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ABSTRACT

The mean time to failure (MTTF) of a stochastic system is often estimated by simulation. One natural
estimator, which we call the direct estimator, simply averages independent and identically distributed copies
of simulated times to failure. When the system is regenerative, an alternative approach is based on a ratio
representation of the MTTF. The purpose of this paper is to compare the two estimators. We first analyze
them in the setting of crude simulation (i.e., no importance sampling), showing that they are actually
asymptotically identical in a rare-event context. The two crude estimators are inefficient in different but
closely related ways: the direct estimator requires a large computational time because times to failure often
include many transitions, whereas the ratio estimator entails estimating a rare-event probability. We then
discuss the two approaches when employing importance sampling; for highly reliable Markovian systems,
we show that using a ratio estimator is advised.

1 INTRODUCTION

Dependability analysis is of primary importance in many areas, such as nuclear power plants, telecommu-
nications, manufacturing, transport systems, and computer science; for examples, see Heidelberger (1995)
and Rubino and Tuffin (2009b). Even if system failures are rare, their occurrence may have dramatic
consequences and therefore need to be analyzed with care. We focus here on one common dependability
metric, the mean time to failure (MTTF), which is the expected value of the random time to reach failure.

An example of the type of system we are considering is one with components subject to failures and
repairs exponentially distributed over time. Such a system is then represented by a Markov chain which
can in principle be solved analytically, but for practical problems the state space is usually so large that it
would require an enormous computation time. Monte Carlo simulation then becomes a relevant option.

A crude simulation of the model entails simulating failures and repairs of components up to the failure
of the whole system. We obtain the direct estimator of the MTTF by repeating the experiment many
independent times and averaging the obtained times to system failure. But in the case when individual
components are highly reliable (in the sense that failure rates are much smaller than the repair rates), this
often requires a very long computation time because it involves, with high probability, a large number of
transitions before a failure of the system since when components are failed, it is more likely to have repairs
than other failures. In the literature, another estimator is often instead used. It exploits the regenerative
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structure of the model and expresses the MTTF as a ratio of quantities over regenerative cycles. Estimating
by crude simulation the numerator in this expression is efficient, but it is not the case for the denominator,
which is the probability of a rare event. Many rare-event simulation techniques have been developed to
obtain efficient estimators using the ratio expression (Heidelberger 1995, L’Ecuyer and Tuffin 2012, Rubino
and Tuffin 2009a).

The purpose of this paper is to review and discuss the relative merits of the two estimators: the direct
and a ratio-based one. We highlight the following results we obtain:

• We first show that crude estimators based on direct simulation of times to failure and on the ratio
expression are asymptotically similar in performance, in rare-event settings. Both estimators are
inefficient, suffering from different but closely related issues: the direct estimator requires large
computation times because replications are often very long, whereas the ratio estimator encounters
difficulties from estimating a rare-event probability.

– To analyze the asymptotics as the event of interest becomes rarer, we consider a sequence
(Ab : b≥ 1) of (failure) sets, with P(Ab)→ 0 as b→ ∞. We prove that the two estimators are
asymptotically equivalent when estimating the expected hitting time to Ab as b→ ∞.

– Moreover, we provide numerical results that the same is true for highly reliable Markovian
systems, in which the asymptotic regime differs in that the failure set is fixed but the component
failure rates shrink with the repair rates fixed.

• Given that crude estimators are equivalent in performance, we next compare the importance sampling
(IS) versions of the estimators. We show that in the setting of highly reliable Markovian systems, it
is not possible in full generality to design efficient direct IS estimators, so the ratio-based estimators
are then rather advised.

The rest of the paper develops as follows. Section 2 presents the two versions of the crude estimators of
the MTTF, with their associated central limit theorems (CLTs), from which one can construct asymptotically
valid confidence intervals. Section 3 compares the two estimators in rare-event settings and shows that they
are equivalent in terms of accuracy as the computational budget grows large. Instead of the well-known
IS ratio estimation, Section 4 discusses direct estimators via IS. Based on simple examples, we show that,
and explain why, designing efficient direct estimators is difficult. Section 5 concludes the paper.

2 CRUDE MTTF ESTIMATORS

2.1 The estimators

Let X = (X(t) : t ≥ 0) be an S-valued non-delayed (classically) regenerative process (Smith 1955) with
regeneration times 0 = Γ(0)< Γ(1)< · · · . For k ≥ 1, let τ(k) = Γ(k)−Γ(k−1) be the length of the kth
regenerative cycle. Given a set A⊂ S, the goal is to compute α = E[T ], where T = inf{t ≥ 0 : X(t) ∈ A}
is the hitting time of A and E[·] is the expectation operator. When A corresponds to the set of states for
which the simulated system is failed, α represents the MTTF. We assume throughout that E[τ2(1)]< ∞.

Because X is classically regenerative, we have that ((τ(k),(X(Γ(k−1)+ s) : 0≤ s < τ(k)) : k ≥ 1)
is a sequence of independent and identically distributed (IID) cycles. For real-valued x and y, define
x∧ y = min(x,y). For k ≥ 1, let W (k) = inf{t ≥ 0 : X(Γ(k− 1)+ t) ∈ A} be the first hitting to A after
regeneration time Γ(k−1). The classical regenerative property implies that ((τ(k),W (k)∧ τ(k), I(k)) : k ≥ 1)
is an IID sequence of triplets, where I(k) = I (W (k)< τ(k)) and I (·) is the indicator function. Define
τ = τ(1), W =W (1) = T , and p = P(T < τ). A proof of the following ratio representation for α appears,
e.g., in Goyal et al. (1992).
Proposition 1 If p > 0, then

α =
E[T ∧ τ]

P(T < τ)
. (1)
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Set N(0) = 0, and for j ≥ 1, let N( j) = inf{k > N( j− 1) : I(k) = 1} be the index k of the cycle
corresponding to the jth cycle in which A is hit. Let T (1)= T , and T ( j)= inf{t ≥ 0 : X(Γ(N( j−1))+t)∈A}
for j ≥ 2. Then α can be estimated either by the direct estimator

α1(m) =
1
m

m

∑
j=1

T ( j)

or via the ratio estimator

α2(n) =
(1/n)∑

n
k=1[W (k)∧ τ(k)]

(1/n)∑
n
k=1 I(k)

.

2.2 Central Limit Theorems

Let ⇒ denote weak convergence (e.g., Billingsley 1999), and let N (a,s2) be a normal random variable
with mean a and variance s2. Then the direct estimator α1(m) satisfies the following CLT.
Proposition 2 If p > 0, then

m1/2[α1(m)−α]⇒ σ1N (0,1)

as m→ ∞, where

σ
2
1 = α

2 +
E[(T ∧ τ)2]

p
−2α

E[TI (T < τ)]

p
. (2)

Proof. Because p > 0 and E[τ2]< ∞, all the expectations below are finite. Note that σ2
1 = E[T 2]−α2

because α1(m) averages IID copies of T . To show that σ2
1 satisfies (2), observe that T D

=(T ∧τ)+I (T ≥ τ)T ′,

where D
= denotes “equality in distribution” and T ′ D

= T is independent of (T ∧τ,I (T ≥ τ)). Hence, E[T 2] =
E[(T ∧ τ)2]+2E[(T ∧ τ)I (T ≥ τ)]E[T ]+E[I (T ≥ τ)]E[T 2]. Therefore, because p = 1−E[I (T ≥ τ)]
and α = E[T ] = E[T ∧ τ]/p by (1), we get

E[T 2] =
E[(T ∧ τ)2]

p
+2α

E[(T ∧ τ)I (T ≥ τ)]

p

=
E[(T ∧ τ)2]

p
+2α

(
E[T ∧ τ]

p
− E[TI (T < τ)]

p

)
=

E[(T ∧ τ)2]

p
+2α

2−2α
E[TI (T < τ)]

p
,

establishing (2).

On the other hand, the second estimator α2(n) satisfies the following CLT, which also appears in Goyal
et al. (1992) but we include its proof here for completeness.
Proposition 3 If p > 0, then

n1/2[α2(n)−α]⇒ σ2N (0,1)

as n→ ∞, where

σ
2
2 =

E[(T ∧ τ)2]

p2 −2α
E[TI (T < τ)]

p2 +
α2

p
. (3)

Proof. Note that

n1/2[α2(n)−α] = n−1/2 ∑
n
k=1[(W (k)∧ τ(k))−αI(k)]

∑
n
k=1 I(k)/n

.

But n−1
∑

n
k=1 I(k)→ p almost surely as n→ ∞, and n−1/2

∑
n
k=1[(W (k)∧ τ(k))−αI(k)]⇒ σ̃2N (0,1) as

n→ ∞, where σ̃2
2 = E[((T ∧ τ)−αI (T < τ))2] = E[(T ∧ τ)2]−2αE[TI (T < τ)]+α2P(T < τ), so (3)

holds by Slutsky’s theorem.
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3 COMPARISON OF THE CRUDE ESTIMATORS

Although the CLTs in Propositions 2 and 3 for α1(m) and α2(n), respectively, may appear to be different,
they actually are very similar. In fact, they agree at the instants at which the T ( j)’s occur (i.e., hitting
times of A), which Shahabuddin et al. (1988) also note.
Proposition 4 For m≥ 1, we have

α2(N(m)) = α1(m).

Proof. For j ≥ 1, note that T ( j) = τ(N( j− 1)+ 1)+ τ(N( j− 1)+ 2)+ · · ·+ τ(N( j)− 1)+W (N( j)).
We have that τ(k)<W (k) when N( j−1)< k < N( j), whereas W (k)< τ(k) for k = N( j). Thus, T ( j) =
∑

N( j)
k=N( j−1)+1 τ(k)∧W (k). Also, observe that m = ∑

N(m)
k=1 I(k), so that

α1(m) =
∑

m
l=1 ∑

N( j)
k=N( j−1)+1 τ(k)∧W (k)

∑
N(m)
k=1 I(k)

= α2(N(m)).

3.1 Equivalence with a decreasing sequence of reachable sets

We will now show that these estimators are asymptotically identical in the rare-event setting in which A is a
“rare” set. Consider a sequence (Ab : b≥ 1) of subsets of S for which pb ≡ P(Tb < τ)→ 0 as b→∞, where
Tb = inf{t ≥ 0 : X(t)∈ Ab}. For each fixed b, we can then define Wb(k), Ib(k), Nb( j), Tb( j), etc., analogously
to W (k), I(k), N( j), T ( j), etc., but with Ab instead of A; e.g., Wb(k) = inf{t ≥ 0 : X(Γ(k−1)+ t) ∈ Ab}
and Ib(k) = I (Wb(k)< τ(i)). Suppose that it takes c > 0 units of computer time to generate c simulated
time units of the process X , where the computer time units may differ from the time units of X , e.g.,
milliseconds vs. days. The number of the Tb( j) generated in c units of computer time is then given by
βb(c) = sup{m ≥ 0 : ∑

m
j=1 Tb( j) ≤ c}, so that the estimator (that is analogous to α1(m)) available after

expending c units of computer time is

α̂1,b(c) =
1

βb(c)

βb(c)

∑
j=1

Tb( j)

when βb(c)≥ 1, and α̂1,b(c) = 0 when βb(c) = 0. Similarly, let Λb(c) be the number of (Wb(k)∧τ(k), Ib(k))
generated in c units of computer time, so that Λb(c) = sup{l ≥ 0 : ∑

l
k=1[Wb(k)∧τ(k)]≤ c}. The estimator

(that is analogous to α2(n)) available after c units of computer time is

α̂2,b(c) =
∑

Λb(c)
k=1 Wb(k)∧ τ(k)

∑
Λb(c)
k=1 Ib(k)

if Λb(c)≥ 1, and α̂2,b(c) = 0 if Λb(c) = 0. Note that it takes on average roughly E[τ]/pb units of computer
time to observe one visit to Ab. So, to hope for consistency and CLTs, we need a computational budget tb
for which tb pb→ ∞ as b→ ∞.

We next consider the relative accuracy of the two estimators α̂1,b(·) and α̂2,b(·), showing that α̂1,b(c)
and α̂2,b(c) are asymptotically identical in the regime in which tb� 1/pb.
Proposition 5 Assume E[τ3]< ∞. If tb pb→ ∞ as b→ ∞, then we have that as b→ ∞,

√
tb pb

(
α̂i,b(tb)
E[Tb]

−1
)
⇒
√
E[τ]N (0,1), i = 1,2, and (4)

√
tb pb

(
α̂1,b(tb)
E[Tb]

−
α̂2,b(tb)
E[Tb]

)
⇒ 0. (5)
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Proof. To prove (4) for i = 1, we will first establish that(
√

tb pb
1

btb pbsc

btb pbsc

∑
j=1

(
Tb( j)
E[Tb]

−1
)

: 0 < s < ∞

)
⇒
(

B(s)
s

: 0 < s < ∞

)
(6)

as b→∞ in D(0,∞), where B = (B(s) : 0 < s < ∞) is a standard Brownian motion and D(0,∞) is the space
of right-continuous functions with left limits on (0,∞), and then employ a random-time-change argument.
We now show (6) by applying Theorem 1.4(b), p. 339, of Ethier and Kurtz (1986) after verifying the
two sufficient conditions in their (1.19) and (1.17). Note that the process Ab(·) of their theorem is just
Ab(s) = (btb pbsc/(tb pb))Var[Tb/E[Tb]]. But our Proposition 2 implies that Var[Tb] = (E[Tb])

2(1+o(1)) as
b→∞ because E[TbI (Tb < τ)] = o(1) as b→∞, where we use the notation that a function f (b) = o(g(b))
for another function g if f (b)/g(b)→ 0 as b→ ∞. Consequently, for each s≥ 0, we have that Ab(s)→ s
as b→ ∞, establishing the condition (1.19) of Theorem 1.4(b) of Ethier and Kurtz (1986).

The other condition, (1.17), in Theorem 1.4(b) of Ethier and Kurtz (1986) requires verifying that

1
tb pb

E
[

max
1≤ j≤btb pbsc

Vb( j)
]
→ 0 (7)

as b→ ∞, for each fixed s≥ 0, where the Vb( j), j ≥ 1, are IID copies of ((Tb/E[Tb])−1)2. But

1
tb pb

E
[

max
1≤ j≤btb pbsc

Vb( j)
]
=

1
tb pb

∫
∞

0
P
(

max
1≤ j≤btb pbsc

Vb( j)> x
)

dx (8)

and P(max1≤ j≤btb pbscVb( j) > x)/(tb pb)→ 0 as b→ ∞ for each x ≥ 0. Hence, (7) follows from (8) if we
can apply the dominated convergence theorem to (8). Note that

1
tb pb

P
(

max
1≤ j≤btb pbsc

Vb( j)> x
)
≤ 1

tb pb

btb pbsc

∑
j=1

P(Vb( j)> x) =
btb pbsc

tb pb
P

((
Tb

E[Tb]
−1
)2

> x

)

≤ s
x3/2 E

[(
Tb

E[Tb]
−1
)3
]
, (9)

where the last step follows from Markov’s inequality. Because E[τ3] < ∞ by assumption, we can apply
an argument similar to that used to prove Proposition 2 to compute E[T 3

b ]. This computation shows that
E[((Tb/E[Tb])−1)3] is bounded as a function of b. The inequality (9) then proves that the integrand of (8)
is uniformly dominated by an integrable function of x, so that (7) holds. This proves (6).

To enable applying a random-time-change theorem to (6), we next prove that

βb(tbs)
tb pb

⇒ s
E[τ]

(10)

as b→ ∞. We note that for ε > 0,

P
(

βb(tbs)≥ tb pbs(1+ ε)

E[τ]

)
= P(Tb(1)+ · · ·+Tb(nb)≤ tbs), (11)

where nb = dtb pbs(1+ ε)/E[τ]e, and observe that nbE[Tb] = tbs(1+ ε)(1+o(1)) as b→ ∞. Chebyshev’s
inequality then implies that (11) is bounded above by

P(|Tb(1)+ · · ·+Tb(nb)−nbE[Tb]|> tbsε(1+o(1)))≤ nbVar[pbTb]

(tb pbsε)2(1+o(1))
→ 0
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as b→∞, because Var[pbTb] is bounded as a function of b (since E[(Tb/E[Tb])
2]→ 1 as b→∞). A similar

argument shows that P(βb(tbs)≤ tb pbs(1−ε)/E[τ])→ 0 as b→∞, for each fixed ε > 0, thus proving (10).
In view of (6) and (10), the random-time-change theorem (e.g., Theorem 14.4 of Billingsley 1999)

then yields the conclusion that

√
tb pb

1
βb(tbs)

βb(tbs)

∑
j=1

(
Tb( j)
E[Tb]

−1
)
⇒ B(s/E[τ])

s/E[τ]

as b→ ∞. Consequently, (4) for i = 1 follows by setting s = 1.
We next show that (5) holds, which will imply (4) holds for i = 2 by (4) for i = 1 and the converging-

together lemma. First note that α̂1,b(c) ≤ α̂2,b(c) ≤ ∑
βb(c)+1
j=1 Tb( j)/βb(c) and [∑

βb(c)+1
j=1 Tb( j)/βb(c)]−

α̂1,b(c) = Tb(βb(c)+1)/βb(c), which implies that (5) holds if

1
√

tb pb
max

1≤ j≤btb pbsc

Tb( j)
E[Tb]

⇒ 0 (12)

as b→ ∞ for s≥ 0. But this follows immediately from (7) and Markov’s inequality.

3.2 Equivalence in a Highly Reliable Markovian Systems Setting

We next consider a model of highly reliable Markovian systems (HRMS) commonly studied in the literature,
e.g., see Cancela, Rubino, and Tuffin (2002), Shahabuddin (1994a), Shahabuddin (1994b) or Shahabuddin
et al. (1988), among others. Basically (the reader is advised to read the above references for more details)
the state space S is decomposed into the set A of failed states and the set of operational states. Transitions
of the Markov chains are repairs and failures of components. Failures are assumed to be rare events with
respect to repairs, so that a rarity parameter 0 < ε � 1 is introduced. Failure transitions are assumed to
have a rate O(ε), while repair transitions have a rate Θ(1), where we use the notation that a function f (ε) is
O(g(ε)) if | f (ε)/g(ε)| remains bounded when ε→ 0, and it is Θ(g(ε)) if | f (ε)/g(ε)| is bounded and also
bounded away from 0, when ε→ 0. The smaller ε is, the smaller the probability to reach A from an initial
operational state. In contrast to Section 3.1, where b was the rarity parameter and we considered a sequence
of sets (Ab : b ≥ 1) as b→ ∞, we now change the rarity parameter to ε and examine the asymptotics as
ε → 0 for a fixed set A of failed states.

Index by ε the probability measure driving the system and denote it Pε . Indexing by ε will allow us
to highlight the properties of estimators when ε gets close to 0. The time to failure (that is, to reach a
failed state) is denoted Tε , and the direct and ratio estimators can be used for both crude simulation and
importance sampling. Here we consider the embedded discrete-time Markov chain (DTMC), where the
time spent in each state is taken as the expected value of the exponential holding time in the state of the
continuous-time chain. This discrete-time conversion reduces the variance of the estimator and simplifies
the analysis in next section. But looking at either the continuous or discrete version does not change the
conclusions of the comparison between the direct and the ratio-based estimators.

As was done in Section 3.1, we can also examine the asymptotic equivalence of the two estimators as
ε → 0. Instead, we simply present numerical results to illustrate this property.

A numerical comparison. Consider a system with 3 component types, with n1 = n2 = n3 = 3, where
ni is the redundancy of component type i. Each component has an exponentially distributed time to failure
with rate λi for components of type i, where λi = ε , for some parameter ε . Any failed component has an
exponentially distributed repair time with rate 1. Times to failure and repair times are all independent. The
system is down whenever fewer than two components of any one type are operational.

The results with various values of ε and various sample sizes m are provided in Table 1 for the direct
estimator and Table 2 for the regenerative (ratio-based) estimator (n is then the number of independent
cycles). The last column displays the work-normalized variance, defined as the variance of the estimator
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multiplied by the CPU time. It balances the computational effort and variance and basically represents the
expected variance for a unit of computational budget. It can be seen that the work-normalized variances
are basically the same for each value of ε .

Table 1: Results for the direct DTMC crude estimator.

m ε Est. Confidence Interval Variance CPU Work Norm. Var.
105 0.1 8.755 (8.708e+00 , 8.802e+00) 5.840e+01 0.17 9.733e-05
107 0.1 8.769 ( 8.764e+00 , 8.774e+00) 5.879e+01 17.7 1.041e-04
105 0.01 5.818e+02 (5.782e+02 , 5.854e+02) 3.366e+05 1.33 4.488e+00
107 0.01 5.841+02 (5.838e+02 , 5.845e+02) 3.343e+05 134 4.482e+00
105 0.001 5.5925825e+04 (5.558e+04 , 5.627e+04) 3.126e+09 12.86 4.022e+05
107 0.001 5.5844640e+04 (5.581e+04 , 5.588e+04) 3.117e+09 1316.5 4.104e+05

Table 2: Results for the regenerative crude DTMC estimator.

n ε Est. Confidence Interval Variance CPU Work Norm. Var.
105 0.1 8.692 (8.595e+00 , 8.788e+00) 2.412e+02 0.05 1.206e-04
107 0.1 8.772 (8.762e+00 , 8.782e+00) 2.484e+02 4.283 1.064e-04
105 0.01 5.805e+02 (5.558e+02 , 6.051e+02) 1.580e+07 0.0166 2.633e+00
107 0.01 5.812e+02 (5.788e+02 , 5.837e+02) 1.586e+07 2.917 4.627e+00
105 0.001 5.496e+04 (4.742e+04 , 6.249e+04) 1.478e+12 0.0166 2.463e+05
107 0.001 5.535e+04 (5.459e+04 , 5.611e+04) 1.510e+12 2.800 4.227e+05

It is interesting to note that the direct estimator does not encounter rare-event problems: as ε→ 0, the
relative variance (i.e., variance divided by the square of the expected value) is kept bounded in Table 1.
But the computation (CPU) time increases because the number of steps before reaching system failure
increases. Table 2 instead shows the opposite for the ratio-based estimator: the computational time is
bounded but we have a rare-event estimation issue. In other words, the computational time issue is replaced
by a rare-event estimation problem. Compared to computational time issues, rare-event problems are more
extensively studied and variance-reduction techniques can be applied.

4 IMPORTANCE SAMPLING ESTIMATORS

Because the crude estimators are asymptotically equivalent, one may wonder why in the rare-event setting IS
techniques have only been developed for the ratio estimator (Heidelberger 1995, Rubino and Tuffin 2009b)
but not for its direct counterpart. To illustrate our arguments and give counter-examples, we introduce the
following very simple example which will be used throughout the section.
Example 1 Consider a system made of a single type of components with two components failing with rate ε

and a single repairman with repair rate 1. The state space and transition-rate diagram of the continuous-time
Markov chain are represented in Figure 1, where state x means x failed components. The system is failed
when both components are failed (state 2). For this example, the embedded DTMC is described in Figure 2,

0 1 2

2ε ε

1

Figure 1: HRMS with a single type of components and 2 components.

with mean sojourn times 1/(2ε) and 1/(1+ ε) in states 0 and 1, respectively. A path to failure is simply
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0 1 2

1 ε/(1+ ε)

1/(1+ ε)

Figure 2: HRMS with a single type of components and 2 components: embedded DTMC.

described as a transition from 0 to 1, followed by n≥ 0 cycles 1→ 0→ 1, and finally a transition from 1
to 2. Hence, the MTTF can be directly computed as

Eε(Tε) =
∞

∑
n=0

(n+1)
(

1
2ε

+
1

1+ ε

)(
1

1+ ε

)n
ε

1+ ε
=

1+3ε

2ε2 .

Note that this expression could also have been found from the system of equations obtained by conditioning
on the first move: Eε(Tε) = 1/(2ε)+Eε,1(Tε) and Eε,1(Tε) = 1/(1+ ε)+1/(1+ ε)Eε(Tε) (with Eε,1(·)
the expected value when starting from state 1 instead of state 0), but it is insightful to decompose into
the sum over paths with n cycles, whose expected length is (n+1)

( 1
2ε
+ 1

1+ε

)
and whose probability is( 1

1+ε

)n ε

1+ε
.

For the crude Monte Carlo estimator using the embedded DTMC, the second moment is

Eε [(Tε)
2] =

∞

∑
n=0

(n+1)2
(

1
2ε

+
1

1+ ε

)2( 1
1+ ε

)n
ε

1+ ε
=

(2+ ε)(1+3ε)2

4(1+ ε)ε4

leading to a variance of 1
4
(1+3ε)2

(1+ε)ε4 . The relative variance is bounded, illustrating again that this estimator
does not encounter a rare-event problem.

Let N be the (random) number of transitions in a run (to which the computation time is proportional),
and its expectation is

Eε(N) =
∞

∑
n=0

(2+2n)
(

1
1+ ε

)n
ε

1+ ε
=

2(1+ ε)

ε
.

The work-normalized relative variance WNRV , defined as the variance multiplied by the computation time
and divided by the square of the expected value, is then

WNRV =
2
ε
.

The work-normalized relative variance is a good measure of efficiency of an estimator, since if bounded
as ε → 0, it means that the computational budget to ensure a predefined accuracy level is independent of
the rarity. Here the computational time to achieve a given accuracy level increases as ε → 0, as we had
previously noted.

4.1 Failure Biasing

If we wish to apply IS to the direct estimator, a natural idea is to apply failure biasing similarly to what
has been done for the regenerative estimator: from any state except the initial one with all components up,
change the probability of making a failure transition to be ρ , independent of ε . This will make reaching
a failed state more likely because under the original system dynamics, the probability of taking a failure
transition is O(ε) as failure rates are O(ε) but repair rates are Θ(1). Several implementations exist, including
simple failure biasing (SFB) and balanced failure biasing (BFB) (Shahabuddin 1994b). Under SFB, the
probability of any failure given that a failure occur is proportional to its original probability, but with BFB,
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it is uniform; i.e., if f failure transitions are possible out of a state, then each failure transition is given
probability 1/ f . For repairs, the conditional probabilities are always taken proportional to the original
ones.

Note that when simulating a Markov chain, the number of steps can be large and a change of probability
matrix can lead to very poor results if the probabilities are changed too much because the likelihood ratio
is subject to large variations. But usually for HRMS the number of steps in direct paths to failure is small
(otherwise the failure biasing methods would not be efficient), so we could (wrongly as we will see) expect
failure biasing to be efficient.
Example 2 When applying IS to Example 1 by changing the probabilities of the Markov chain, the only
latitude we have is to change to probabilities from state 1 as described in Figure 3 by using ρ as the
probability to reach the failed state from 1. Failure biasing is then the only possibility.

0 1 2

1 ρ

1−ρ

Figure 3: HRMS with a single type of components and 2 components: Failure biasing on the embedded
DTMC.

The probability under IS of the path to failure with n≥ 0 cycles is (1−ρ)nρ . Letting Ẽε denote the
expectation operator under the IS probability distribution, the second moment of the IS estimator is

Ẽε [(TεL)2] = Eε [(Tε)
2L] =

∞

∑
n=0

(n+1)2
(

1
2ε

+
1

1+ ε

)2
(( 1

1+ε

)n ε

1+ε

)2

(1−ρ)nρ
.

For the sum to converge, we need 1/((1+ ε)2(1−ρ))< 1, or equivalently,

ρ < 1− 1
(1+ ε)2 = 2ε−3ε

2 +o(ε2). (13)

In other words, the failure probability from state 1 cannot be increased too much; otherwise, the likelihood
ratio will build up too much and lead to infinite variance.

This is not a new story as this type of issue has already been encountered in the simulation of HRMS by
Juneja and Shahabuddin (1992) and Juneja and Shahabuddin (2001), where deferred repairs are considered
so that at some states, failures are not rare (something we also have here from state 0). The point is that
failures from intermediate states can have a probability Θ(1), introducing cycles with large probability,
which can cause the variance of the likelihood to potentially explode. As a remedy, they propose to apply
a so-called small failure biasing, assigning a failure probability δ � ρ to the whole set of failures from
some states. While the issue is the same, here the assumptions are different:

1. We do not have deferred repairs and the problem is only at the initial state 0, which is not a problem
with regenerative simulation because the simulation of a cycle stops when we have a return to this
state;

2. In Juneja and Shahabuddin (1992) and Juneja and Shahabuddin (2001), the small probability δ is
independent of ε , which is not possible here from what we have seen to avoid an infinite variance.

Thus the implementation of IS to the direct estimator is problematic since, already on our simple example,
it is not possible to make unrare the failure transition from state 1.
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The average number of transitions under IS is

Ẽε(N) =
∞

∑
n=0

(2+2n)(1−ρ)n
ρ =

2
ρ
. (14)

So the average simulation time for a single run will increase to infinity as ε → 0 by (13).
Remark: This analysis can be related to Glynn (1994), where it is shown that we can typically expect

the IS variance to grow exponentially in the (deterministic) number of simulated steps. With HRMS, the
asymptotic analysis is instead with respect to ε→ 0 rather than an increasing (fixed) number of transitions.
Although failure biasing with ρ = Θ(1) leads to the system failing after usually only a few transitions,
(13) stipulates that ρ = O(ε) to ensure finite variance, resulting in the (random) number of transitions until
failure having infinite mean, as seen in (14).

But even if the computation time increases as ε → 0, the direct estimator could still be efficient if the
relative variance vanishes with ε . To see if that can happen, let us focus on the zero-variance IS scheme.

4.2 Zero-Variance Approximation

In the literature, there indeed exists a zero-variance IS scheme for Markov chains and HRMS, as derived by
Awad, Glynn, and Rubinstein (2013) and L’Ecuyer and Tuffin (2012). In order to implement it, we cannot
use the estimator TεL but rather the still-unbiased T IS

ε = ∑
τF−1
j=0 (1/λ (Yk))Lk, where Lk is the likelihood

ratio for step 0 to step k. This type of estimator is often called a filtered importance sampling estimator
(Awad, Glynn, and Rubinstein 2013, Glasserman 1993). For any states x and y, let Eε,y(Tε) be the MTTF
starting from y and (Px,y)x,y∈S the original transition matrix of the DTMC. Then using the IS matrix

P̃x,y = Px,y
1/λ (x)+Eε,y(Tε)

Eε,x(Tε)

yields an estimator with variance zero, which follows from a direct application of the framework described
in Awad, Glynn, and Rubinstein (2013), L’Ecuyer and Tuffin (2007), L’Ecuyer and Tuffin (2012).
Example 3 On our example in Figure 3, we can modify the probabilities from state 1 only, with

ρ =
ε

1+ ε

1
1+ε

+0
1+2ε

2ε2

=
2ε3

(1+ ε)2(1+2ε)
.

We can see that the probability to reach State 2 directly from 1 is Θ(ε3), so even if the variance is zero,
the estimation takes on average longer time, 2

ρ
= Θ(ε−3), as ε gets closer to zero. If the optimal ρ is not

known and an approximation of order ρ = θ(ε3) is used, we need a relative variance O(ε−3), that is a
variance O(ε), to ensure a bounded work-normalized variance.

Let us investigate if it is easily attainable. The second moment of the estimator T IS
ε with ρ as the

probability to go directly from 1 to 2 is

Ẽε [(T IS
ε )2] =

∞

∑
n=0

(
1

2ε
+

n

∑
k=1

(
1

1+ ε
+

1
2ε

)(
1

1+ ε

)k 1
(1−ρ)k +

1
1+ ε

(ε/(1+ ε)(1/(1+ ε))n

ρ(1−ρ)n

)2

(1−ρ)n
ρ.

A closed-form expression is easily obtainable, but the derivation is very long and not insightful. However,
we make the following observations:

• For ρ = 2ε3

(1+ε)2(1+2ε)
, we retrieve Ẽε [(T IS

ε )2] = 1
4
(1+3ε)2

ε4 = (Ẽε [T IS
ε ])2, that is, a variance zero.

• For ρ = ε3 (i.e, an approximation of the probability of good asymptotic order), the variance is
Θ(ε−2), two orders of magnitude better than the variance of the crude estimator, but this gain is
lost on the computational time.
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• For ρ = 2ε3 (i.e., the exact first-order term of the zero-variance change of measure), the variance
is Θ(1), which is better but still not sufficient to yield a bounded work-normalized variance.

Thus, we see that much better than an exact first-order approximation of transition probabilities is required.
This seems hard to obtain in practice. With the ratio estimator, a first-order approximation is used in
L’Ecuyer and Tuffin (2012), which yields bounded normalized variance (even a vanishing one), and the
estimator does not suffer from an increasing computational time.

5 CONCLUSIONS

In conclusion, we have reviewed and compared two standard estimators of the MTTF for (classically)
regenerative processes: a direct one expressed as the average of simulated times to failure, and a second
one making use of the regenerative structure and expressing the MTTF as a ratio of expected values. We
have highlighted that

1. Crude direct and ratio-based estimators are asymptotically equivalent as the probability to reach
the specified failure set decreases, with the computational issue for the direct estimator just being
replaced by a rare-event problem for the ratio estimator.

2. When failures are rare, we may want to apply IS to obtain more efficient estimators, but we have
illustrated that for the direct estimator, designing an efficient IS procedure might be difficult, while
many efficient ones exist for the ratio expression. The latter is then advised.
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