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ABSTRACT

We propose a stochastic mesh approach to portfolio risk measurement under the nested setting in which
revaluation of the portfolio value requires simulations. While stochastic mesh was originally proposed as a
tool for American option pricing, we are interested in estimating via simulation the risk of the portfolio. We
establish asymptotic properties of the stochastic mesh estimator for portfolio risk. In particular, we show
that the estimator is asymptotically unbiased and consistent, and its mean squared error (MSE) converges to
zero in a rate of Γ−1, where Γ is the effort required to simulate the sample paths. This rate of convergence
is the same as that under the non-nested setting. The proposed method allows for path dependence of
financial instruments in the portfolio. Preliminary numerical experiments show that the proposed method
works reasonably well.

1 INTRODUCTION

When measuring the risk of a portfolio that includes derivative contracts, reevaluation of the portfolio
value for different scenarios of risk factors may require simulations, especially when risk managers use
complex pricing models for which no closed-form formula of the portfolio value is available. This problem
is usually referred to as portfolio risk measurement under the nested setting, and has received increasing
attention in the simulation community in recent years.

A well known approach to portfolio risk measurement under the nested setting is via two-level simulation,
also referred to as nested simulation. In particular, one simulates at outer level a number of possible scenarios
of the risk factors over the time horizon of interest, and then simulates at inner level a number of sample
paths for underlying assets of the derivative contracts until maturity for each of the outer-level scenarios.
For more details on the two-level simulation approach, interested readers are referred to Lee (1998), Lee
and Glynn (2003), and Gordy and Juneja (2010). One of the main issues for two-level simulaton is how
to allocate computational budget to inner and outer levels. Let Γ = n1n2c denote the total computational
budget where n1 and n2 denote the outer- and inner-level sample sizes, respectively, and the constant c
represents the computational effort required to simulate an inner-level sample while the effort to simulate an
outer sample is often negligible. Lee (1998), Lee and Glynn (2003), and Gordy and Juneja (2010) analyzed
asymptotic properties of the nested estimator, and showed that the optimal asymptotic mean squared error
(MSE) of the two-level simulation estimator diminishes to zero at a rate of Γ−2/3 if the underlying scenario
space is continuous, and it was shown that the asymptotic MSE achieves the optimal rate when n1 and n2
are of orders Γ2/3 and Γ1/3, respectively. Along the same line of research, Broadie et al. (2011) proposed a
method to sequentially allocate computational effort to inner-level simulations for estimating the probability
of large portfolio losses, and showed that the resulting asymptotic MSE converges at a faster rate that can
be arbitrary close to Γ−4/5.
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Another line of research for portfolio risk measurement under the nested setting is centered around
smoothing ideas for estimating the portfolio loss as a conditional expectation given the risk factors. Broadie
et al. (2015) proposed a least-squares regression method (LSM) to estimate the conditional expectation,
and showed that the MSE of the regression method converges at a rate Γ−1 until reaching an asymptotic
bias level. A major drawback of LSM is that it is biased in general, and sometimes choosing appropriate
basis functions could be difficult. Unlike LSM, Hong et al. (2017) proposed a kernel smoothing approach
to estimate the conditional expectation. While kernel smoothing suffers from curse of dimensionality, i.e.,
unsatisfactory performance when the dimension of the risk factors is high, Hong et al. (2017) argued
that risk factors associated with individual derivative contracts are often low-dimensional. Based on this
argument, they proposed a decomposition technique that decomposes a high-dimensional problem into a
sequence of low-dimensional ones, making the kernel smoothing approach practically viable. Another
smoothing approach is based on stochastic kriging that builds upon a spatial metamodel for the conditional
expectation; see Liu and Staum (2010) for use of the stochastic kriging approach in estimating expected
shortfalls.

In this paper, we propose a new approach to portfolio risk measurement that builds upon stochastic
mesh, which was first proposed by Broadie and Glasserman (1997) (see also Broadie and Glasserman
2004) for pricing of American options. For more details of the stochastic mesh approach for American
option pricing, interested readers are referred to Avramidis and Hyden (1999), Avramidis and Matzinger
(2004), Broadie, Glasserman, and Ha (2000) and Liu and Hong (2009). In the context of American option
pricing, the stochastic mesh method is attractive in that it provides an asymptotically unbiased estimator
and achieves the fastest rate of convergence, while its major drawback is that its computation is relatively
time consuming compared to its competitors, especially when the sample size is large. Motivated by the
attractive theoretical properties of the stochastic mesh approach, we consider its application to portfolio risk
measurement. It should be pointed out that there is a difference in time scale for acceptable computational
times between option pricing and portfolio risk measurement. Compared to option price computation (or
estimation) that is usually expected to be done within a small fraction of a second under a rapidly changing
trading environment, measuring the risk of a portfolio, especially for large-scale portfolios, is often much
more time consuming and computational time within a longer time frame such as minutes, or even a few
hours, is often acceptable. In the context of measuring portfolio risk, a major part of the computational
time is usually spent in simulating sample paths of the risk factors, especially when the portfolio involves
a large amount of financial instruments and when complex pricing models are used, while the time spent
in computing the estimator for given sample paths is usually negligible. A theoretical contribution of the
paper is on analysis of asymptotic properties of the proposed stochastic mesh estimator. In particular, we
show that the rate of convergence of its MSE is Γ−1, which is the same as that under a non-nested setting
where closed-form expression for the loss function is available and thus no inner simulations are required.

The rest of this paper is organized as follows. The problem is formulated in Section 2. We provide the
general mathematical framework of the stochastic mesh method in Section 3. In Section 4, we establish
the rate of convergence of the MSE of the stochastic mesh estimator. Preliminary numerical experiments
are presented in Section 5, followed by conclusions in Section 6.

2 PROBLEM FORMULATION

Suppose that a risk manager is interested in measuring the risk of the portfolio up to a future time horizon
tτ , e.g., 2 days or 1 week. In the later presentation this time horizon is also referred to as risk horizon. The
portfolio may consist of derivatives contracts that have maturities longer than tτ , and its value at the risk
horizon depends on a vector of risk factors that could be interest rates, commodity prices, stock prices,
and/or underlying asset prices of the derivative contracts. We assume that the price dynamics of these risk
factors are governed by a vector-value Markov process {St ∈Rd , t ≥ 0}, which is defined on a probability
space (Ω,F ,{Ft}t≥0,P), where F is a σ -algebra of subsets of Ω and σ -subalgebra Ft is generated by
{Su}0≤u≤t , i.e., the set of information available up to t. Hence St is adapted to {Ft}t≥0. In addition,
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suppose that the derivative contracts in the portfolio have finite maturities, and let T denote the maximum
value of the maturity dates. Due to the discrete nature of computer simulation, a stochastic process is often
simulated in discrete time points. Therefore, throughout the paper we work with a discretized version of
St valued at a sequence of time points 0 = t0 < t1 < · · ·< tN = T ; see Glasserman (2004) for greater detail
on discretization methods of price dynamics. For notational simplicity, we write Sti and Fti as Si and Fi,
respectively for i = 0,1, ...,N. We further assume that the risk horizon tτ is taking value in {t1, . . . , tN},
and without loss of generality assume that τ takes value in {1, . . . ,N−1}.

By standard asset pricing theory (see, e.g., Chapter 6 in Duffie 1996), for i = 0,1, ...,N, the value of
the portfolio at time ti can be represented as

Vi = E[Y |Fi],

where Y denotes the payoff of the portfolio (weighted with appropriate discounted factors), and the
expectation is taken under a martingale pricing measure.

Then the portfolio loss at time tτ can be written as

L =V0−Vτ =V0−E[Y |Fτ ] = E[V0−Y |Fτ ],

where V0 denotes the value of the portfolio at time 0, and is a known constant.
Typically, the portfolio loss at maturities V0−Y can be viewed as a function of (Sτ ,Sτ+1, ...,SN), and

we define this function as h(Sτ ,Sτ+1, ...,SN),V0−Y . Based on Markov property of Si’s, the portfolio loss
at time tτ is a function of Sτ and can be written as

L(Sτ) = E[h(Sτ ,Sτ+1, ...,SN)|Sτ ].

In portfolio risk measurement, risk manager is typically interested in a risk measure associated with
the loss functional L. In this paper, we consider risk measures that are defined in the following form:

α = Eg(L(Sτ)), (1)

where g(·) is a known function.
Different specifications of the function g(·) may lead to different risk measures. For instance, when g

is an indicator function, i.e., g(x) = 1{x≥y0} for some threshold value y0, α measures the probability that
portfolio loss is larger than the given threshold y0. When g is a hockey-stick function, e.g., g(x) = (x−y0)

+,
α measures the expected excess loss beyond y0. When g is a quadratic function, e.g., g(x) = (x− y0)

2, α

measures the squared tracking error of the portfolio loss relative to a target y0. Similar to the setting in
Hong et al. (2017), in this paper we consider three types of g functions: smooth functions, a hockey-stick
function, and an indicator function. The hockey-stick and indicator functions differ from a smooth function
in terms of continuity and differentiability. The hockey-stick function is continuous everywhere but not
differentiable at y0, while the indicator function is discontinuous at y0. In fact, the quantities of α defined
for indicator and hockey-stick functions are closely related to value-at-risk and conditional value-at-risk,
two widely used risk measures in practice.

To estimate the risk measure α as defined in (1), a major difficulty is that a closed-form formula of
the functional form of L is usually not available. Therefore the function L has to be estimated. In the
following section, we shall propose a stochastic mesh method for estimating this function L.

3 A STOCHASTIC MESH METHOD

We propose a stochastic mesh estimator for L(sτ) for any sτ ∈ Rd , where the function L is defined by

L(sτ) = E[h(Sτ ,Sτ+1, ...,SN)|Sτ = sτ ]. (2)
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Figure 1: Illustration of sample paths for stochastic mesh.

To construct the estimator, we simulate m independent sample paths of {S1, . . . ,SN}, denoted by{
S( j)

k ,k = 1, . . . ,N, j = 1, . . . ,m
}

. Throughout the paper, we assume that transition densities of the Markov
chain {S1, . . . ,SN} are known, and let fk(sk, ·) denote the conditional density of Sk+1 given Sk = sk for
k = 0, . . . ,N−1. We further let fk(·) denote the marginal density of Sk for k = 1, . . . ,N. An illustration of
the sample paths is provided in Figure 1.

The main idea of the stochastic mesh method is that a sample path that does not satisfy {Sτ = sτ} can
be used to estimate a conditional expectation given Sτ = sτ , provided that this sample path is weighted
with an appropriate likelihood ratio. For greater detail of stochastic mesh, interested readers are referred
to Broadie and Glasserman (2004) and Section 8.5 of Glasserman (2004), and also Liu and Hong (2009)
for further refinements. Specifically, let S , (Sτ+1, . . . ,SN) and s , (sτ+1, . . . ,sN). Then we have,

L(sτ) = E[h(Sτ ,S)|Sτ = sτ ]

=
∫

h(sτ ,s) fτ(sτ ,sτ+1) fτ+1(sτ+1,sτ+2) · · · fN−1(sN−1,sN)ds

=
∫

h(sτ ,s)
fτ(sτ ,sτ+1)

fτ+1(sτ+1)
fτ+1(sτ+1) fτ+1(sτ+1,sτ+2) · · · fN−1(sN−1,sN)ds

= E
[

h(sτ ,S)
fτ(sτ ,Sτ+1)

fτ+1(Sτ+1)

]
. (3)

In light of Equation (3), we may estimate L(sτ) by

L̄m(sτ) =
1
m

m

∑
j=1

h
(

sτ ,S( j)
) fτ

(
sτ ,S

( j)
τ+1

)
fτ+1

(
S( j)

τ+1

) . (4)

The estimator L̄m is a weighted average, that makes use of all the sample paths, no matter whether they
satisfy {Sτ = sτ} or not. It has nice properties that are summarized in the following proposition. Proof of
the proposition is a straightforward application of the strong law of large numbers and is thus omitted.
Proposition 1 For any sτ ∈ Rd , L̄m(sτ) is an unbiased and strong consistent estimator of L(sτ), i.e.,
EL̄m(sτ) = L(sτ) and L̄m(sτ)→ L(sτ) almost surely as m→ ∞.

As mentioned in Section 8.5 of Glasserman (2004), in pricing American options, “multiplying weights
along steps of a path through the mesh can produce exponentially growing variance” (see also Proposition
1 in Broadie and Glasserman 2004). To avoid this, Broadie and Glasserman (2004) propose an average
density method to construct weights which have been dubbed forward-looking weights in Liu and Hong
(2009). One of the advantages of the estimator in (4) is that its computational burden is O(m), whereas
that of the estimator constructed by forward-looking weights is O(m2).
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We further simulate n samples for Sτ , denoted by
{

S̃(i)τ , i = 1, . . . ,n
}

, which are independent of the
sample paths used in estimating L. Then straightforwardly an estimator of α is given by

ᾱm,n =
1
n

n

∑
i=1

g
(

L̄m(S̃
(i)
τ )
)
.

Remark 1 When the portfolio consists of path-dependent derivative contracts such as Asian options, barrier
options and lookback options, the loss function may depend on {S1, . . . ,Sτ} and may not directly fit into
the form in (2). The analysis can be extended to allow for such cases. More specifically, we define
Si = (S1, ...,Si) for i = 1, . . . ,N, and S = (Sτ+1, ...,SN). Then the portfolio loss L is in general a function
of Sτ , i.e.,

L(s1, . . . ,sτ) = E [h(S1, . . . ,Sτ ,S)|(S1, . . . ,Sτ) = (s1, . . . ,sτ)]

for some function h. Then it can be easily verified that

L(s1, . . . ,sτ) = E
[

h(s1, . . . ,sτ ,S)
fτ(sτ ,Sτ+1)

fτ+1(Sτ+1)

]
,

and thus an estimator for L(sτ) is given by

L̄m(s1, . . . ,sτ) =
1
m

m

∑
j=1

h(s1, . . . ,sτ ,S( j))
fτ

(
sτ ,S

( j)
τ+1

)
fτ+1

(
S( j)

τ+1

) .

4 ASYMPTOTIC ANALYSIS

This section is devoted to asymptotic analysis of the estimator ᾱm,n. Specifically, in Section 4.1, we establish
the rate of convergence in L 2p norm of L̄m(sτ) towards L(sτ) under some mild assumptions, while the
rest of the analysis is focused on study of the MSE of ᾱm,n for the three types of functions of g: a smooth
function, a hockey-stick function and an indicator function.

4.1 Analysis of L̄m(sτ)

To facilitate analysis, we provide two lemmas, whose proofs are provided in the appendix.
Lemma 1 Suppose U is a random variable with EU2p < ∞, where p is a positive integer. Then E(U −
E[U |G ])2p ≤ 22pEU2p, where G is an arbitrary σ -field. Furthermore, E(U−E[U |G ])2 ≤ EU2.
Lemma 2 Let G denote an arbitrary σ -field and let {R j}m

j=1 be identically distributed random variables

which conditional on G , are independent of each other, such that E[R j|G ] = 0 for 1≤ j≤m and ER2p
1 < ∞,

where p is a fixed positive integer. Then,

E

(
1
m

m

∑
j=1

R j

)2p

=
cpER2p

1
mp +O

(
1

mp+1

)
,

as m→ ∞, where cp =
(2p

2

)(2p−2
2

)
· · ·
(2

2

)
/p!. Furthermore, E

( 1
m ∑

m
j=1 R j

)2
= ER2

1/m.
Lemma 1 is a general result on moments for conditional expectations, and Lemma 2 provides a bound

on the moments of a sample-mean type of estimator, which shall be useful for our asymptotic analysis.
For simplicity of notations, we define

wi j =
fτ(S̃

(i)
τ ,S( j)

τ+1)

fτ+1(S
( j)
τ+1)

, and w =
fτ(S̃τ ,Sτ+1)

fτ+1(Sτ+1)
.
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Then we can established an asymptotic bound for the moments of L̄m(sτ), which is summarized in the
following proposition, whose proof is provided in the appendix.

Proposition 2 Suppose that E
(
h(S̃τ ,S)w

)2p
< ∞ with a positive integer p. Then,

E
(
L̄m(S̃τ)−L(S̃τ)

)2p
=

Cp

mp +O
(

1
mp+1

)
,

as m→ ∞, where Cp = cp22pE|h(S̃τ ,S)w|2p < ∞ and cp =
(2p

2

)(2p−2
2

)
· · ·
(2

2

)
/p!.

Proposition 2 shows that the 2p-moment of L̄m(S̃τ) is of order 1/mp provided a mild moment condition
on h(S̃τ ,S)w. It serves as a useful tool to analyze the MSE of ᾱm,n. In the following subsections, we
analyze the MSE of ᾱm,n for three different types of g functions individually.

4.2 Analysis for a Smooth Function

In this subsection, we consider the case when g is a smooth function. More specifically, we assume that g
satisfies the following condition.
Assumption 1 The function g(·) is twice differentiable with bounded second derivative so that there exists
a constant Cg such that

|g′′(x)| ≤Cg for any x ∈ R,

and

E|g′(L(Sτ))|2 < ∞, E|g(L(Sτ))|2 < ∞.

Asymptotic rate of convergence of the MSE of ᾱm,n is summarized in the following proposition, whose
proof is provided in the appendix.

Theorem 1 Suppose that Assumption 1 holds, E
(
h(S̃τ ,S)w

)4
< ∞, E|g′(L(S̃τ))h(S̃τ ,S)w|4 < ∞ and

E|g′(L(S̃τ))L(S̃τ)|4 < ∞. Then,

MSE(ᾱm,n) =
2E|g(L(Sτ))|2

n
+4
(
E|g′(L(S̃τ))|4

) 1
2

(
C
m2 +O(m−3)

) 1
2

+C2
g

(
C
m2 +O(m−3)

)
= O(max{m−1,n−1}),

as m,n→ ∞, where C = 48E|h(S̃τ ,S)w|4. In particular, if we let m = n, then MSE(ᾱm,n) = O(n−1).
Theorem 1 shows that the MSE of ᾱm,n decays at a rate that is equal to max{m−1,n−1}. A particular

attractive setting is m = n, in which the MSE decays at a rate of 1/n. In this setting, the total computational
budget Γ = mc1+nc2 = n(c1+c2), where the constants c1 and c2 denote the computational efforts required
to simulate a sample path of (S1, . . . ,SN) and a sample path of (S̃1, . . . , S̃τ), respectively. In this case, it
can be seen that the MSE of the stochastic mesh estimator converges to zero at a rate of Γ−1, which is the
fastest rate of convergence that can be achieved for a Monte Carlo estimator. Theorem 1 also implies that
ᾱm,n is a consistent estimator of α when sample sizes m,n go to infinity.

It should also be pointed out that in the above stochastic mesh estimator, the reason we use inde-
pendent sample paths {(S̃(i)1 , . . . , S̃(i)τ ), i = 1, . . . ,n} in the estimator is mainly for ease of analysis. During
practical implementation, if we set m = n, it is reasonable to use {(S(i)1 , . . . ,S(i)τ ), i = 1, . . . ,n} to replace
{(S̃(i)1 , . . . , S̃(i)τ ), i = 1, . . . ,n}, although the asymptotic analysis of its MSE may require more subtle analysis
to handle the dependence structure within the estimator.
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4.3 Analysis for Hockey-Stick and Indicator Functions

In this subsection, we study the MSE of ᾱm,n when g is a hockey-stick or indicator functions.
When g is a hockey-stick function, it is Lipschitz continuous. It turns out that the MSE of ᾱm,n for

Lipschitz continuous functions g can be analyzed in a unified framework.
Assumption 2 The function g(·) is Lipschitz continuous, i.e., there exists a constant CLip, such that

|g(x1)−g(x2)| ≤CLip|x1− x2| for any x1,x2 ∈ R.

Under Assumption 2, we carry out a similar analysis as in the previous subsection and establish an
asymptotic result in the following theorem. The proof of the theorem is similar to that for Theorem 1, and
is thus omitted.
Theorem 2 Suppose that Assumption 2 holds, and E

(
h(S̃τ ,S)w

)2
< ∞. Then,

MSE(ᾱm,n) =
2C2

LipC

m
+O

(
1

m2

)
+

2E|g(L(Sτ))|2

n
= O(max{m−1,n−1}),

as m.n→ ∞, where C is defined in Lemma 2. In particular, if we let m = n, then MSE(ᾱm,n) = O(n−1).
Theorem 2 shows that the MSE of ᾱm,n for a Lipschitz continuous g decays at the same order as that

for a smooth g. When m = n, it achieves the fastest rate of convergence that is Γ−1.
We further consider the case when g is an indicator function. Although it requires more elaborate

analysis, it turns out the MSE of ᾱm,n decays to zero at the same rate as that for smooth and Lipschitz
continuous functions. This result is summarized in the following theorem, whose proof is omitted due to
page limit.

Theorem 3 Let g(x) = 1{x≥y0} for some y0 ∈ R. Suppose that E
(
h(S̃τ ,S)w

)2
< ∞ and some regularity

conditions hold. Then,

MSE(ᾱm,n) = O
(

1
m

)
+

o(1)
n

+
1
n
= O(max{m−1,n−1}),

as m,n→ ∞. In particular, if we let m = n, then MSE(ᾱm,n) = O(n−1).

5 NUMERICAL EXPERIMENTS

In this section, we construct an illustrative example to examine the performance of the proposed stochastic
mesh estimator. More specifically, we consider a portfolio that consists of three European-style vanilla
options with different strike prices, which are written on an underlying asset whose price dynamics is
governed by the following geometric Brownian motion:

dSt = µStdt +σStdBt ,

where Bt is a standard Brownian motion process, µ is the rate of return of the underlying asset under the
real-world probability measure. Under the risk-neutral pricing measure, the drift of the geometric Brownian
motion is changed to r, the risk-free interest rate.

We assume that the options in the portfolio have the same maturity T , and we are interested in measuring
the risk of the portfolio at a future time tτ where tτ < T . During the implementation, we divided [0,T ] into
N intervals evenly and let Si denote the underlying asset valued at the ith time point. We first simulate
Sτ under the real-world probability measure and then simulate S , (Sτ+1, . . . ,SN) under the risk-neutral
probability measure. Denote the payoff of the portfolio at time T by VT (SN). We let a constant V0 denote
the value of the portfolio at time 0. At time tτ , the portfolio loss is L(Sτ) = E[V0−VT (SN)|Sτ ].
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We consider the estimation of the portfolio risk α =Eg(L(Sτ)) for three cases of g functions: a quadratic
function g(x) = x2, a hockey-stick function g(x) = (x−y0)

+, and an indicator function g(x) = 1{t>y0}, where
y0 is a pre-specified threshold. In the numerical experiment, we let the initial underlying asset price S0 = 100,
µ = 5%, r = 8%, σ = 15%, T = 1, tτ = 1/12 and τ = 1. Strike prices of the three options are set to be
K = 90,100,110, and the loss threshold y0 is set to be y0 = 5.8235, the 90th percentile of L.

To measure the performance of the stochastic mesh estimator, we use the true value of α as a benchmark,
which is approximated with high accuracy by applying a closed-form formula of L(Sτ) and taking average
of 109 independent samples of g(L(Sτ)). We then use this accurate estimate as a benchmark to measure
the performance of the stochastic mesh estimator, including its bias, variance, MSE and relative root mean
squared error (RRMSE), where RRMSE is defined as the percentage of the root MSE to the benchmark. All
results reported are estimated based on 1000 independent replications, and we let m = n. Computational
time of a single replication is about 10 seconds when the sample size is 104 using Matlab running on a PC
with 3.40GHz Intel(R) Core(TM) i7-6700 CPU.

In Figure 2, we plot the estimated absolute biases, standard deviations, and the square roots of the
MSEs of the stochastic mesh estimator with respect to different sample sizes. From the figure it can be
seen that the MSEs of the estimator decrease as sample size increases, and a major part of the MSE comes
from its variance while its bias is very small. Figure 3 shows that the convergence rate of MSE of the
stochastic mesh estimators is of order Γ−1 (or n−1), which is consistent with the theoretical result.
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Figure 2: Estimated absolute bias, standard deviation, and square root MSEs of the stochastic mesh
estimators
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Figure 3: Illustration of convergence rates of MSEs of the stochastic mesh estimators.

Figure 4 illustrates the magnitude of RRMSEs of stochastic mesh estimators for different sample sizes.
In particular, when estimating the probability of large losses, RRMSE is less than 6% when the sample

1803



Zhang, Liu, and Wang

size is 20,000. When estimating the expected excess loss, it is about 7% when the sample size is 20,000,
and it is about 5% when the sample size is 12,000 in estimating squared tracking error. These numerical
results show that the proposed stochastic mesh estimator works reasonably well.
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Figure 4: Performance of RRMSEs of stochastic mesh estimators.

6 CONCLUSIONS

In this paper, we have studied a stochastic mesh approach to portfolio risk measurement under the nested
setting. We have analyzed the asymptotic MSE of the stochastic mesh estimator for various risk measures,
and showed that the MSE decays to zero at a rate of Γ−1, where Γ denotes the total computational budget.
Preliminary numerical results have shown that the proposed approach may be a promising tool for measuring
portfolio risk in practice.
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A PROOF OF LEMMA 1

Note that

E(U−E[U |G ])2p ≤ E(|U |+ |E[U |G ]|)2p = E

{
2p

∑
l=0

(
2p
l

)
|U |2p−l|E[U |G ]|l

}

= EU2p +E|E[U |G ]|2p +
2p−1

∑
l=1

(
2p
l

)
E
{
|U |2p−l|E[U |G ]|l

}
(∗)
≤ EU2p +E|E[U |G ]|2p +

2p−1

∑
l=1

(
2p
l

)
(EU2p)

2p−l
2p (E|E[U |G ]|2p)

l
2p

(∗∗)
≤ EU2p +EU2p +

2p−1

∑
l=1

(
2p
l

)
(EU2p)

2p−l
2p (EU2p)

l
2p =

2p

∑
l=0

(
2p
l

)
EU2p = 22pEU2p,

where (∗) and (∗∗) follow from Hölder’s and Jensen’s inequalities, respectively, and the proof is completed.
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B PROOF OF LEMMA 2

Note that

E

(
m

∑
j=1

R j

)2p

=
m

∑
j1,..., j2p=1

E(E[R j1 · · ·R j2p |G ]).

Because conditional independence of the R j’s implies that the summand is zero if there is one index different
from the 2p−1 others, the non-zero terms are thus summarized as follows:

terms numbers
E(E[R2p

j1 |G ]) m

E(E[Ri1
j1Ri2

j2 · · ·R
il
jl |G ]), i1, ..., il ≥ 2 and i1 + · · ·+ il = 2p (l < p) O

((2p
i1

)(2p−i1
i2

)
· · ·
(il

il

)(m
l

))
E(E[R2

j1 · · ·R
2
jp
|G ])

(2p
2

)(2p−2
2

)
· · ·
(2

2

)(m
p

)
For l ≤ p, by the generalization of Hölder’s inequality: assume that r ∈ (0,∞) and q1, ...,qn ∈ (0,∞] such
that ∑

n
k=1

1
qk
= 1

r , then for random variables X1, ...,Xn,∥∥∥∥∥ n

∏
k=1

Xk

∥∥∥∥∥
r

≤
n

∏
k=1
‖Xk‖qk

, (5)

where ‖ · ‖r = (E| · |r) 1
r .

Applying (5) by letting n = l, qk = 2p/ik, k = 1, . . . , l, and r = 1, we have

E
∣∣∣Ri1

j1Ri2
j2 · · ·R

il
jl

∣∣∣≤ (ER2p
j1 )

i1
2p · · ·(ER2p

jl )
il
2p = ER2p

1 < ∞,

and similarly, E
(

R2
j1 · · ·R

2
jp

)
≤ ER2p

1 .

Thus, all terms are finite. Apparently, the number of the term E(E[R2
j1 · · ·R

2
jp
|G ]) is strictly greater

than that of terms E(E[Ri1
j1Ri2

j2 · · ·R
il
jl |G ]) (l < p) when m→ ∞. Then we have,

E

(
1
m

m

∑
j=1

R j

)2p

=
1

m2p

(
m+ cpmp

(
1+O

(
1
m

)))
ER2p

1 =
cpER2p

1
mp +O

(
1

mp+1

)
.

To prove the second half of the lemma, we note that

E

(
1
m

m

∑
j=1

R j

)2

=
1

m2

(
m

∑
j=1

ER2
j +

m

∑
i 6= j

E(E[RiR j|G ])

)
= ER2

1/m,

because E[RiR j|G ] = E[Ri|G ]E[R j|G ] = 0 due to conditional independence of Ri and R j, and E[Ri|G ] = 0.

C PROOF OF PROPOSITION 2

Note that L̄m(S̃τ)−L(S̃τ) =
1
m ∑

m
j=1 R j, where

R j = h(S̃τ ,S( j))w1 j−L(S̃τ),

for j = 1, ...,m. Then it suffices to prove that the conditions of Lemma 2 hold for R j and G = σ(S̃τ).
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Note that

E
[

h(S̃τ ,S( j))w1 j

∣∣∣G ] (∗)
= E

[
h(sτ ,S( j))

fτ(sτ ,S
( j)
τ+1)

fτ+1(S
( j)
τ+1)

]∣∣∣∣∣
sτ=S̃τ

(∗∗)
= Eh(sτ ,S)|sτ=S̃τ

= L(S̃τ),

where (∗) follows from the Independence Lemma (see Lemma 2.3.4 in Shreve 2004) and (∗∗) is due to (3).
Thus, E[R j|G ] = 0. Moreover, conditional on G , R j is a function of S( j)

τ+1, ...,S
( j)
N , so R j’s are conditionally

independent of each other. To bound the second moment, we apply Lemma 1 with U = h(S̃(1)τ ,S( j))w̃1 j

and G = σ(S̃(1)τ ), leading to

E|R j|2p ≤ 22pE|h(S̃(1)τ ,S( j))w1 j|2p < ∞,

which completes the proof.

D PROOF OF THEOREM 1

It follows from the definition that

MSE(ᾱm,n) = E

∣∣∣∣∣1n n

∑
i=1

g(L̄m(S̃
(i)
τ ))−Eg(L(Sτ))

∣∣∣∣∣
2

= E

∣∣∣∣∣1n n

∑
i=1

g(L̄m(S̃
(i)
τ ))− 1

n

n

∑
i=1

g(L(S̃(i)τ ))+
1
n

n

∑
i=1

g(L(S̃(i)τ ))−Eg(L(Sτ))

∣∣∣∣∣
2

≤ 2E

∣∣∣∣∣1n n

∑
i=1

g(L̄m(S̃
(i)
τ ))− 1

n

n

∑
i=1

g(L(S̃(i)τ ))

∣∣∣∣∣
2

+2E

∣∣∣∣∣1n n

∑
i=1

g(L(S̃(i)τ ))−Eg(L(Sτ))

∣∣∣∣∣
2

≤ 2E
∣∣∣g(L̄m(S̃

(1)
τ ))−g(L(S̃(1)τ ))

∣∣∣2 +2E

∣∣∣∣∣1n n

∑
i=1

g(L(S̃(i)τ ))−Eg(L(Sτ))

∣∣∣∣∣
2

, (6)

where the second inequality follows from Cauchy-Schwartz inequality.
Because E|g(L(Sτ))|2 < ∞, by Lemma 2 with p = 1, we have

E

∣∣∣∣∣1n n

∑
i=1

g(L(S̃(i)τ ))−Eg(L(Sτ))

∣∣∣∣∣
2

=
E|g(L(Sτ))−Eg(L(Sτ))|2

n
≤ E|g(L(Sτ))|2

n
, (7)

where the inequality follows from Lemma 1 with p = 1.
For the first term of (6), by Taylor expansion, we have

E
∣∣∣g(L̄m(S̃

(1)
τ ))−g(L(S̃(1)τ ))

∣∣∣2
= E

∣∣∣∣g′(L(S̃(1)τ ))[L̄m(S̃
(1)
τ )−L(S̃(1)τ )]+

1
2

g′′(Ξ)[L̄m(S̃
(1)
τ )−L(S̃(1)τ )]2

∣∣∣∣2
≤ 2E

(
|g′(L(S̃(1)τ ))|2|L̄m(S̃

(1)
τ )−L(S̃(1)τ )|2

)
+2E

(
1
4
|g′′(Ξ)|2|L̄m(S̃

(1)
τ )−L(S̃(1)τ )|4

)
(∗)
≤ 2

(
E|g′(L(S̃(1)τ ))|4

) 1
2
(
E|L̄m(S̃

(1)
τ )−L(S̃(1)τ )|4

) 1
2
+

C2
g

2
E|L̄m(S̃

(1)
τ )−L(S̃(1)τ )|4, (8)

where Ξ is a random variable that lies between L̄m(S̃
(1)
τ ) and L(S̃(1)τ ), and (∗) follows from Cauchy-Schwarz

inequality.
Assembling the terms in Equations (6)-(8), we have the results in the theorem.
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