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ABSTRACT

Stratified sampling and Latin hypercube sampling (LHS) reduce variance, relative to naı̈ve Monte Carlo
sampling, by partitioning the support of a random vector into strata. When creating these estimators, we
must determine: (i) the number of strata; and, (ii) the partition that defines the strata. In this paper, we
address the second point by formulating a nonlinear optimization model that designs the strata to yield a
minimum-variance stratified sampling estimator. Under a discrete set of candidate boundary points, the
optimization model can be solved via dynamic programming. We extend this technique to LHS, using an
approximation of estimator variance to obtain strata for the domain of a multivariate function. Empirical
results show significant variance reduction compared to using equal-probability strata for LHS or naı̈ve
Monte Carlo sampling.

1 INTRODUCTION

Variance reduction techniques are commonly used in Monte Carlo simulation to reduce the number of
samples required to achieve a confidence interval of desired width when estimating the expectation of a
univariate or multivariate function in cases where analytical calculations are intractable. In the simpler
univariate case, Neyman (1934) develops a stratified sampling estimator, wherein the support of the random
variable is partitioned into strata. Straightforward extension of this idea to higher dimensions does not scale
well because the number of strata grows exponentially in the dimension, but Latin hypercube sampling
(LHS), introduced by McKay, Beckman, and Conover (1979), provides a type of multivariate stratification.

When the underlying d-dimensional random vector has independent components, an LHS estimator
partitions the support of each component into equal-probability strata, and exploits independence by
randomly ordering samples from each component to form d-tuples. Iman and Conover (1980) generalize
LHS to allow for cells of unequal probability, and characterize the sampling variance of an LHS estimator
under specific conditions. Stein (1987) characterizes the asymptotic variance of an LHS estimator, relative
to a naı̈ve Monte Carlo estimator, and Owen (1992) establishes a central limit theorem for LHS. Drew and

1832978-1-5386-3428-8/17/$31.00 ©2017 IEEE



Zolan, Hasenbein, and Morton

Homem-de-Mello (2012) show that the upper bound on the probability of a large deviation under LHS is
no higher than that of naı̈ve Monte Carlo sampling.

LHS and its extensions are seen in a variety of applications. Olsson, Sandberg, and Dahlblom (2003)
implement LHS in the estimation of structural reliability. Freimer, Linderoth, and Thomas (2012) and
Stockbridge and Bayraksan (2016) assess the impact of LHS on reducing the the variance and bias when
estimating optimal values in stochastic optimization problems. Packham and Schmidt (2010) establish a
central limit theorem for LHS with dependent variables, and apply this to the valuation of first-to-default
credit baskets and Asian basket options. Helton and Davis (2003) use the sample reweighting technique for
nonuniform LHS developed by Iman and Conover (1980) to conduct uncertainty and sensitivity analysis
for a two-phase fluid flow model. Morton et al. (2014) implement nonuniform LHS to ensure the sampling
of rare events to assess risk in nuclear power.

Mease and Bingham (2006) study how to optimize the strata of a nonuniform LHS estimator, and to our
knowledge this is the closest work in the literature to what we propose. They derive first-order optimality
conditions when the dimension and number of samples are small, but they say that this approach does not
scale well. So, they employ a heuristic search involving coordinate descent on a grid for larger problems.
We similarly begin by formulating a nonlinear optimization model, but then recast that model as a dynamic
program.

In this paper, we develop a method of choosing nonuniform strata over the support of a random variable
with the goal of minimizing sampling variance for stratified sampling or, in the case of multivariate sampling,
LHS. Section 2 formulates a nonlinear program to construct a stratified sampling estimator with minimum
variance, and reformulates that optimization model as a tractable dynamic program. The development of
this stratified sampling estimator is not particularly useful in its own right. Rather, we view it as a subroutine
for developing the LHS estimator that we propose in Section 3. Section 4 details empirical results of our
stratified sampling and LHS schemes for a collection of example functions. Section 5 concludes.

2 NONUNIFORM STRATIFIED SAMPLING

We wish to estimate E[h(X)], in which X is a univariate random variable and h : R→R. To do so, we use
a stratified sampling routine, which partitions the support of X into contiguous strata, Sk, k = 1,2, . . . ,K,
which we also call cells. Here, each cell has probability mass pk = P(X ∈Sk), and the estimator allocates
a sample size nk to cell k. In this section, we formulate a nonlinear program to find the cell widths that
yield a minimum-variance estimator, restricting attention to the univariate case. In Section 3, we address
multivariate sampling under an LHS framework.

2.1 Assumptions

We assume X is a continuous random variable with known probability density function (pdf), f (x), and
cumulative distribution function (cdf), F(x). We assume that we have in analytical form, F−1(u), for u∈ [0,1],
or that we can numerically evaluate this inverse cdf. We assume that we can compute pk = P(X ∈Sk),
for each cell as well as relevant expectations. Further, we assume we know the desired number of strata,
K, and our total computational budget, N. Our goal is to select the breakpoints and sample sizes to yield
a stratified sampling estimator of minimum variance.

2.2 Nonlinear Programming Formulation

Our stratified sampling estimator has the following form:

hN =
K

∑
k=1

pkh̄nk , (1)
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in which h̄nk is a sample mean of nk independent and identically distributed (i.i.d.) observations of
[h(X)|X ∈Sk]; that is, i.i.d. observations of h(X), conditioned on X being in cell k. We therefore have that

Var[hN ] =
K

∑
k=1

p2
k
Var[h(X)|X ∈Sk]

nk
. (2)

The optimization model that we formulate in this section assumes the cells Sk are of the form
Sk = (F−1(bk−1),F−1(bk)), in which 0 = b0 < b1 < b2 < · · · < bK = 1, and with this construct aims to
minimize Var[hN ].

Sets and Indices
k ∈K = {1,2, . . . ,K}: indices defining the strata
Data
h: a univariate function h : R→ R
f : pdf of X
F : cdf of X
N: total number of samples
Decision Variables
bk: selection of breakpoint k in the interval [0,1] used to create strata
µk: E[h(X) |X ∈Sk], where Sk = (F−1(bk−1),F−1(bk))
σ2

k : E[(h(X)−µk)
2 |X ∈Sk]

pk: P(X ∈Sk) = bk−bk−1
nk: number of samples allocated to cell k
Boundary Conditions
b0 = 0
bK = 1

Note:
We use b, µ , σ2, p, and n to denote the vectors (b0,b1, . . . ,bK), (µ1,µ2, . . . ,µK), etc.
Formulation

min
b,µ,σ2,p,n

∑
k∈K

p2
kσ2

k
nk

(3a)

s.t. µk =

∫ F−1(bk)

F−1(bk−1)
h(x) f (x)dx

bk−bk−1
, ∀k ∈K , (3b)

σ
2
k =

∫ F−1(bk)

F−1(bk−1)
(h(x)−µk)

2 f (x)dx

bk−bk−1
, ∀k ∈K , (3c)

pk = bk−bk−1, ∀k ∈K , (3d)

∑
k∈K

nk = N, (3e)

pk ≥ 0, nk ≥ 0, ∀k ∈K . (3f)

Discussion
The objective in (3a) seeks a stratification of X’s support to minimize the variance of the estimator, as
indicated in equation (2). Constraints (3b) and (3c) define µk and σ2

k , respectively; both constraints are
nonlinear in the decision variables, b. Constraint (3d) relates cell k’s width, pk, to the location of its
breakpoints, bk and bk−1. This, coupled with constraint (3f) and the boundary conditions, ensures that
0 = b0 ≤ b1 ≤ ·· · ≤ bK−1 ≤ bK = 1. Constraint (3e) restricts the sum of sample sizes to the computational
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budget, N. We have relaxed an integer restriction on the sample sizes, nk, in constraint (3f), which allows
an optimal solution to allocate a fractional number of samples for each cell.

We view model (3) as notional in the sense that, if we could compute exactly terms like µk in (3b)
then we could compute E[h(X)] exactly, and we would not employ Monte Carlo sampling. However, as
indicated above, we extend this idea in the next section to an LHS estimator, in which we assume relevant
one-dimensional integrals are tractable. In what follows, we reformulate model (3) in two ways. First,
we remove nk because we can analytically optimize with respect to n for fixed values of the breakpoints.
Second, we create a discrete set of candidate breakpoints from which strata may be constructed. These
two steps are discussed in Sections 2.3 and 2.4, respectively.

2.3 Objective Function Reformulation

Suppose the breakpoints bk,k ∈K , are known. Then constraints (3b)-(3d) can be removed and the resulting
optimization problem is:

min
n ∑

k∈K

p2
kσ2

k
nk

(4a)

s.t. ∑
k∈K

nk = N (4b)

nk ≥ 0, ∀k ∈K . (4c)

The optimal solution of model (4) is achieved when nk is proportional to pkσk, i.e.,

nk = N
(

pkσk

∑k∈K pkσk

)
;

see, e.g., Neyman (1934). Substituting this value for nk into the objective function in (4a) yields:

1
N

(
∑

k∈K
pkσk

)2

. (5)

The revised objective function in (5) allows model (3) to simplify to:

min
b,µ,σ2 ∑

k∈K
(bk−bk−1)σk (6a)

s.t. 0 = b0 ≤ b1 ≤ ·· · ≤ bK−1 ≤ bK = 1 (6b)
(3b)-(3c). (6c)

The breakpoints bk, k ∈K , are the primary decision variables in model (6), as variables µk and σ2
k

are determined by the specification of these breakpoints. While model (6) is still nonconvex, the additive
form of the objective function in (6a) allows for the development of a dynamic programming algorithm
that we describe in Section 2.4, at least when we restrict the choices of bk to a prespecified univariate grid.

2.4 Dynamic Programming Algorithm

Let B = {b0,b1,b2, . . . ,bL} specify a partition of [0,1], in which 0 ≡ b0 < b1 < b2 < · · · < bL ≡ 1. We
consider the restriction of model (6) in which we add the constraint bk ∈B, k ∈K . Each term in the
objective function of (6a) then has the form (b`

′−b`)σ(b`,b`
′
), where

σ
2(b`,b`

′
) =

∫ F−1(b`
′
)

F−1(b`) (h(x)−µ(b`,b`
′
))2 f (x)dx

b`′−b`
, (7)
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and where

µ(b`,b`
′
) =

∫ F−1(b`
′
)

F−1(b`) h(x) f (x)dx

b`′−b`
, (8)

for `= 1,2, . . . ,L, `′ = `+1, `+2, . . . ,L.
We can solve this variant of model (6) via a dynamic programming algorithm, which can be visualized

using the directed acyclic graph (DAG) shown in Figure 1. The DAG has nodes (k, `) for k = 0,1, . . . ,K,

K, 0 

0, 0

1, 0 

K, L

0, L

1, L

K, L-1

0, L-1

1, L-1

K, 1

0, 1

1, 1 …

…

⋮ ⋮ ⋮ ⋮

Figure 1: Shortest-path problem associated with the dynamic programming solution of model (6) under the
restriction that each bk comes from a set of finite, prespecified breakpoints. We create an edge from node
(k, `) to node (k+1, `′), for all k = 0, . . . ,K−1, `= 0, . . . ,L, `′ = `, . . . ,L, with length (b`

′−b`)σ(b`,b`
′
),

in which σ2(b`,b`
′
) is defined in equation (7). If node (k, `) is part of the shortest path from (0,0) to

(K,L), then breakpoint bk = b` is in the obtained optimal solution.

and for ` = 0,1, . . . ,L. For all k = 0,1, . . . ,K−1, we create an edge from node (k, `) to node (k+1, `′),
for all `′ = `, . . . ,L, with length (b`

′ − b`)σ(b`,b`
′
), in which σ(b`,b`

′
) is defined in equation (7). The

shortest path from node (0,0) to (K,L) then specifies an optimal solution to model (6), under the restriction
bk ∈B,k ∈K .

We note that computing the edge lengths in the DAG of Figure 1 requires more effort than computing
E[h(X)], because E[h(X)] is given by the sum of (b`

′−b`)µ(b`,b`
′
) along any path in the DAG from (0,0)

to (K,L). Therefore, we emphasize that we do not view this as useful for reducing the variance of stratified
sampling estimators; rather, we view it as a subroutine for an optimized LHS estimator that we describe
next.

3 NONUNIFORM LHS

This section extends the method described in Section 2 to higher dimensions to optimize an LHS routine.
Let X = (X(1),X(2), . . . ,X(d)) be a vector of independent random variables, and let h : Rd → R; further,
suppose we plan to use LHS to estimate E[h(X)]. Similar to the stratified sampling procedure in Section 2,
we partition the support of each random variable X(i) into K strata, Sk(i),k = 1,2, . . . ,K. However, for
each random variable X(i), exactly one value Xk(i) is sampled from each cell, k = 1, . . . ,K. Next, the K
realizations from X(1) are randomly paired, without replacement, with the realizations from X(2). These
are, in turn, paired at random with the other components of X , until there are K generated d-tuples:

Xk = (Xk(1),Xk(2), . . . ,Xk(d)),k = 1,2, . . . ,K.
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We obtain these d-tuples in the following way. For i = 1,2, . . . ,d, let (π(i,1),π(i,2), . . . ,π(i,K)) denote a
random permutation of {1,2, . . . ,K}. Then, for i = 1,2, . . . ,d, and k ∈K , let

Xk(i)∼ [X(i) |X(i) ∈Sπ(i,k)(i)].

The set of possible combinations for a K-tuple, generated by π(·), represents a partition of the support of
X into Kd cells.

Let Γk = Sπ(1,k)(1)×Sπ(2,k)(2)×·· ·×Sπ(d,k)(d) be the Cartesian product of the chosen strata for
each random variable Xk(i), i = 1, . . . ,d, and let

P(Γk) =
d

∏
i=1

P[X(i) ∈Sπ(i,k)(i)], k = 1,2, . . . ,K.

In this setting the LHS estimator given by

hLHS
K =

K

∑
k=1

Kd−1P(Γk)h(Xk) (9)

was proposed by Iman and Conover (1980) to extend the work of McKay, Beckman, and Conover (1979).
In McKay et al., the support of each random variable has equal-probability strata, meaning

P[X(i) ∈Sπ(i,k)(i)] =
1
K
, i = 1,2, . . . ,d, k = 1,2, . . . ,K.

In this case, the weights on h(Xk) in equation (9) are simply 1/K. Under nonuniform LHS, the weights
are instead random due to P(Γk), because the cells Γk are determined by a random permutation and can
have unequal probability.

3.1 Assumptions

Similar to the assumptions of Section 2.1, we wish to estimate E[h(X)] via an estimator with minimum
variance, except we assume that X is multivariate, with independent components. For each random variable
X(i), i = 1, . . . ,d, we assume we have, or can numerically evaluate, the inverse cdf, F−1

i (u), for u ∈ [0,1].
Our goal is to select a set of breakpoints that define the strata of each random variable X(i), i = 1, . . . ,d,
to minimize total sampling error under an LHS routine.

3.2 LHS Optimization Model

While the variance of LHS estimators has been characterized in various ways in the literature (see, e.g.,
Iman and Conover 1980, Stein 1987, Homem-de-Mello 2008, Drew and Homem-de-Mello 2012), these
characterizations provide insight as opposed to lending themselves to estimation. In order to guide design
of the cells we use in our LHS estimator, we make the following approximation:

h(X)≈
d

∑
i=1

hi(X), (10)

in which
hi(X) = h(a(1),a(2), . . . ,a(i−1),X(i),a(i+1), . . . ,a(d−1),a(d)),

where in the numerical experiments we describe in Section 4 we use a(i) = E[X(i)], for i = 1,2, . . . ,d.
Applying the LHS estimator to the right-hand side of the approximation (10) amounts to performing
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stratified sampling on each term hi(X), where the stratification is only on component X(i), albeit with one
sample per cell. Thus, following equation (2) with nk = 1, k ∈K ,

Var[hLHS
K ]≈

d

∑
i=1

∑
k∈K

p2
k(i)σ

2
k (i), (11)

in which σ2
k (i) is given by

σ
2
k (i) = Var [hi(X)|X(i) ∈Sk(i)] , (12)

for k = 1,2, . . . ,K. Minimizing the LHS variance of the right-hand side of approximation (11) leads to d
separate optimization problems of the form:

min
b(i),µ(i),σ2(i)

∑
k∈K

(bk(i)−bk−1(i))2
σ

2
k (i) (13a)

s.t. µk(i) =

∫ F−1
i (bk(i))

F−1
i (bk−1(i))

hi(x) fi(x)dx

bk(i)−bk−1(i)
, ∀k ∈K (13b)

σ
2
k (i) =

∫ F−1
i (bk(i))

F−1
i (bk−1(i))

(hi(x)−µk(i))2 fi(x)dx

bk(i)−bk−1(i)
, ∀k ∈K (13c)

0 = b0(i)≤ b1(i)≤ ·· · ≤ bK−1(i)≤ bK(i) = 1, (13d)

for i = 1,2, . . . ,d. Here, fi denotes the marginal pdf of X(i), and the vectors b(i), µ(i), and σ2(i) are as
defined in Section 2.2, except that µ(i), and σ2(i) are now defined with respect to the univariate hi(X).

3.3 LHS Strata Selection

With an objective function that separates by each component of X , we can apply the dynamic programming
approach of Section 2.4, d times in solving model (13). We assume that we can numerically compute the
univariate integrals that define the O(dKL2) edges that compose the d DAGs; i.e., we can numerically
compute σ2(i)(b`,b`

′
) and µ(i)(b`,b`

′
) as defined by equations (7) and (8), respectively, for each component

i. The shortest paths from the d DAGs define the Kd cells from which we obtain LHS samples.

4 RESULTS

In this section, we solve model (3) for a collection of univariate functions for stratified sampling, and
we solve model (13) d times for a collection of multivariate functions for LHS. We then compare the
sampling error under the strata we obtain to that of equal-probability strata and, in the case of LHS, to
that of naı̈ve Monte Carlo sampling. The results demonstrate that sampling with strata that are optimized
to approximately minimize the variance of the corresponding estimators via the techniques of Sections 2
and 3 can yield significant variance reduction compared to using equal-probability strata.

4.1 Stratified Sampling

We illustrate the potential of our procedure by first applying the dynamic programming procedure of
Section 2.4 to a collection of univariate functions. We do not perform any Monte Carlo simulation for
the results in this section. Rather, we numerically compute the optimal value of model (3), which we
denote z∗. Then, we compute the same objective function, i.e., the variance of a stratified estimator, using
equal-probability strata; we denote that value zu, and we form the variance reduction factor zu/z∗. All
experiments use K = 10 cells and L = 100 candidate breakpoints, and we note that the ratio we report is
independent of the total sample size, N.

1838



Zolan, Hasenbein, and Morton

Table 1: Variance reduction factors and optimized strata boundary points for a collection of univariate
functions of random variables. Notation z∗ and zu denote the stratified sampling estimator variance under
optimized and equal-probability strata, respectively.

h(x) Distribution zu/z∗ b = (b0,b1, . . . ,bK)

x χ2
1 3.32 [0.00,0.29,0.47,0.61,0.72,0.81,0.88,0.93,0.97,0.99,1.00]

log(x) χ2
1 1.69 [0.00,0.02,0.06,0.13,0.22,0.33,0.46,0.61,0.76,0.90,1.00]

x2 χ2
1 10.48 [0.00,0.51,0.69,0.79,0.86,0.91,0.94,0.96,0.98,0.99,1.00]

ex N(0,1) 4.02 [0.00,0.22,0.42,0.59,0.72,0.82,0.89,0.94,0.97,0.99,1.00]
x N(0,1) 1.25 [0.00,0.04,0.12,0.23,0.36,0.50,0.64,0.77,0.88,0.96,1.00]
ex Beta(1,5) 1.86 [0.00,0.18,0.34,0.48,0.61,0.72,0.81,0.88,0.94,0.98,1.00]
x Beta(1,5) 1.52 [0.00,0.16,0.31,0.44,0.56,0.67,0.77,0.85,0.92,0.97,1.00]

log(x) Beta(1,5) 1.59 [0.00,0.02,0.07,0.14,0.23,0.34,0.47,0.61,0.76,0.90,1.00]
x2 Beta(1,5) 3.91 [0.00,0.33,0.52,0.65,0.75,0.83,0.89,0.94,0.97,0.99,1.00]
ex Beta(5,1) 1.30 [0.00,0.04,0.10,0.18,0.27,0.37,0.48,0.60,0.73,0.86,1.00]
x Beta(5,1) 1.52 [0.00,0.03,0.08,0.15,0.23,0.33,0.44,0.56,0.69,0.84,1.00]

log(x) Beta(5,1) 2.13 [0.00,0.01,0.04,0.09,0.16,0.25,0.36,0.49,0.64,0.81,1.00]
x2 Beta(5,1) 1.23 [0.00,0.04,0.10,0.18,0.27,0.37,0.48,0.60,0.73,0.86,1.00]
x Exp(1) 2.13 [0.00,0.19,0.36,0.51,0.64,0.75,0.84,0.91,0.96,0.99,1.00]

log(x) Exp(1) 1.52 [0.00,0.02,0.07,0.15,0.25,0.37,0.51,0.65,0.79,0.92,1.00]
x2 Exp(1) 6.77 [0.00,0.39,0.59,0.72,0.81,0.88,0.93,0.96,0.98,0.99,1.00]
x Gamma(2,1) 1.64 [0.00,0.12,0.26,0.41,0.55,0.67,0.78,0.87,0.94,0.98,1.00]

log(x) Gamma(2,1) 1.38 [0.00,0.02,0.07,0.15,0.26,0.39,0.53,0.67,0.81,0.93,1.00]
x2 Gamma(2,1) 4.16 [0.00,0.27,0.46,0.61,0.73,0.82,0.89,0.94,0.97,0.99,1.00]
x Gamma(5,1) 1.39 [0.00,0.09,0.22,0.36,0.50,0.63,0.75,0.85,0.93,0.98,1.00]

log(x) Gamma(5,1) 1.30 [0.00,0.03,0.10,0.20,0.32,0.45,0.59,0.72,0.84,0.94,1.00]
x2 Gamma(5,1) 2.36 [0.00,0.17,0.34,0.50,0.64,0.75,0.84,0.91,0.96,0.99,1.00]
ex Weibull(2,1) 2.43 [0.00,0.15,0.32,0.48,0.62,0.74,0.84,0.91,0.96,0.99,1.00]
x Weibull(2,1) 1.26 [0.00,0.09,0.21,0.34,0.47,0.60,0.72,0.82,0.91,0.97,1.00]

log(x) Weibull(2,1) 1.52 [0.00,0.02,0.07,0.15,0.25,0.37,0.51,0.65,0.79,0.92,1.00]
x2 Weibull(2,1) 2.13 [0.00,0.19,0.36,0.51,0.64,0.75,0.84,0.91,0.96,0.99,1.00]

Table 1 displays the results for a collection of univariate functions that use the notation from Section 2.2.
Figure 2 shows the variance reduction factor achieved as a function of the skewness of each univariate
function, and suggests that the value of optimized nonuniform strata increases with skewness. Figure 3
plots the optimal breakpoints for a subset of the univariate cases, and illustrates the variety of solutions
we obtain from different functions of the same random variable. The maximum time to create and solve
the dynamic program for a test case was less than one minute, using a Cray XC40 compute node with two
Intel E5-2690 v3 12-core (Haswell) processors and 64 GB of DDR4 memory.

4.2 Nonuniform LHS

To illustrate the impact of our method on reducing the variance of a multivariate LHS estimator, we use
repeated experiments, implemented in Python (Rossum 1995) using uniform random variates generated
via the WELL512 implementation developed by Panneton, L’Ecuyer, and Matsumoto (2006) and available
in the Stochastic Simulation in Java library created by L’Ecuyer, Meliani, and Vaucher (2002). We use
a nonlinear function h(x1,x2, . . . ,xd) = ∏

d
i=1 xi, and estimate E[h(X)] for different values of d across a

collection of probability distributions.
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Figure 2: Variance reduction factors of optimized vs. equal-probability strata, plotted as a function of
skewness for the collection of univariate functions given in Table 1.
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Figure 3: Plot of optimal breakpoints for a collection of functions of a Beta(1,5) random variable.

We consider three estimators in total: (i) naı̈ve Monte Carlo; (ii) LHS with equal-probability cells;
and, (iii) LHS as defined in equation (9). For estimator (iii), we optimize the strata for each component
of X by the dynamic programming scheme of Sections 2.4 and 3.3.

For each of the three estimators, we form M i.i.d. replicates of the estimator which, in turn, use K
samples. For example, under the LHS estimator of equation (9), we form h̄m

K , m= 1,2, . . . ,M, i.i.d. replicates
and form the sample mean estimator

h̄K,M =
1
M

M

∑
m=1

h̄m
K . (14)
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Analogous estimators are formed for the uniform LHS estimator and for naı̈ve Monte Carlo, and for all
three estimators we use common random numbers, i.e., identical streams of uniform random variates.

We then compare the sample variance of h̄K,M obtained under each method to obtain empirical
variance reduction factors. In the results we report, we use M = 10,000 replicates, K = 100 strata, and
L = 1,000 candidate breakpoints, and we report 95% confidence intervals (CIs) for the variance reduction
factors in Table 2 by replicating this experiment 100 times, comparing estimator (iii) with both (i) and
(ii). More specifically, our variance reduction factors correspond to the ratio of sample variances of
1,000,000 = 100 ·10,000 terms, h̄m

K , from the right-hand side of equation (14) for estimators (i), (ii), and
(iii). We note that while an LHS application would likely use a much lower value for M, and instead
increase K according to the computational budget, our sample sizes are inflated to illustrate the value of
optimizing the LHS cells in higher dimensions, for which the sampling error can be volatile.

Table 2 demonstrates the significant variance reduction offered by the LHS procedure in Section 3.3,
when compared to LHS with equal-probability strata. The lower bound of the 95% confidence interval
estimate for the variance reduction factor versus uniform LHS is greater than one for all cases, and it
exceeds an order of magnitude for more than half the test cases. Further, the factor tends to grow as the
dimension d grows larger. The maximum time to create and solve the dynamic programs for a test case
was 15 minutes, using the same computational resources as in Section 4.1.

5 CONCLUSION

This paper presents a method of minimizing the variance of a stratified sampling estimator by formulating a
nonlinear program, and solving this problem exactly via a dynamic program using a discrete set of candidate
stratum boundary points. We extend this technique to the multivariate setting and reduce the variance of an
LHS estimator as compared to equal-probability strata, using an approximation of the estimator’s variance
and solving a dynamic program for each random component. Finally, this paper details empirical results
that exhibit significant LHS variance reduction under this technique, compared to that of equal-probability
strata and naı̈ve Monte Carlo sampling.

We note that the collection of examples we use are functions for which E[h(X)] can be obtained
analytically, and are not practical in their own right. However, we believe they illustrate the potential of our
proposal for improving the efficiency of LHS estimators by optimizing nonuniform strata. For applications
in which sampling is computationally expensive, we suspect that the improved efficiency will make it
worthwhile to incur the cost of solving the dynamic programs.

Topics of future research include the exploration of alternatives to taking a(i) = E[X(i)] in the approx-
imation of equation (10), and applying the procedure from Section 3 to LHS applications in the literature.
In particular, we are interested in investigating the impact of optimizing nonuniform LHS on reducing the
bias and variance associated with the estimator for the cost of an optimal solution to stochastic program-
ming problems in the literature, such as those in Freimer, Linderoth, and Thomas (2012) and Stockbridge
and Bayraksan (2016), and comparing the performance of our method to that of the variance reduction
techniques the authors use. The approach we propose could further be compared with that of Mease
and Bingham (2006). It would be interesting to explore conditions for which the procedure in Section 3
guarantees variance reduction compared to LHS using equal-probability cells, for both equation (10) and
other approximations. Finally, extension of the method in Section 3 to design optimal LHS strata with the
independence assumption relaxed is an opportunity for further research.
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Table 2: Empirically obtained point estimates and 95% CI half-widths of variance reduction factors
associated with estimating E[h(X)], in which h(x) = ∏

d
i=1 xi, using optimized LHS strata obtained by the

procedure in Section 3.3, as compared to LHS with equal-probability strata and naı̈ve Monte Carlo sampling.
Confidence intervals were obtained via 100 repeated experiments, each of which use M = 10,000 replicates,
K = 100 strata, and L = 1,000 candidate breakpoints for each dynamic programming routine. CI half-width
values are reported as a percentage of the corresponding point estimate. The experiments were implemented
in Python 2.7.9 using the WELL512 generator developed by Panneton, L’Ecuyer, and Matsumoto (2006),
via the Stochastic Simulation in Java library created by L’Ecuyer, Meliani, and Vaucher (2002). Common
random numbers are used in each experiment; separate substreams were used for permutations and for the
uniform random variates used to generate realizations of X .

Variance reduction factor Variance reduction factor
vs. equal-probability strata vs. naı̈ve Monte Carlo

Distribution d Point estimate 95% CI half-width (%) Point estimate 95% CI half-width (%)
χ2

1 2 129.1 0.9 251.1 1.0
χ2

1 4 341.4 5.6 372.5 7.3
χ2

1 6 836.5 12.0 1,477.2 64.6
χ2

1 8 2,510.1 48.1 3,478.3 43.3
Beta(1,2) 2 5.1 0.7 25.3 0.6
Beta(1,2) 4 6.1 1.2 11.9 1.1
Beta(1,2) 6 7.5 1.8 10.6 1.7
Beta(1,2) 8 9.6 2.9 11.3 3.4

Exponential 2 35.8 0.8 104.3 0.7
Exponential 4 57.8 2.7 77.9 2.8
Exponential 6 97.5 5.7 122.6 16.3
Exponential 8 180.1 14.5 219.0 19.8
Gamma(2,1) 2 9.7 0.7 47.0 0.6
Gamma(2,1) 4 11.7 1.7 22.8 1.5
Gamma(2,1) 6 14.7 2.9 21.1 4.0
Gamma(2,1) 8 19.2 5.0 23.8 7.2
Weibull(2,1) 2 2.2 0.8 17.7 0.6
Weibull(2,1) 4 2.3 1.2 6.8 1.1
Weibull(2,1) 6 2.4 1.7 4.8 1.5
Weibull(2,1) 8 2.6 2.2 4.1 2.4
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