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ABSTRACT

Morris’s elementary effects method (MM) has been known as a model-free factor screening approach
especially well-suited when the number of factors is large or when the computer model is computationally
expensive to run. In this paper, we propose the controlled Morris method (CMM) that acts in a sequential
manner to keep the computational effort down to a minimum. The sequential probability ratio test-based
multiple testing procedure adopted by CMM enables to identify the factors with significant main and/or
interaction effects while controlling Type I and Type II familywise error rates at desired levels. A numerical
example is provided to demonstrate the efficacy and efficiency of CMM.

1 INTRODUCTION

Factor screening refers to the process of identifying, through design of experiments, statistical modeling and
sampling, those factors that have a significant influence on the model output. Proposed for factor screening
in the context of deterministic computer experiments by Morris (1991), Morris’s elementary effects method
(MM) has been known as a model-free approach particularly well-suited when the number of factors is
relatively large or when the computer model is computationally expensive to run. Recently, Campolongo
and Braddock (1999) and Cropp and Braddock (2002) extend standard MM by providing estimates of
two-factor interaction effects. Campolongo et al. (2007) propose to use normalized elementary effects as
compared to those used in standard MM so that the performance of MM can be more robust. Boukouvalas
et al. (2014) propose to implement MM in a sequential way so that factors having nonlinear effects can be
identified more efficiently. Most recently, Fédou and Rendas (2015) present a fast mixed effects screening
method that enables efficient estimation of the interaction graph of factors. Shi et al. (2016) propose an
effective error control mechanism for controlling the overall false discovery rate achieved by MM, and
reveal its connections with other screening methods such as sequential bifurcation (e.g., Bettonvil and
Kleijnen 1997, Wan et al. 2010).

Despite the aforementioned improvements made to standard MM, little attention has been given to
establishing an adaptive sampling procedure for MM with a rigorous statistical guarantee on its screening
performance. In this paper, we propose the controlled Morris method (CMM) that adopts a novel distribution-
free sequential probability ratio test (SPRT)-based multiple testing procedure for identifying factors that
have significant main and/or interaction effects while ensuring the Type I and II familywise error rates
controlled at desired levels.

While SPRT-based procedures have been proposed for multiple hypothesis testing, most of them rely
on the assumption that the underlying distribution from which the observations are sampled is known (Wald
1992; De and Baron 2012b; De and Baron 2012a; Bartroff and Song 2014); among those distributions
stipulated, Gaussian is particularly popular (Wan et al. 2010; Ankenman et al. 2014; Shi et al. 2014).
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However, the distribution is typically unknown in practice, or even if known it cannot be specified by a
simple distribution function. Despite the significant role played by nonparametric estimation methods in
modern statistics, nonparametric SPRT-based hypothesis testing procedures have been rarely studied in the
literature, to the best of our knowledge. Antoniak and Dillard (1968) and Yu and Su (2004) are among
the few that have relaxed the distribution-known assumption, and they investigate Wilcoxon signed rank
statistics but still have to assume that the underlying distribution is symmetric around the median. The
SPRT-based sequential multiple testing procedure adopted by CMM, on the other hand, is fully distribution
free, thanks to the use of online kernel density estimation.

The remainder of this paper is organized as follows. In Section 2, we give a brief review of the Morris’s
elementary effects method. In Section 3, we provide details on the controlled Morris method (CMM).
Section 4 provides a numerical evaluation of CMM. Section 5 concludes the paper.

2 A REVIEW ON MORRIS METHOD

The Morris’s elementary effects method (MM) is originally proposed for factor screening in the context
of deterministic computer experiments (Morris 1991). Suppose that there are k factors in total in the
simulation model and each factor is scaled to take values from [0,1]. For the purpose of factor screening,
MM considers varying the value of each factor across p pre-selected levels in [0,1]; that is, the experimental
region Ω for MM is a k-dimensional p-level grid in [0,1]k.

Let Y(x) be the output obtained by running a deterministic computer experiment at factor combination
x = (x1, . . . ,xk)

> ∈Ω. The elementary effect of the jth factor at x is defined as

d j(x) =
Y(x+ e j∆)−Y(x)

∆
, j = 1, . . . ,k, (1)

where e j denotes the unit vector in the direction of the jth axis; ∆ is a predefined integer multiple of
1/(p−1) such that x+e j∆∈Ω. Hence, the jth factor x j assumes values in {0,1/(p−1),2/(p−1), . . . ,1}.
Intuitively speaking, d j(x) can be thought of as the partial derivative of Y(x) with respect to x j when ∆ is
small (Woods and Lewis 2016).

The elementary effects corresponding to the jth factor, d j(x), follow a finite distribution, Fj, which
can be obtained by randomly sampling the factor combination x from Ω. The number of elements of Fj

is then pk−1[p−∆(p− 1)], where pk−1 is the number of factor combinations formed by the remaining
k−1 factors, and p−∆(p−1) is the number of possible levels that factor j can take to obtain elementary
effects; for example, when ∆ = 1/(p−1), factor j can only have p−1 levels (i.e., the level corresponding
to x j = 1 is excluded). A recommended choice of p is even and ∆ = p(2(p−1))−1 (Morris 1991).

A highly centralized distribution Fj suggests a consistent importance of factor j across the experimental
region Ω, and a highly decentralized distribution indicates a strong dependence of factor j on the other
factors (i.e., nonlinear or interaction effects may be present). MM determines the importance of the jth
factor in terms of two measures, µ j and σ j, respectively, the mean and standard deviation of Fj. To estimate
these two measures, MM samples N elementary effects from Fj via a sampling design that generates
N trajectories in Ω (Morris 1991), and the ith trajectory provides k elementary effects estimates d j;i for
j = 1,2, . . . ,k. The following unbiased estimators of the mean and variance of Fj are then used to assess
the importance of factor j,

µ̂ j =
1
N

N

∑
i=1

d j;i, (2)

σ̂
2
j =

1
N−1

N

∑
i=1

(d j;i− µ̂ j)
2 (3)

where recall that d j;i denotes the ith elementary effect randomly generated for factor j from Fj.
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In practice, Morris (1991) recommends to use a graph plotting µ̂ j vs. σ̂ j with two lines corresponding
to µ̂ j =±2σ̂ j/

√
N for assessing the importance of factor j: If the point (µ̂ j, σ̂ j) locates outside the wedge

formed by the two lines, then factor j is deemed important. Such a practice, however, is more of a
commonsense rule than a rigorously justified screening method.

To generate elementary effects from Fj, Morris introduces using sampling matrix and design matrix.
For example,

B =


0 0 · · · 0
1 0 · · · 0
1 1 · · · 0
...

...
. . . 0

1 1 · · · 1

 (4)

is a (k+1)×k sampling matrix, which consists of a 1×k vector of zeros in the first row and a k×k lower
triangular matrix whose entries below the main diagonal are all ones. The design matrix corresponding to
B is ∆B := ∆×B. Though a sampling matrix is easier to understand, its corresponding design matrix is
the one actually used for running simulation experiments.

Notice that B (or equivalently, ∆B) can only generate one elementary effect for each factor, which
holds true for any random form (also called random orientation or trajectory) of ∆B, generically denoted
by B+. For example, when k = 3 and p = 4 (so that ∆ = p(2(p−1))−1 = 2/3), one random form of ∆B
can be

B+ =


2/3 0 1
2/3 2/3 1

0 2/3 1
0 2/3 1/3

 .
Morris (1991) provides a special algorithm to convert a sampling matrix B to a random design matrix B+

given specified k and p. To obtain N (N ≥ 2) independent elementary effects for each factor, Morris suggests
to use N random forms of ∆B and form the ultimate design matrix for running simulation experiments as(
B+

1 , ...,B
+
N

)>.

3 THE CONTROLLED MORRIS METHOD

In this section we describe the controlled Morris method (CMM) that acts in a sequential manner to keep
the number of simulation runs down to a minimum, while identifying the factors that have significant main
and/or interaction effects with Type I and Type II familywise error rates controlled at desired levels.

3.1 The Set-Up of CMM

Suppose that there are k factors in a deterministic simulation model. Let d j = {d j;1,d j;2, . . .} denote the set
of elementary effects generated sequentially for factor j, where d j;1,d j;2, . . . are independent and identically
distributed (i.i.d.) following a common distribution given by Fj whose corresponding probability density
function (PDF) is given by f j, for j = 1,2, . . . ,k. The goal is to determine whether each factor has a
significant main or interaction effect or both, via simultaneously performing the following 2k individual
hypothesis tests.

For a given factor j, we want to determine if it has a significant main effect using the following
one-sided hypothesis test:

Hl : |µ j| ≤ ∆
(0)
EE vs. Gl : |µ j| ≥ ∆

(1)
EE , for l = 2 j−1; j = 1,2, . . . ,k, (5)
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where the null and alternative are respectively denoted by Hl and Gl; ∆
(0)
EE and ∆

(1)
EE are respectively the

user specified parameters that define the thresholds of nonsignificant and significant main effects and they
satisfy 0≤ ∆

(0)
EE ≤ ∆

(1)
EE .

We note that (5) is equivalent to the following two alternative hypotheses tests depending on the sign
of µ j: {

Hl : 0≤ µ j ≤ ∆
(0)
EE vs. Gl : µ j ≥ ∆

(1)
EE , if µ j ≥ 0;

Hl :−∆
(0)
EE ≤ µ j ≤ 0 vs. Gl : µ j ≤−∆

(1)
EE , if µ j < 0.

(6)

That is, when µ j ≥ 0, we consider the main effect of factor j to fall into one of the following two categories:
(i) nonsignificant, if µ j ≤ ∆

(0)
EE ; (ii) significant, if µ j ≥ ∆

(1)
EE ; moreover, if µ j ∈ (∆

(0)
EE ,∆

(1)
EE), then we want to

provide a sound power to identify it as significant. Analogous description holds for the alternative case
where µ j < 0. Notice that the sign of µ j can be observed through that of µ̂ j calculated with a sample of
elementary effects generated for factor j (Campolongo et al. 2007), and it may change as new elementary
effects continue to arrive.

Similarly, we use the following one-sided hypothesis test to determine if factor j has a significant
interaction effect with other factors:

Hl : σ j ≤ ∆
(0)
IE vs. Gl : σ j ≥ ∆

(1)
IE , for l = 2 j; j = 1,2, . . . ,k, (7)

where ∆
(0)
IE and ∆

(1)
IE respectively denote the thresholds of nonsignificant and significant interaction effects

that satisfy 0 ≤ ∆
(0)
IE ≤ ∆

(1)
IE . The interaction effect of factor j will be classified into the following two

categories: (i) nonsignificant, if σ j ≤ ∆
(0)
IE ; and (ii) significant, if σ j ≥ ∆

(1)
IE ; moreover, if σ j ∈ (∆

(0)
IE ,∆

(1)
IE ),

then we want to provide a sound power to identify it as significant.
For notational convenience, let θ , (θ1,θ2, . . . ,θ2k)

> be the vector (µ1,σ1,µ2,σ2, . . . ,µk,σk)
> whose

dimensions are 2k×1. That is, for l ∈ {1,2, . . . ,2k}, θl denotes the main effect (respectively, interaction
effect) for factor dl/2e if l is odd (resp., even). Denote H (θ) = {l ∈ {1,2, . . . ,2k} : θl ∈ Hl} the set of
indices whose corresponding null hypotheses are true; that is, factor dl/2e has a truly nonsignificant main
or interaction effect. Let G (θ) = {l ∈ {1,2, . . . ,2k} : θl ∈ Gl} be the set of indices whose corresponding
null hypotheses are false; that is, factor dl/2e has a truly significant main or interaction effect.

The aforementioned factor screening problem naturally falls into the multiple hypothesis test setting,
where it is vital to control the error rates achieved especially when simultaneously testing a considerably
large number of hypotheses (i.e., when k is large). Upon a stopping rule T is given which will be specified
later, with decisions regarding acceptance or rejection of each of the 2k null hypotheses, CMM aims to
control the Type I and Type II familywise error rates (De and Baron 2012b, Bartroff and Song 2014) by
guaranteeing that

FWEI(θ) = P{Hl is rejected for some l ∈ H (θ)} ≤ α

FWEII(θ) = P{Gl is rejected for some l ∈ G (θ)} ≤ β ,
(8)

where α,β ∈ (0,1) are two user-specified parameters, in addition to ∆
(0)
EE , ∆

(1)
EE , ∆

(0)
IE , and ∆

(1)
IE . Notice

that the quantity 1−FWEII(θ) is also known as “familywise power”; equivalently, CMM aims to provide
γ , 1−β familywise power for the entire factor screening procedure.

3.2 Description of the CMM’s Sequential Multiple Testing Procedure

To effectively control the Type I and Type II familywise error rates simultaneously, CMM adopts a novel
distribution-free sequential probability ratio test (SPRT)-based multiple testing procedure. Essentially, this
procedure can be thought of as an ensemble of 2k individual SPRTs for identifying the significance of the
main and interaction effects associated with each of the k factors.

We now describe the procedure in terms of stages of sampling, between which accept/reject decisions
are made to each hypothesis test. Without loss of generality, let n denote the cumulative sample size of
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elementary effects collected for any active test (i.e., the Hl for which no decision has been reached yet)
that have up to and including the current stage. For the lth (l = 1,2, . . . ,2k) pair of hypotheses given by
either (6) or (7), the testing of Hl vs. Gl is based on the following test statistic (De and Baron 2012a, De
and Baron 2012b, Bartroff and Song 2014, Wang and Wan 2014),

Λl(n) =
n

∑
i=1

(
log fl(d j,i|θl ∈ Gl)− log fl(d j,i|θl ∈ Hl)

)
, with j = dl/2e, (9)

where fl(·|θl ∈Hl) and fl(·|θl ∈Gl) are, respectively, the PDFs of elementary effects for factor dl/2e given
that Hl and Gl are true, for ` = 1,2, . . . ,2k. Notice that Λl(n) is known as Kullbak-Leibler information
numbers (De and Baron 2012b), and it is used for measuring the “distance” between two probability
measures defined on a common measurable space (Dykstra 2005).

Let αl and βl be the prescribed levels of the Type I and Type II error rates to achieve for the lth test
according to Wald’s SPRT, and let al and bl be the upper and lower stopping boundaries, respectively.
Wald’s SPRT for the single lth hypothesis Hl rejects it (i.e., chooses Gl) upon obtaining n elementary
effects if Λl(n)≥ al , accepts it (i.e., chooses Hl) if Λl(n)≤ bl , and continues sampling elementary effects
for factor dl/2e if Λl(n) ∈ (al,bl).

The sequential multiple testing procedure of CMM starts with an initial sample size of n0 elementary
effects, and examines whether the resulting test statistic Λl(n0) crosses one of the two stopping boundaries
(i.e., al or bl), which leads to the decision of declaring effect l significant (respectively, the upper boundary
is crossed) or nonsignificant (resp., the lower boundary is crossed). If neither one is crossed, then the
procedure continues sampling one elementary effect for factor dl/2e per stage until Λl(n) escapes from
the continue-sampling region by crossing one of the two boundaries (i.e., Λl(n) 6∈ (bl,al)). Let Tl be the
stopping time of the lth hypothesis test, namely,

Tl = inf{n≥ n0 : Λl(n) 6∈ (bl,al)} . (10)

It is clear that the procedure continues sampling until all 2k tests reach decisions, and the stopping time
of the entire procedure follows as

T = inf

{
n≥ n0 :

2k⋂
l=1

{Λl(n) 6∈ (bl,al)}

}
. (11)

Lemma 2 of De and Baron (2012b) suggests that the lth test can control the Type I and Type II error
probabilities by using the upper and lower stopping boundaries given by al and bl because

P{Hl is rejected for some l ∈ H (θ)} ≤ P{Λl(n)≥ al | l ∈ H (θ)} ≤ e−al ,
P{Hl is accepted for some l ∈ G (θ)} ≤ P{Λl(n)≤ bl | l ∈ G (θ)} ≤ ebl .

(12)

Therefore, by setting the two boundaries respectively as al =− logαl and bl = logβl , we can control the
Type I and Type II error probabilities conservatively at levels αl = e−al and βl = ebl for l = 1,2, . . . ,2k.
Furthermore, it follows from Theorem 1 of De and Baron (2012b) that the sequential multiple testing
procedure with the stopping time given by (11) can control FWEI(θ) and FWEII(θ) respectively at levels
α and β , if we set αl = α/2k and βl = β/2k thanks to the Bonferroni’s inequality.

3.3 Online Kernel Density Estimation

In this section we propose to approximate fl(·) used in (9) via online kernel density estimation. We then
use the estimated density function f̂l(·) to derive a distribution-free SPRT test statistic according to (9),
denoted by Λ̂l(n), by replacing fl(·) with the estimate f̂l(·).
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As an indispensable nonparametric estimation tool, kernel density estimation (KDE) specializes in
capturing the behaviors of the distribution of interest without imposing any parametric assumptions (Härdle
1990; Zhang and Wang 2014; Parpas et al. 2015); more importantly, it is more flexible to accommodate
complex settings such as the underlying density is multimodal (Han et al. 2008). Though different KDE
methods can be employed under the CMM framework, in this paper we restrict our attention to the online
(sequential) kernel density estimation (oKDE) method proposed by Kristan et al. (2010) and Kristan et al.
(2011). oKDE is a type of machine learning approach, which updates f̂l(·) each time upon receiving a
new observation so as to continuously provide accurate estimation from the data observed thus far. Notice
that this feature suits the setting of sequential sampling for multiple hypothesis testing very well.

For the lth effect, we obtain an empirical probability density function (EPDF), denoted by f̂l , based on
the set of elementary effects for factor dl/2e via oKDE, for l = 1,2, . . . ,2k. For notational simplicity, we
drop the subscript l in the following discussion, as this approach can be applied to any of the 2k effects.
In short, oKDE provides an initial estimate f̂ based on a sample of n0 elementary effects collected in the
pilot stage, and proceeds following three steps listed below upon receiving a new elementary effect in each
subsequent sampling stage: (1) update f̂ with the new observation; (2) re-estimate the optimal bandwidth
used by oKDE; and (3) refine and compress the estimate f̂ . The necessity of the last step will be explained
shortly.

Specifically, using a sample of n elementary effects for a given factor, say, {di, i = 1,2, . . . ,n}, the
EPDF f̂ can be given by an n-component Gaussian mixture model as follows,

f̂n(d) =
n

∑
i=1

ωiKhi(d−di), (13)

where ωi denotes the weight of the ith component, and Khi(d−di) is a Gaussian kernel, which is defined
as

Khi(d−di) = (2πh2
i )
− 1

2 exp
(
−(d−di)

2

2h2
i

)
, (14)

and di and hi denote, respectively, the center and bandwidth of the ith Gaussian kernel, for i = 1,2, . . . ,n.
With the n0 elementary effects obtained in the pilot stage, the kernel density estimate consisting of n0

evenly weighted kernels constructed using an equal bandwidth hn0 can be expressed as

f̂n0(d) =
1
n0

n0

∑
i=1

Khn0
(d−di) =

1
n0

n0

∑
i=1

(2πh2
n0
)−

1
2 exp

(
−(d−di)

2

2h2
n0

)
(15)

We note that due to the absence of sufficient information about f in the pilot stage, an equal weight and
identical bandwidth are used in all the components of f̂n0(d).

Without loss of generality, suppose that we have obtained n− 1 elementary effects (n ≥ n0 + 1) and
derived the EPDF f̂n−1(d). Upon receiving an additional elementary effect dn, the EPDF can be updated
according to the following expression,

f̂n(d) =
(

1− 1
n−1

)
f̂n−1 (d)+

1
n
Khn (d−dn) , (16)

where the new observation is assigned a weight of n−1. It is obvious that the estimation accuracy achieved
by f̂n(d) depends heavily on the choice of bandwidth hn. By minimizing the asymptotic mean integrated
squared error (Kristan et al. 2010), the optimal bandwidth can be obtained as

h∗n =

(
1

2n
√

π
∫

f ′′ (x)2 dx

) 1
5

, (17)
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where f ′′(·) denotes the second derivative of f (·). As n becomes large, f (d) can be approximated well
by f̂n−1(d). Therefore, an estimator ĥ∗n of h∗n can be obtained by substituting f̂n−1(d) into (17); and f̂n(d)
can be obtained from (16) by using ĥ∗n in place of h∗n.

We observe from (16) that as the number of components in f̂n(d) increases linearly with the sample size
of elementary effects n, the computational complexity approximately scales as O((n2−n)/2+n), which
is mainly attributed to the calculation of bandwidth given by (17) (Kristan et al. 2011). To alleviate this
computational burden, a handful of methods have been proposed to reduce (or compress) the number of
components in the estimator given (López-Rubio and de Lazcano-Lobato 2008; Deng et al. 2008; Kristan
et al. 2010; Kristan et al. 2011). In this paper, we adopt the approach proposed by Kristan et al. (2011)
to maintain a comparatively stationary model scale (i.e., use a compressed model). The underlying idea
of compression is to identify M (≤ n) clusters of similar components in the original kernel estimator,
such that components belonging to the mth (m = 1,2, . . . ,M) cluster can be well characterized by a single
component centered at ďm in the compressed estimator. Specifically, this approach can help reduce the
original n-component model given in (16) to the following one comprised of only M components:

f̌ (d) =
M

∑
m=1

ω̌mKȟm
(d− ďm), (18)

where the compressed parameters ω̌m = ∑i∈π(m) ωi, ďm = ω̌−1
m ∑i∈π(m) ωidi and ȟm = ω̌−1

m ∑i∈π(m) ωi(hi +

d2
i )− ď2

m, and π(m) denotes the collection of mth disjoint (compressed) set of indices, for m = 1,2, . . . ,M.
The key of implementing the compression is to seek an appropriate clustering allocation {π(m)}M

m=1,
together with the minimum number of clustering number M to use. For the sake of brevity, we omit the
details of the compression procedure and refer the interested reader to Algorithm 1 of Kristan et al. (2011).

3.4 Construction of Nonparametric Test Statistics

The task of obtaining a nonparametric estimator of Λl(n) (given in (9)) to test the lth pair of hypotheses boils
down to providing two separate EPDFs under the null and alternative hypotheses, namely, f̂l(·|θl ∈Hl) and
f̂l(·|θl ∈Gl). We note that an estimator f̂l directly obtained based on the original sample of elementary effects
for factor j, d j = {d j;1,d j;2, . . .} with j = dl/2e, may be an appropriate estimator for neither fl(·|θl ∈ Hl)
nor fl(·|θl ∈ Gl).

Inspired by Shi et al. (2016), we transform the original sample of elementary effects d j to a sample
that complies with a parameter setting that is consistent with a given hypothesis of the lth test. For testing
either the main or interaction effect, we apply two transformations to d j, such that the transformed samples,
d̃(s)

l for s = 0 and 1, complies with the Hl (respectively, Gl) when s = 0 (resp., s = 1). We note that the
superscripts (0) and (1) correspond to the null and alternative hypotheses, respectively.

When testing the significance of the main effect of factor j via the lth hypothesis test with l = 2 j−1
for j = 1,2, . . . ,k, the following transformation equation is applied to d j to obtain d̃(s)

l for s = 0 and 1:

d̃(s)
l;i = d j;i− µ̂ j(n)+∆

(s)
EE, i = 1,2, . . . ,n, (19)

where n denotes the sample size of d j and µ̂ j(n) denotes the sample mean of the n original elementary
effects obtained for factor j; and ∆

(s)
EE is as defined in (5). It is clear that the transformed sample

d̃(s)
l =

(
d̃(s)

l;1 , d̃
(s)
l;2 , . . . , d̃

(s)
l;n

)
has its mean equal to ∆

(s)
EE for s = 0,1 and its variance being fixed at σ2

l .
When testing the significance of the interaction effect of factor j via the lth hypothesis test with l = 2 j

for j = 1,2, . . . ,k, the following transformation equation is applied to obtain d̃(s)
l for s = 0 and 1:

d̃(s)
l;i =

d j;i

σ̂ j(n)
∆
(s)
IE , i = 1,2, . . . ,n, (20)
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where σ̂ j(n) denotes the sample standard deviation of the elementary effects in d j, and ∆
(s)
IE is as defined

in (7). We see that the transformed sample d̃(s)
l has its mean equal to zero with its variance equal to ∆

(s)
IE

for s = 0,1.
With the transformed sample d̃(s)

l =
(
d̃(s)

l;1 , . . . , d̃
(s)
l;n

)
for the lth effect, we obtain an EPDF using (18), say

f̌l(·|d̃
(s)
l ) for s = 0,1. It is clear that f̌l(·|d̃

(s)
l ) satisfies the corresponding hypothesis of interest specified in

either (6) or (7). Finally, the kernel-based SPRT test statistic for the lth test can be constructed as follows:

Λ̂l(n) =
n

∑
i=1

(
log f̌l

(
d j,i|d̃(1)

l

)
− log f̌l

(
d j,i|d̃(0)

l

))
. (21)

Compared to the original test statistic Λl(n) that is available only if the exact distribution is known, the
calculation of Λ̂l(n) only requires a sample of elementary effects for factor dl/2e to obtain two kernel-based
EPDFs that correspond to Hl and Gl , respectively.

3.5 Specification of Stopping Rules

In this paper we adopt a common pair of stopping boundaries for testing the 2k effects, which can be
regarded as a type of one-shot boundary stopping strategy. Specifically, let al ≡ a and bl ≡ b be the upper
and lower stopping boundaries for l = 1,2, . . . ,2k. The stopping time of the lth hypothesis test in (10)
reduces to

Tl = inf
{

n≥ n0 : Λ̂l(n) 6∈ (b,a)
}
, (22)

where Λ̂l(n) is as given in (21). Subsequently, the stopping time of the entire procedure becomes

T = inf

{
n≥ n0 :

2k⋂
l=1

{Λ̂l(n) 6∈ (b,a)}

}
. (23)

Following the discussion given in Subsection 3.2, an immediate choice for the upper and lower boundaries
can be given as

a =− log
(

α

2k

)
and b = log

(
β

2k

)
, l = 1,2, . . . ,2k, (24)

where we set αl = α/2k and βl = β/2k for l = 1,2, . . . ,2k; and α and β are respectively the desired Type
I and Type II familywise error levels specified in (8). It is easy to see that the two boundaries given by (24)
are two horizontal lines in parallel with the horizontal axis that denotes the sample size n. The greater the
values of α and β are, the narrower the continue-sampling region of the lth test becomes and the faster
the test terminates.

4 NUMERICAL EVALUATION

In this section we demonstrate the performance of CMM on a factor screening problem, which has also
been studied by Morris (1991) and Pujol (2009). The simulation output at a given factor combination
x = (x1,x2, . . . ,x20)

> ∈ [0,1]20 is generated by

Y = β0 +
20

∑
j=1

β jw j +
20

∑
i< j

βi, jwiw j +
20

∑
`<i< j

β`,i, jw`wiw j +
20

∑
s<`<i< j

βs,`,i, jwsw`wiw j, (25)

where w j ∈ [−1,1] is transformed from x j ∈ [0,1], according to the following two transformations: (1)
the linear transformation w j = 2(x j−0.5), and (2) the nonlinear transformation w j = 2(1.1x j/(x j +0.1)−
0.5), for j = 1,2, . . . ,20. The nonlinear transformation is applied to factors j ∈ {3,5,7}, and the linear
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Figure 1: The resulting P̂{DI} obtained by CMM for testing significance of the main and interaction effects
of the 20 factors.

transformation is applied to the remaining 17 factors. We note that the value of w j is uniformly distributed
in [−1,1] if the linear transformation is applied to x j, whereas it is more likely to be in [0,1] if the nonlinear
transformation is applied. The coefficients in (25) are specified as follows. Regarding the first and second-
order coefficients, β j = 20 for j ∈ {1,2, . . . ,10} and βi, j = 15 for i, j ∈ {1,2, . . . ,6}; the remaining β j’s
and βi, j’s are independently sampled from standard normal distribution N (0,1). With respect to the third
and fourth-order coefficients, β`,i, j =−10 for `, i, j ∈ {1,2, . . . ,5} and βs,`,i, j = 5 for s, `, i, j ∈ {1,2,3,4};
the remaining β`,i, j’s, βs,`,i, j’s and β0 are all set to zeros.

We assess the efficacy and efficiency of CMM for detecting important main and interaction effects
associated with the 20 factors. To implement the sequential procedure of CMM, we use an initial sample
size n0 = 20 for all factors, and set the target Type I and Type II familywise error levels respectively at
α = β = 0.1. The threshold parameters ∆

(0)
EE , ∆

(1)
EE , ∆

(0)
IE , and ∆

(1)
IE are set to 20, 30, 40, and 60, respectively.

The entire procedure of CMM is applied for 1000 independent macro-replications, and the efficacy of
CMM is evaluated by the fraction of times a given effect is declared significant, denoted by P̂{DI}, which
is a commonly used measure in factor screening (Wan et al. 2010; Shi et al. 2014; Shi et al. 2016):

P̂{DI}= #(an effect is declared significant)
#macro-replications

.

The P̂{DI}’s obtained by CMM for testing the main and interaction effects of all 20 factors are shown in
Figure 1. For each factor, two vertical bars are given that show the values of P̂{DI} obtained for testing the
significance of its corresponding main and interaction effects. We note that at the bottom of Figure 1 the
20 factors are also classified into 7 different groups “A–G” according to the coefficients associated with the
terms involving each factor given in (25) and the transformation equations applied; see Shi et al. (2016) for
details on how the groups are derived. The following observations can be made from Figure 1. First, the
smaller µ j (respectively, σ j) is as compared to ∆

(0)
EE (resp. ∆

(0)
IE ), the closer the resulting P̂{DI} for factor
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Figure 2: Comparison of average sample sizes used by CMM for testing significance of the main and
interaction effects of the 20 factors.

j is to zero. Second, the greater µ j (respectively, σ j) is when compared to ∆
(1)
EE (resp. ∆

(1)
IE ), the closer

the resulting P̂{DI} for factor j gets to one. Third, for factors with µ j ∈ (∆
(0)
EE ,∆

(1)
EE) or σ j ∈ (∆

(0)
IE ,∆

(1)
IE ),

the resulting P̂{DI} takes reasonable values in [0,1]. Lastly, we note that CMM obtains almost identical
P̂{DI} for factors within the same group. Therefore, we conclude that CMM provides a desired statistical
performance guarantee for testing the significance of the main and interaction effects of each individual
factor.

The computational efficiency of CMM is quantified by the average sample size of elementary effects
used by the sequential procedure for testing a given effect across the 1000 macro-replications. The respective
sample sizes used for testing the significance of the main and interaction effects of each factor are shown
in Figure 2. We observe that CMM adapts the sample sizes used for the 20 factors according to the
magnitudes of their respective main and interaction effects. In particular, for those factors with a high σ j

and µ j being close to ∆
(0)
EE or ∆

(1)
EE , CMM typically uses a large sample size for testing the significance of

the corresponding factor. It is intuitively clear that such an adaptive sampling strategy of CMM is more
efficient than the default equal budget allocation rule adopted by standard MM.

5 CONCLUSIONS

In this paper, we propose the controlled Morris method (CMM) for factor screening that acts in a sequential
manner to keep the computational effort down to a minimum. The SPRT-based multiple testing procedure
adopted enables CMM to identify the factors with significant main and/or interaction effects while controlling
Type I and Type II familywise error rates at desired levels. Though CMM is proposed in the context of factor
screening, its distribution-free SPRT-based multiple testing procedure can be broadly applied to various
settings beyond factor screening. Future research topics include extending CMM for factor screening in
the stochastic simulation setting and enhancing the computational efficiency achieved by the sequential
multiple testing procedure.
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