Then

D(t0) = {(�,m)|� �= m ∈ {1,2, . . . ,k}}. In this case, we can express β̂ (t0) as

β̂ (t0) =
k

∑
��=m

(t(�,n)0 − t(m,n)
0 )2

∑k
r �=s(t

(r,n)
0 − t(s,n)0 )2

· Y (t(�,n)0 )−Y (t(m,n)
0 )

t(�,n)0 − t(m,n)
0

=
∑k
�=1(t

(�,n)
0 − t̄)(Y (t(�,n)0 )−V̄ (t0))

∑k
�=1(t

(�,n)
0 − t̄)2

,
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Figure 1: An example of constructing β̂
SWD

(t0) based on 4 nearest neighbors.

where t̄ = ∑k
�=1 t(�,n)0 /k. For this choice of D(t0), the derivative estimator defined in (6) coincides with the

ordinary least squares (OLS) estimator. Such a derivative estimator, denoted by β̂
OLS

(t0) associated with
D

OLS
(t0), can also be viewed as the estimated slope coefficient for a linear regression model of the k nearest

neighbors to t0.
De Brabanter et al. (2013) and De Brabanter and Liu (2015) propose a different choice of D(t0) for

constructing β̂ (t0). Instead of using all (t(�,n)0 , t(m,n)
0 ), they only choose the pairs where t(�,n)0 and t(m,n)

0 are
symmetric around t0. We call such a derivative estimator the symmetric weighted difference (SWD) estimator,
and the corresponding index set becomes D

SWD
(t0) = {(�,m)|�+m = 2k̃+1, � > m ∈ {1,2, . . . , k̃}}, where

k̃ is the number of involved pairs (i.e., slopes).

A simple illustration for constructing β̂
SWD

(t0) is shown in Figure 1. Suppose we use 4 nearest neighbors

around t0 to construct β̂ (t0), then β̂
OLS

(t0) will involve all 4× (4− 1) = 12 pairs of (t(�,n)0 , t(m,n)
0 ) while

β̂
SWD

(t0) will only include two pairs: (t(4,n)0 , t(1,n)0 ) and (t(3,n)0 , t(2,n)0 ).
The number of involved slopes k̃ must satisfy k̃ ≤ k/2. In the simple example shown above, k̃ = 2

when 4 nearest neighbors are chosen, which is the best situation. If t(2,n)0 also locates on the same side of

t0 as t(3,n)0 and t(4,n)0 , then β̂
SWD

(t0) will only contain one slope computed from (t(2,n)0 , t(1,n)0 ). The worst case

is that all these 4 nearest neighbors are on one side of t0 such that we cannot construct β̂
SWD

(t0) according

to its definition. Therefore, to construct a SWD estimator β̂
SWD

(t0), we do not use the original k nearest

neighbors. Instead, we choose the k nearest neighbors to t0 from [0, t0] and another k nearest neighbors

to t0 from [t0,T ], and sort these 2k neighbors as t(1,n)
0,SWD

< t(2,n)
0,SWD

< · · ·< t(2k,n)
0,SWD

. Then the index set D(t0) for

β̂
SWD

(t0) is D
SWD

(t0) = {(�,m)|�+m = 2k+ 1, � > m ∈ {1,2, . . . ,k}} such that β̂
SWD

(t0) is constructed on

k pairs of symmetric observations around t0. Note that these 2k neighbors might not be the 2k nearest
neighbors to t0. The asymptotic properties of β̂

OLS
(t0) and β̂

SWD
(t0) are established in Section 4.

4 ASYMPTOTIC PROPERTIES OF VARIANCE AND DERIVATIVE ESTIMATORS

In this section we establish the asymptotic properties of the proposed variance and derivative estimators.

The proofs for all the asymptotic results are provided in Lin and Nelson (2017).

Theorem 1 Suppose that the system of interest satisfies E[Y 2(t)] < ∞ and its arrival-counting process

satisfies (2), and that the true response surface v(t) and the marginal variance σ2(t) are Lipschitz continuous

with finite Lipschitz constants L1,L2 > 0 for any t1, t2 ∈ [0,T ]. If k/n → 0 as k,n → ∞, then

(i) the residual-based variance estimator σ̂2
RB
(t0) is asymptotically unbiased and consistent for σ2(t0);

(ii) the difference-based variance estimator σ̂2
DB
(t0) is asymptotically unbiased for σ2(t0);

(iii) if in addition, E[T 4] < ∞ and the fourth moment of Y (t) is also Lipschitz continuous with finite

Lipschitz constant L3 > 0 for any t1, t2 ∈ [0,T ], then σ̂2
DB
(t0) is asymptotically consistent for σ2(t0).

De Brabanter and Liu (2015) show the asymptotic unbiasedness and consistency for β̂
SWD

(t0), but

they only consider cases where all observations are independent and homoscedastic. We employ the

key part of their proof and then extend it to our problem in which the observations might be dependent
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and heteroscedastic. Before establishing the asymptotic properties for β̂
SWD

(t0), we need to establish the

following lemma.

Lemma 1 Suppose that the system of interest satisfies E[Y 2(t)]<∞ and its arrival-counting process satisfies

(2). Let t(1,n)
0,SWD

< t(2,n)
0,SWD

< · · · < t(2k,n)
0,SWD

be the sorted 2k observations used for computing β̂
SWD

(t0). Define

W 2k
SWD

(t0) = t(2k,n)
0,SWD

− t(1,n)
0,SWD

as the smallest interval that contains these 2k observations, and

I2k
SWD

(t0) =
{

1, if t(1,n)
0,SWD

, t(2,n)
0,SWD

, · · · , t(2k,n)
0,SWD

are from distinct replications

0, otherwise.
.

If k/n → 0 as n → ∞, then

(i) W 2k
SWD

(t0)
L2→ 0, implying that lim n → ∞

k/n → 0

E[(W 2k
SWD

(t0))2] = 0;

(ii) and Pr{I2k
SWD

(t0)= 1}→ 1; that is, {Y (t(1,n)
0,SWD

),Y (t(2,n)
0,SWD

), · · · ,Y (t(2k,n)
0,SWD

)} are asymptotically independent.

Theorem 2 Suppose that the system of interest satisfies E[Y 2(t)] < ∞ and its arrival-counting process

satisfies (2), and that v(t) is twice continuously differentiable with v′′(t)<∞ and supt∈[0,T ] σ2(t) = σ2
sup

<∞.

If k/n → 0 as k,n → ∞, then

(i) β̂
SWD

(t0) is asymptotically unbiased for v′(t0);
(ii) if in addition, k3/2/n → ∞ as k,n → ∞, then β̂

SWD
(t0) is asymptotically consistent for v′(t0).

We can use the same proof of asymptotic unbiasedness of β̂
SWD

(t0) from De Brabanter and Liu (2015)

for proving part (i) in Theorem 2, since neither the independence nor homoscedasticity assumption is

required for showing asymptotic unbiasedness. The proof for part (ii) is also based on De Brabanter and

Liu (2015), but we need to transform our problem into their situation where both the independence and

homoscedasticity assumption are required. The proof for Theorem 3 is similar to the one for Theorem 2.

Theorem 3 Suppose that the system of interest satisfies E[Y 2(t)] < ∞ and its arrival-counting process

satisfies (2), and that v(t) is twice continuously differentiable with v′′(t)<∞ and supt∈[0,T ] σ2(t) = σ2
sup

<∞.

If k/n → 0 as k,n → ∞, then

(i) β̂
OLS

(t0) is asymptotically unbiased for v′(t0);
(ii) if in addition, k2/n → ∞ as k,n → ∞, then β̂

OLS
(t0) is asymptotically consistent for v′(t0).

From Theorems 2–3, we see that k should not increase faster than n but should not increase too slowly

either. The growth rate of k affects the width of the interval W 2k
SWD

(t0). If k grows too slowly, then W 2k
SWD

(t0)
might be too narrow such that the observations are too close to each other, which is harmful in derivative

estimation. Specifically, the number of nearest neighbors k for β̂
SWD

(t0) should increase faster than the k for

β̂
OLS

(t0). This is because β̂
OLS

(t0) uses many more weighted slopes so its variance can be better controlled.

5 PRACTICAL APPROACH

In practice, we need to determine the tuning parameter k to construct good variance and derivative estimators

based on finite sample paths. We discuss how to tune the parameter k in this section.

We know σ̂2
RB
(t0) is the sample variance of the k nearest neighbors, so it is natural to use the same

optimal k�, denoted by k�
mean

, tuned from the mean estimation procedure. Lin et al. (2017) introduce a

leave-one-replication-out cross validation (LORO CV) method to obtain k�
mean

. For the difference-based
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variance estimator σ̂2
DB
(t0), we suggest two k values: one is k�

mean
if estimating v(t0) is also of interest; the

other one is to tune k directly without the mean estimation, as described in Algorithm 1.

Algorithm 1 knn method via K-fold cross validation for σ̂2
DB
(t0)

1: Input fixed test vector ttest = {t1, t2, . . . , tMtest
} and search range kL < kU , NN = “nearest neighbors.”

2: Randomly divide the n replications into K folds of approximately equal size.

3: for �= 1,2, . . . ,K do
4: Stest ← {Y j, t j; j = 1,2, . . . ,n�}, where t j = {t1 j, t2 j, . . . , tMj j}, Y j = {Y (t1 j),Y (t2 j), . . . ,Y (tMj j)},

and n� is the number of replications in the �th fold.

5: Strain ← all data except Stest.

6: Find the one nearest neighbor from each t j ∈ Stest for each tm ∈ ttest.

7: Compute the sample variance S2
�(tm) using these independent n� observations for each tm ∈ ttest.

8: Find kU NN in Strain to each tm ∈ ttest.

9: Store the indices of the kU NN to each tm ∈ ttest into an index matrix Mind ∈ ℜMtest×kU , where the

ith row in Mind contains the indices of the kU NN to tm ∈ ttest.

10: for k ∈ [kL,kU ] do
11: Extract the first k columns from Mind.

12: Find the k NN to each tm ∈ ttest and compute the difference-based estimator σ̂2
DB,�

(tm,k).
13: end for
14: end for
15: for k ∈ [kL,kU ] do
16: Compute EMSE(k) =

(
∑K
�=1 ∑Mtest

m=1[S
2
�(tm)− σ̂2

DB,�
(tm,k)]2

)
/(Mtest ×K).

17: end for
18: Choose k�

db
that results in the minimum EMSE(k).

A simple example to illustrate how this algorithm works is provided in Lin and Nelson (2017). We find

that tuning the parameter for σ̂2
DB
(t0) is computationally cheaper than for σ̂2

RB
(t0). For a single k value, say

k0, the computational effort required for computing the EMSE(k0) of σ̂2
DB
(t0) is O(KMtest log(∑n

j=1 Mj)),
where Mtest is the number of test points chosen in Algorithm 1. On the other hand, the computational effort

required by σ̂2
DB
(t0) depends on the mean estimation procedure, which requires O((∑n

j=1 Mj) log(∑n
j=1 Mj))

for computing EMSE(k0). Typically, we have ∑n
j=1 Mj 
 KMtest because ∑n

j=1 Mj increases fast as we

increase the number of replications n or have a very dense arrival counting process, while the number

of folds K is usually 10 and Mtest is often chosen to be much smaller than any Mj. Take one queueing

system with n = 100 replications we are going to analyze in Section 6 as an example, ∑100
j=1 Mj = 30852

while KMtest = 10×15 = 150. Hence, if one is only interested in the variance of V (t0), then obtaining a

difference-based variance estimator σ̂2
DB
(t0) from Algorithm 1 is much cheaper.

As for the two derivative estimators, we propose to use the same optimal k�
mean

value. That is, we use the

same k�
mean

nearest neighbors to fit a linear regression model and the estimated slope coefficient is β̂
OLS

(t0).
For β̂

SWD
(t0), we choose k�

mean
nearest neighbors to t0 from each side of t0 and then use these two 2k�

mean

neighbors to compute β̂
SWD

(t0). Note that there might be fewer than k�
mean

observations (e.g., only k̃ < k�
mean

observations) on one side of t0 if t0 is close to the endpoints 0 or T . If that happens, then we only choose

k̃ nearest neighbors from each side of t0 such that β̂
SWD

(t0) will be constructed on k̃ slopes.
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Figure 2: Sample paths of 10 replications for the three queueing systems.
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Figure 3: Performance of σ̂2
RB
(t0) vs. σ̂2

DB
(t0) for H2(t)/M/1/c system.

6 EXPERIMENTS

Lin et al. (2017) study the virtual waiting times for a series of phase-type queueing models to evaluate

the performance of V̄ (t0). In this paper, we use the same phase-type queueing models to evaluate the

performance of the proposed variance and derivative estimators.

We study three phase-type FIFO queueing models: H2(t)/M/s/c, E2(t)/M/s/c, and E4(t)/E4/s/c,

where H2 stands for two-phase hyperexponential distribution, E2 (or E4) stands for two-phase (or four-phase)

Erlang distribution, and M stands for exponential distribution. The nonstationary arrival rate functions are

piecewise linear, the service rate μ = 20, the number of servers s = 1, the system capacity c = 50, and the

mixing probability p within the H2(t) distribution is 0.4. The 10-replications sample paths which illustrate

the trend and variability for these three systems are shown in Figure 2.

The reason we choose these phase-type queueing models for the empirical study is that we can compute

the virtual performance measures of interest. Lin et al. (2017) describe how to compute the expected

virtual waiting time using Kolmogorov forward equations (KFEs), and we can compute the variance and

derivative based on the same technique. Refer to Lin and Nelson (2017) for more details. Overall, the
proposed variance and derivative estimators turn out to estimate the true values very well for all three
systems.

We first present the simulation results for the variance estimators. In Section 5, we have discussed how

to choose appropriate k values for the knn variance estimators. We use k�
mean

tuned from LORO CV for

σ̂2
RB
(t0); and we try two k values for σ̂2

DB
(t0): one is k�

mean
and the other is k�

db
tuned directly from Algorithm 1.

The performance of the variance estimators averaged across 100 macro-replications for the three systems

are presented in Figures 3–5, where n indicates the number of replications within each macro-replication.

Overall, the performance of the variance estimators is good, and the difference-based variance estimators

are very close to the true variance when the system has low variability, as in Figure 5. On the other hand,
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Figure 4: Performance of σ̂2
RB
(t0) vs. σ̂2

DB
(t0) for E2(t)/M/1/c system.
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Figure 5: Performance of σ̂2
RB
(t0) vs. σ̂2

DB
(t0) for E4(t)/E4/1/c system.

the variance estimators are more biased when the system is highly variable and n is small. For example,

both H2(t)/M/1/c and E2(t)/M/1/c are more variable than E4(t)/E4/1/c according to Figure 2, especially

during the time period of t = 7 to t = 10, and we find these variance estimators become more biased in

this time period when only 10 replications are used, but the bias is effectively reduced as n increases from

10 to 100 (Figures 3–4).

We find both k�
mean

and k�
db

are larger than the number of replications n such that there always exist

dependence among the k nearest neighbors. Thus, the variance estimators underestimate the variance due to

the positive correlation, especially when the system has high variability; in other words, the more variable

the system is, the more biased the variance estimators could be if n is too small. This is because the optimal

k value tuned from either LORO CV or K-fold CV is larger when the system has higher variability (e.g.,

k�
mean

≈ 200 for H2(t)/M/1/c and k�
mean

≈ 50 for E4(t)/E4/1/c when n = 10 for both of these two systems),
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Figure 6: Performance of β̂
OLS

(t0) vs. β̂
SWD

(t0) for H2(t)/M/1/c system.
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Figure 7: Performance of β̂
OLS

(t0) vs. β̂
SWD

(t0) for E2(t)/M/1/c system.

so the dependence issue is more severe for the more variable system such that the bias of the corresponding

variance estimators is larger. Even for a single system, the bias of the variance estimators increases as

the variability of the system increases. Take H2(t)/M/1/c as an example: the variance estimators become

most biased at t0 = 8 when the system variability itself reaches its peak value. For the two more variable

systems H2(t)/M/1/c and E2(t)/M/1/c, increasing n is an efficient way to reduce the bias of the variance

estimators, because we find that the optimal k value tuned from CV does not increase as fast as n so that

the dependence issue becomes less severe as n increases.

The role of CV is to balance bias and variance. To assess the variability of these variance estimators,

we run 100 macro-replications for all scenarios so we can obtain an estimator for the variability of the

variance estimators. Take σ̂2
DB
(t0) as an example: its variance estimator is computed as ∑R

r=1[σ̂2
DB,r

(t0)−
σ̂2

DB
(t0)]2/(R−1), where σ̂2

DB,r
(t0) is the difference-based variance estimator computed from the rth macro-

replication and σ̂2
DB
(t0) = ∑R

r=1 σ̂2
DB,r

(t0)/R. We find that the variance of σ̂2
RB
(t0) is very close to the variance

of σ̂2
DB
(t0) with k�

mean
. Even though σ̂2

RB
(t0) includes many more pairs of observations, σ̂2

DB
(t0) removes

the trend in the mean response function such that the variance caused by the regression function can be

effectively reduced. As for the other knn difference-based variance estimator, σ̂2
DB
(t0) with k�

db
, the optimal

k�
db

tuned from Algorithm 1 is much larger than k�
mean

. Hence, the variance of σ̂2
DB
(t0) with k�

db
can be further

reduced and it is smaller than the variance of the other two estimators.

The performance of the derivative estimators is provided in Figures 6–8. Overall, both β̂
SWD

(t0) and

β̂
OLS

(t0) estimate the true derivative well, but β̂
SWD

(t0) performs better than β̂
OLS

(t0) in terms of both bias

and variance. Specifically, we find that β̂
OLS

(t0) is more biased when the variability dominates the trend in

the system, e.g., during the time period of t = 7 to t = 10. This is because the true regression function is

not necessarily a linear function and β̂
OLS

(t0) assigns non-zero weight to every single pair of (t(�,n)0 , t(m,n)
0 )

for (�,m) ∈ D
OLS

(t0) so that the bias is very likely to be increased due to lack of symmetry. As for the

variance estimators computed from 100 macro-replications for these derivative estimators, even though

β̂
OLS

(t0) includes many more slopes, the slopes used in β̂
SWD

(t0) are less variable and less biased because

the pairs (t(�,n)
0,SWD

, t(m,n)
0,SWD

) are well spread and symmetric around t0.

Different from the variance estimation, the positive correlation is not that harmful for derivative

estimation. Think about an extreme case where the true waiting time is a linear function of time and all

the k nearest neighbors are from a single replication. If these k nearest neighbors are perfectly correlated

(i.e., ρ = 1), then the derivative estimator is unbiased but the variance estimator is very poor. Thus, the

positive correlation actually improves the performance of the derivative estimators in this situation.

In addition to the graphical presentation, we also display the mean squared error (MSE) for one case,

the E2(t)/M/1/c system; see Table 1. Overall, the MSE of all the variance estimators and the β̂
SWD

(t0)
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(t0) for E4(t)/E4/1/c system.

Table 1: MSE of variance and derivative estimators for E2(t)/M/1/c with n = 100.

true MSE true MSE

t0 σ2(t0) σ̂2
RB
(t0) σ̂2

DB
(t0) with k�

mean
σ̂2

DB
(t0) with k�

db
v′(t0) β̂

OLS
(t0) β̂

SWD
(t0)

1 0.0024 9.60×10−7 9.35×10−7 1.37×10−5 0.0195 3.76×10−4 8.03×10−5

2 0.0054 4.09×10−6 4.44×10−6 9.02×10−6 0.0344 1.77×10−3 3.60×10−4

3 0.0128 1.92×10−5 1.95×10−5 3.18×10−5 0.0668 6.01×10−3 1.49×10−3

4 0.0325 6.70×10−5 6.97×10−5 8.84×10−5 0.1343 2.76×10−2 4.33×10−3

5 0.0794 2.66×10−4 2.59×10−4 2.64×10−4 0.2551 5.93×10−2 1.09×10−2

6 0.1639 8.51×10−4 8.99×10−4 6.11×10−4 0.4254 1.34×10−1 2.51×10−2

7 0.2618 1.65×10−3 1.86×10−3 1.13×10−3 0.4081 3.32×10−1 3.87×10−2

8 0.3204 1.60×10−3 1.87×10−3 1.40×10−3 0.3455 4.10×10−1 3.59×10−2

9 0.3162 2.15×10−3 2.34×10−3 1.58×10−3 0.2621 2.64×10−1 4.30×10−2

10 0.2712 1.81×10−3 2.15×10−3 1.51×10−3 0.1862 1.67×10−1 2.95×10−2

11 0.2151 1.75×10−3 1.72×10−3 1.32×10−3 0.1166 1.98×10−1 2.51×10−2

12 0.1720 1.14×10−3 1.22×10−3 8.67×10−4 0.0623 1.36×10−1 1.56×10−2

13 0.1544 7.27×10−4 7.11×10−4 5.02×10−4 -0.0546 6.03×10−2 1.18×10−2

14 0.1680 8.38×10−4 8.85×10−4 6.64×10−4 -0.1982 5.07×10−2 5.99×10−3

15 0.2057 1.24×10−3 1.32×10−3 1.55×10−3 -0.4689 2.48×10−2 4.28×10−3

derivative estimator are at least an order of magnitude smaller than the quantity being estimated. Notice

that β̂
SWD

(t0) has substantially smaller MSE than β̂
OLS

(t0) for some t0, which is what we expect due to the

symmetry of the observations involved in β̂
SWD

(t0).
To better interpret the simulation results, we choose t0 = 6 for the E2(t)/M/1/c system as an illustration.

If a customer arrives at this system at t0 = 6, then the mean estimator of the waiting time in the queue

for this customer is 0.71 minutes (obtained from Lin et al. (2017)), the variance estimator for the waiting

time is 0.16, i.e., the standard deviation is 0.4 minutes (Figure 4). The SWD estimator β̂
SWD

(6) ≈ 0.45,

meaning that the rate of change in the waiting time at t0 = 6 is 0.45 minutes per time unit.

7 CONCLUSIONS

In this paper we propose two variance estimators and two derivative estimators for the virtual performance

based on retained sample paths from simulation experiments. We show the asymptotic properties of these

virtual statistics and propose a parameter tuning algorithm for the knn difference-based variance estimator.

The controlled studies show that even with the global optimal k�
mean

obtained from mean estimation, the

performance of all these virtual statistics is good.
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