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ABSTRACT

In this paper we present the stochastic co-kriging methodology (SCK) for approximating a steady-state
mean response surface based on outputs from both long and short simulation replications performed at
selected design points. We provide details on how to construct an SCK metamodel, perform parameter
estimation, and make prediction via SCK. We demonstrate numerically that SCK holds the promise of
providing more accurate prediction results at no additional computational effort by only externally adjusting
the simulation runlength and number of independent replications of simulations through the experimental
design of the simulation study.

1 INTRODUCTION

In deterministic computer experiments, a computer code can often be run at different levels of com-
plexity/fidelity and a hierarchy of levels of code can be obtained. The higher the fidelity and hence the
computational cost, the more accurate output data can be obtained. Methods based on the co-kriging
methodology (Cressie 2015) for predicting the output of a high-fidelity computer code by combining data
generated to varying levels of fidelity have flourished over the last two decades. For instance, Kennedy
and O’Hagan (2000) first propose to build a metamodel for multi-level computer codes by using an auto-
regressive model structure. Forrester et al. (2007) provide details on estimation of the model parameters
and further investigate the use of co-kriging for multi-fidelity optimization based on the efficient global
optimization algorithm (Jones et al. 1998). Qian and Wu (2008) propose a Bayesian hierarchical modeling
approach for combining low-accuracy and high-accuracy experiments. More recently, Gratiet and Can-
namela (2015) propose sequential design strategies using fast cross-validation techniques for multi-fidelity
computer codes.

In the context of stochastic simulation, steady-state simulations are often employed for studying long-
run system behavior, and they play a significant role in system design and risk assessment. Long-run
performance of stochastic systems such as telecommunication networks is often evaluated by steady-state
mean and quantiles of the system’s response times (Jeong et al. 2005). Therefore, estimation of steady-state
parameters of complex stochastic systems is of great interest to simulation researchers and practitioners.

There exists a plethora of work on point or interval estimation of mean performance measure implied
by a steady-state simulation. Various data collection and analysis methods have been proposed to overcome
the two challenges arising from output analysis of a steady-state simulation, namely, the initial bias in
the sample mean as a point estimator caused by the initial conditions and the difficulty in estimating
the variance of the sample mean due to correlations in the sequence of outputs from within a single
replication. Existing variance estimation methods include those based on independent replications (IR),
batch means (BM), overlapping batch means (OBM), uncorrelated sampling, regenerative cycles, spectral
analysis, autoregressive representation and standardized time series, etc.; see Pawlikowski (1990) for a
survey on various methods proposed for steady-state queueing simulations by early 1990’s. More recently,
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Argon et al. (2013) propose the replicated batch means approach (RBM), known as a compromise method
between IR and BM (Alexopoulos and Goldsman 2004).

Assuming a simulation budget constraint given in terms of simulation clock time or the number of
discretely-indexed observations, a decision must be made before the simulations are run as to the number
of independent, identically initialized and terminated replications to make, and the runlength of each. It
is well known that running a “long” simulation (i.e., taking the runlength large) will result in a sample
mean that is “close” to the true mean performance; correspondingly, we will refer to a “long” simulation
replication as a high-fidelity one and a “short” simulation replication as a low-fidelity one. The question
of “whether a single long replication is preferable to several shorter ones” has been studied before; for
example, see Kelton (1986), Whitt (1991), Alexopoulos and Goldsman (2004) and Grassmann (2016).

Relatively little attention has been given to metamodeling approaches for approximating a steady-state
performance measure response surface across a design space of interest, with exceptions of Yang et al.
(2008), Bekki et al. (2014) and Chen and Kim (2014), to name a few. In particular, an important yet
underdeveloped topic is whether and how one can construct an adequate metamodel for approximating a
mean response surface under a given simulation budget constraint, by utilizing steady-state simulation runs
performed to controlled levels of fidelity at selected design points.

In this paper, we propose the stochastic co-kriging method (SCK) which extends co-kriging to the
stochastic simulation setting for approximating a steady-state mean response surface. The remainder of this
paper is organized as follows. Section 2 provides details on the framework for SCK, including stipulated
assumptions, prediction and parameter estimation. Section 3 reviews a selection of correlation-based
methods for steady-state variance estimation using outputs from within a single simulation replication.
Section 4 presents a numerical example to demonstrate the competitive performance of SCK relative to
stochastic kriging (Ankenman et al. 2010). Section 5 concludes this paper.

2 STOCHASTIC CO-KRIGING FOR SIMULATION METAMODELING

2.1 Building a Stochastic Co-Kriging Metamodel

It is known that estimating steady-state mean parameter through simulation can be computationally expensive.
Typically, the longer the simulation runlength is, the more accurate and precise the sample mean as an
estimator becomes. Simulations with shorter runlengths can be faster to run, yet the resulting estimators are
less accurate and precise. In practice, we may consider running simulations using L different runlengths,
which can be thought of as running simulations to L different levels of fidelity. For ease of exposition, we
restrict our discussion to two levels of fidelity in this paper.

Let D1 and D2 represent, respectively, the design-point sets in X ⊂ Rd for running the low- and
high-fidelity simulation runs. More specifically, let D1 = {x1,x2, . . . ,xk1} and D2 = {x1,x2, . . . ,xk2}, such
that D1 = D2 ∪{xk2+1,xk2+1, . . . ,xk1}. At design point xi in D1 (for i = 1,2, . . . ,k1), we perform n{1}i
low-fidelity simulation replications and generate independent and identically distributed (i.i.d.) simulation

outputs {Y {1}
j (xi)}

n{1}i
j=1. Specifically, the jth low-fidelity simulation replication has a simulation runlength

of s{1}i (in terms of run time or number of more basic simulation outputs) which produces the low-
fidelity simulation output Y

{1}
j (xi), for j = 1,2, . . . ,n{1}i . On the other hand, at design point xi in D2 (for

i = 1,2, . . . ,k2), we perform n{2}i high-fidelity simulation replications and generate i.i.d. simulation outputs

{Y {2}
j (xi)}

n{2}i
j=1. That is, the jth high-fidelity simulation replication has a runlength of s{2}i which produces

the high-fidelity simulation output Y
{2}

j (xi). Furthermore, we assume s{2}i � s{1}i , for i = 1,2, . . . ,k2.
Hence, D2 denotes the set of design points where more simulation efforts are expended.

We next extend the co-kriging metamodeling methodology to the stochastic simulation setting for
the purpose of studying steady-state simulation experiments. The mathematical structure of co-kriging
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is expanded to encompass heterogeneous simulation output variances, which are referred to as intrinsic
variability in Ankenman et al. (2010).

The low-accuracy performance measure estimator Ȳ {1}(xi) at design point xi ∈D1 can be modeled as

Ȳ {1}(xi) =
1

n{1}i

n{1}i

∑
j=1

Y
{1}

j (xi)

= Y{1}(xi)+ ζ̄
{1}(xi) i = 1,2, . . . ,k1, (1)

where Y{1}(xi) denotes the unknown true mean of Ȳ {1}(xi), and ζ̄ {1}(xi) = ∑
n{1}i
j=1 ζ

{1}
j (xi)/n{1}i denotes

the simulation error in the estimator Ȳ {1}(xi). Notice that the ζ
{1}
j (xi)’s represent the i.i.d. simulation

errors with zero mean and variance V{1}(xi). Hence, Var(ζ̄ {1}(xi)) = V{1}(xi)/n{1}i and it decreases with
the number of replications applied at xi. We note that V{1}(xi) measures the variance of the simulation
output from each low-fidelity simulation replication, and it decreases with the simulation runlength s{1}i .
If replications are available at xi (i.e., n{1}i > 1), then V{1}(xi) can be estimated by the sample variance
V̂{1}(xi) obtained at xi ∈ D1,

V̂{1}(xi) =
1

n{1}i −1

n{1}i

∑
j=1

(Y
{1}

j (xi)− Ȳ {1}(xi))
2, i = 1,2, . . . ,k1.

We provide some further details on Y{1}(xi) which can be described as follows:

Y{1}(xi) = f1(xi)
>

β 1 +M1(xi),

where β 1 is a p1×1 vector of parameters and f1(·) is a vector of known regression functions of compatible
dimensions. As treated in the design and analysis of deterministic computer experiments literature (Santner
et al. 2003), we assume that M1(·) is a mean-zero stationary Gaussian random field. There exists a spatial
correlation function R1(·;θ 1) that measures the correlation of the values of M1(xi) and M1(x`). This
correlation is determined by the distance between xi and x` measured along each of the d dimensions, and
the d×1 parameter vector θ 1 = (θ11,θ12, . . . ,θ1d)

> controls how quickly the spatial correlation diminishes
as the two points become farther apart in each direction. Commonly used correlation functions include
the Gaussian correlation function, Matérn correlation functions, and the exponential correlation function
(see Chapter 4 of Rasmussen and Williams 2006); we choose to use the popular Gaussian correlation
function R1(xi,x`;θ 1) = exp

(
−∑

d
r=1 θ1r(xir− x`r)2

)
in this paper. Given a correlation function, the implied

covariance function is given by

Cov(M1(xi),M1(x`)) = τ
2
1R1(xi,x`;θ 1) , (2)

where τ2
1 denotes the variance of M1(x) for all x ∈X .

On the other hand, we model the high-accuracy performance measure estimator Ȳ {2}(xi) obtained at
xi ∈ D2 as follows

Ȳ {2}(xi) =
1

n{2}i

n{2}i

∑
j=1

Y
{2}

j (xi)

= Y{2}(xi)+ ζ̄
{2}(xi),

= ρY{1}(xi)+δ (xi)+ ζ̄
{2}(xi), i = 1,2, . . . ,k2, (3)
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where Y{2}(xi) represents the true mean of Ȳ {2}(xi), δ (xi) denotes the difference between Y{2}(xi) and
ρY{1}(xi) on which we will elaborate later. Notice that the ζ

{2}
j (xi)’s denote the i.i.d. simulation errors with

zero mean and variance V{2}(xi), and ζ̄ {2}(xi) := ∑
n{2}i
j=1 ζ

{2}
j (xi)/n{2}i denotes the average simulation error

across the n{2}i simulation replications at xi. Notice that Var(ζ̄ {2}(xi)) =V{2}(xi)/n{2}i and it decreases with
the number of replications n{2}i applied at xi. Here V{2}(xi) represents the variance of the simulation output
generated from each high-fidelity simulation replication, and it decreases with the simulation runlength
s{2}i . If replications are available (i.e., n{2}i > 1), then V{2}(xi) can be estimated by the sample variance
V̂{2}(xi) obtained at xi in a similar fashion as given in (2.1). We provide more details on estimation of
V{2}(xi) from a single high-fidelity simulation replication in Subsection 3.

We note that the model given in (3) relies on the following Markov property about true mean performance
values implied by two-fidelity levels of simulation runs as introduced by Kennedy and O’Hagan (2000):

Cov
(
Y{2}(x),Y{1}(x̃)|Y{1}(x)

)
= 0, (4)

for all x 6= x̃. This property essentially states that if the true mean performance value implied by a low-
fidelity simulation run at x is known, then we can learn no more about the true mean performance value
implied from a high-fidelity simulation run at x from knowing any mean performance value of a low-fidelity
simulation run at x̃ for x̃ 6= x.

We further model the difference term δ (xi) specified in (3) as

δ (xi) = f2(xi)
>

β 2 +M2(xi), (5)

where β 2 is a vector of unknown parameters, f2(·) is a vector of known regression functions of com-
patible dimensions and M2(·) is a stationary Gaussian process with mean zero, and covariance function
Cov(M2(xi),M2(x`)) = τ2

δ
Rδ (xi,x`;θ δ ). Notice that the discussion given for the spatial correlation function

and hyperparameters forM1(·) applies to the spatial correlation function Rδ (·, ·;θ δ ) and the hyperparameters
τδ and θ δ for M2(xi) here .

The true quantity of interest in our context, Y(x), can be a steady-state distribution parameter such
as the steady-state mean of a random quantity of interest at x. In spite that neither of the low- and high-
fidelity point estimators, Ȳ {1}(xi) and Ȳ {2}(xi), is unbiased for Y(x) (or equivalently, Y{1}(xi) 6= Y(xi)

and Y{2}(xi) 6= Y(xi)), the simulation runlength (s{1}i or s{2}i ) applied at a design point determines the
bias and variance of the point estimator obtained. In particular, |Bias[Ȳ {2}(xi)]| ≤ |Bias[Ȳ {1}(xi)]| and
V{2}(xi)≤ V{1}(xi), for xi ∈ D2.

2.2 Prediction by Stochastic Co-Kriging

Assuming that all hyperparameters are given, we now perform the stochastic co-kriging prediction of
the expected high-fidelity response at a prediction point x0. Notice that standard results indicate that(
Y{2}(x0), Ȳ >)> follow a multivariate normal distribution (Kennedy and O’Hagan 2000), where Ȳ =(
Ȳ {1}, Ȳ {2})> and Ȳ {i} =

(
Ȳ {i}(x1), Ȳ {i}(x2), . . . , Ȳ {i}(xki)

)>
for i = 1,2. In particular, the conditional

distribution of Y{2}(x0) given Ȳ is also normal with the mean function given by

Ŷ{2}(x0) = f(x0)
>

β̂ + c(x0)
>

Σ
−1(Ȳ −Fβ̂ ) (6)
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where f(x0)
> = (ρf1(x0)

>, f2(x0)
>), and

F =



f1(x1)
> 0

...
...

f1(xk1)
> 0

ρf1(x1)
> f2(x1)

>

...
...

ρf1(xk2)
> f2(xk2)

>


, (7)

β̂ =

(
β̂
>
1 , β̂

>
2

)>
=
(

F>Σ
−1F

)−1
F>Σ

−1Ȳ , (8)

and Σ = ΣM+Σε , and c(x0) denotes the following (k1 + k2)×1 covariance vector

c(x0) =
(

ρτ
2
1R1(D1,x0;θ 1)

>
ρ

2
τ

2
1R1(D2,x0;θ 1)

>+ τ
2
δ
Rδ (D2,x0;θ δ )

>
)>

,

where R1(Di,x0;θ 1) denotes the ki×1 vector of spatial correlations between Y{1}(x0) and Y{1}(x`), for
`= 1,2, . . . ,ki, i = 1,2; Rδ (D2,x0;θ δ ) denotes the k2×1 vector of spatial correlations between Y{2}(x0)
and Y{2}(x`) for `= 1,2, . . . ,k2. Furthermore, Σ = ΣM+Σε , and

ΣM =

(
Σ11
M Σ12

M(
Σ12
M

)>
Σ22
M

)
=

(
τ2

1R1(D1,D1;θ 1) ρτ2
1R1(D1,D2;θ 1)

ρτ2
1R1(D1,D2;θ 1)

> ρ2τ2
1R1(D2,D2;θ 1)+ τ2

δ
Rδ (D2,D2;θ δ ).

)
Notice that the notation R1(D1,D2;θ 1) denotes the matrix of correlations between the values of Y{1}(·)
at design points in D1 and D2, with its (i, j)th entry given by R1(xi,x j;θ 1) for all xi ∈ D1 and x j ∈ D2.
The other notation such as R1(D1,D1;θ 1) and Rδ (D2,D2;θ δ ) is defined in a similar fashion.

The intrinsic variance-covariance matrix of Ȳ is

Σε =

(
Σ11

ε Σ12
ε(

Σ12
ε

)>
Σ22

ε

)
,

where Σii
ε is the ki× ki variance-covariance matrix of Ȳ {i} for i = 1,2; and Σ12

ε is the k1× k2 covariance
matrix of Ȳ {1} and Ȳ {2}. Specifically,

Σ
11
ε = diag

(
Var(ζ̄ {1}(x1)), . . . ,Var(ζ̄ {1}(xk1))

)
= diag

(
V{1}(x1)/n{1}1 , . . . ,Var(V{1}(xk1)/n{1}k1

)
)
,

Σ
22
ε = diag

(
Var(ζ̄ {2}(x1)), . . . ,Var(ζ̄ {2}(xk2))

)
= diag

(
V{2}(x1)/n{2}1 , . . . ,Var(V{2}(xk2)/n{2}k2

)
)
,

Σ
12
ε =

(
diag(Cov(ζ̄ {1}(x1), ζ̄

{2}(x1)), . . . ,Cov(ζ̄ {1}(xk2), ζ̄
{2}(xk2)))

0(k1−k2)×k2

)
,

where 0(k1−k2)×k2 represents a (k1− k2)× k2 matrix of zeros, and for i = 1,2, . . . ,k2,

Cov(ζ̄ {1}(xi), ζ̄
{2}(xi)) = Cov(ζ {1}j (xi),ζ

{2}
j (xi))/max{n{1}i ,n{2}i }.

The conditional prediction variance follows as

Var(Ŷ{2}(x0)) = τ
2
δ
+ρ

2
τ

2
1 − c(x0)

>
Σ
−1c(x0)+η(x0)

>
(

F>Σ
−1F

)−1
η(x0), (9)
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where η(x0) = f(x0)− c(x0)
>Σ−1F.

We note that the predictor given in (6) can be used as a cheap approximation to the mean function value
implied by high-fidelity simulation runs at a given prediction point x0 ∈X . Provided that high-fidelity
simulations have been performed at enough design points, (6) should be more accurate than that given
based on low-fidelity simulation runs. The conditional prediction variance (9) can be used to measure the
prediction uncertainty associated with (6).

2.3 Estimating the Model Hyperparameters

Given that the parameter vector β is estimated by β̂ given in (8), below we consider the estimation of
model hyperparameters. As a result of the choice of design-point locations in D1 and those in D2 ⊂ D1
and the Markov property, we can estimate the parameters (τ2

1 ,θ
>
1 ) separately from (ρ,τ2

δ
,θ>

δ
) following

a similar argument as given by Kennedy and O’Hagan (2000).
Conditional on (τ2

1 ,θ
>
1 ), the distribution of Ȳ {1} is normal and the log-likelihood of Ȳ {1} can be

written as

lnL (τ2
1 ,θ

>
1 ) =−

(
k1

2
ln(2π)+

1
2

ln
(
det
(
Σ

11))+ 1
2

(
Ȳ {1}−F1β̂ 1

)> (
Σ

11)−1
(
Ȳ {1}−F1β̂ 1

))
, (10)

where

F1 =

 f1(x1)
>

...
f1(xk1)

>

 ,
Σ11 = τ2

1R1(D1,D1;θ 1)+Σ11
ε . First, we need to estimate Σ11

ε and replace it by its estimator in (10). Then
estimates of τ2

1 and θ 1 can be obtained by suitable optimization routines such as those available in Matlab.
We write the vector of differences between the two point estimators built on low- and high-fidelity

simulation runs as
δ̃ = Ȳ {2}−ρȲ {1} =

(
δ̃ (x1), δ̃ (x2), . . . , δ̃ (xk2)

)>
.

It follows from (1) and (3) and the description given in Subsection 2.1 that

δ̃ (xi) = Ȳ {2}(xi)−ρȲ {1}(xi) = δ (xi)+ ζ̄
{2}(xi)−ρζ̄

{1}(xi), for xi ∈ D2.

Conditional on (ρ,τ2
δ
,θ>

δ
), the distribution of δ̃ is normal and the log-likelihood of δ̃ can be written as

lnL (ρ,τ2
δ
,θ>

δ
) =−

(
k2

2
ln(2π)+

1
2

ln
(
det
(
Σ

22))+ 1
2

(
δ̃ −Fδ β̂ 2

)> (
Σ

22)−1
(

δ̃ −Fδ β̂ 2

))
, (11)

where

Fδ =

 f2(x1)
>

...
f2(xk2)

>

 ,
Σ22 = τ2

δ
Rδ (D2,D2;θ δ )+Σδ̃

ε , with Σδ̃
ε = diag

(
Var(ζ̄ {2}(x1)−ρζ̄ {1}(x1)), . . . ,Var(ζ̄ {2}(xk2)−ρζ̄ {1}(xk2))

)
,

and for xi ∈ D2,

Var(ζ̄ {2}(xi)−ρζ̄
{1}(xi)) = Var(ζ̄ {2}(xi))+ρ

2Var(ζ̄ {1}(xi))−2ρCov(ζ̄ {2}(xi), ζ̄
{1}(xi))

= V{2}(xi)/n{2}i +ρ
2V{1}(xi)/n{1}i −2ρCov(ζ {1}j (xi),ζ

{2}
j (xi))/max{n{1}i ,n{2}i }.

First, we need to estimate Σδ̃
ε in Σ22 and replace it by its estimator in (11). Estimates of ρ , τ2

δ
and θ 2 can

be obtained by suitable optimization routines subsequently.
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3 METHODS FOR STEADY-STATE VARIANCE ESTIMATION

In this section we review a small selection of methods for steady-state variance estimation. These methods
facilitate the application of SCK using outputs from within a single high-fidelity simulation replication. We
will concentrate on discrete-time processes (continuous-time processes can be handled in a similar manner).
Recall that at each low-fidelity design point xi in D1, we run n{1}i independent simulation replications and

generate i.i.d. outputs {Y {1}
j (xi)}

n{1}i
j=1. The output Y

{1}
j (xi) generated on the jth simulation replication is

considered as the sample mean of s{1}i basic outputs, i.e., Y
{1}

1 (xi) = ∑
s{1}i
t=1Yt(xi)/s{1}i . On the other hand,

at each high-fidelity design point xi ∈ D2, a single simulation replication is performed with a runlength
much longer than that of a low-fidelity simulation replication, i.e., s{2}i >> s{1}i , and produces a single

point estimate Y
{2}

1 (xi) = ∑
s{2}i
t=1Yt(xi)/s{2}i , the sample mean of s{2}i basic outputs at xi.

Given a single long simulation replication at each high-fidelity design point xi ∈D2, we next consider
estimating the variance of the sample mean, V{2}(xi), via some selected correlation-based methods; see
details from, for example, Alexopoulos and Goldsman (2004), Goldsman and Nelson (2006), Alexopoulos
et al. (2007) and Alexopoulos et al. (2007). For ease of exposition, we omit the design point xi from our
notation and further denote V{2}(xi) by V.

Nonoverlapping Batch Mean Variance Estimator (NBM)

Suppose that each high fidelity run has a runlength of s{2} = mb, and the simulation outputs, Y1,Y2, . . . ,Ys{2} ,
can be divided into b contiguous, nonoverlapping batches of outputs, each of batch size m. That is, the ith
batch is consisted of observations Y(i−1)m+1,Y(i−1)m+2, . . . ,Yim, for i = 1,2, . . . ,b. The NBM estimator for
V is given by

V̂
{2}
NBM =

m
(b−1)s{2}

b

∑
i=1

(Ȳi,m− Ȳs{2})
2
,

where Ȳi,m = m−1
∑

m
`=1Y(i−1)m+` for i = 1,2, . . . ,b; and Ȳs{2} = ∑

s{2}
i=1 Yi/s{2}.

The next two variance estimators are constructed from the following standardized time series (STS)
based on the ith nonoverlapping batch of size m,

Ti,m(t) =
bmtc

(
Ȳi,m− Ȳi,bmtc

)
√
Vm

, for t ∈ [0,1],

where b·c denotes the floor function and Ȳi, j = j−1
∑

j
`=1Y(i−1)m+` denotes the jth cumulative sample mean

for j = 1,2, . . . ,m from the ith batch, i = 1,2, . . . ,b.

Nonoverlapping Batched Area Variance Estimator (NA)

We denote Ai( f ;m) as the weighted area estimator computed under the STS from the ith nonoverlapping
batch,

Ai( f ;m) =

[
m−1

m

∑
`=1

f
(
`

m

)
V

1
2 Ti,m

(
`

m

)]2

, for i = 1,2, . . . ,b.

where f (·) is a weighting function and we adopt f (t) =
√

840(3t2− 3t + 0.5) for t ∈ [0,1] in Section 4
for numerical evaluations; see other weighting functions from, for instance, Goldsman and Nelson (2006).
The NA estimator follows as

V̂
{2}
NA =

1
bs{2}

b

∑
i=1

Ai( f ;m).

1756



Chen, Hemmati and Yang

Nonoverlapping Batched Weighted Cramér-von Mises Estimator (NCvM)

We denote Ci(g;m) as the weighted area under the STS from the ith nonoverlapping batch,

Ci(g;m) = m−1
m

∑
`=1

g
(
`

m

)
VT 2

i,m

(
`

m

)
, for i = 1,2, . . . ,b.

where g(·) is a weighting function and we adopt g(t) = −24+ 150t − 150t2 for t ∈ [0,1] in Section 4
for numerical evaluations; other weight functions can be found from, for example, Goldsman and Nelson
(2006). The NCvM estimator is given by

V̂
{2}
NCvM =

1
bs{2}

b

∑
i=1

Ci(g;m).

Overlapping Batch Mean Variance Estimator (OBM)

Suppose that we divide Y1,Y2, . . . ,Yn{2}i
into s{2}−m+1 overlapping batches, each of size m. That is, the

observations Y1,Y2, . . . ,Ym comprise the 1st batch, and Y2,Y3, . . . ,Ym+1 form the 2nd batch, and so on. In
general, Yi,Yi+1, . . . ,Yi+m−1 form the ith batch, for i = 1,2, . . . ,n{2}i −m+ 1. The OBM estimator can be
given by

V̂
{2}
OBM =

s{2}m
(s{2}−m+1)(s{2}−m)s{2}

s{2}−m+1

∑
i=1

(
Ȳ O

i,m− Ȳs{2}
)2
,

where Ȳ O
i,m = m−1

∑
m−1
`=0 Yi+` for i = 1,2, . . . ,s{2}−m+1, and Ȳs{2} = ∑

s{2}
i=1 Yi/s{2}.

The next two variance estimators are constructed from the following STS based on the ith overlapping
batch of size m,

T O
i,m(t) =

bmtc
(

Ȳ O
i,m− Ȳ O

i,bmtc

)
√
Vm

, for t ∈ [0,1],

for i = 1,2, . . . ,s{2}−m+1, where Ȳ O
i, j = j−1

∑
j−1
`=0 Yi+` for i = 1,2, . . . ,s{2}−m+1 and j = 1,2, . . . ,m.

Overlapping Batched Area Variance Estimator (OA)

We denote AO
i ( f ;m) as the weighted area estimator computed under the STS from the ith overlapping

batch,

AO
i ( f ;m) =

[
m−1

m

∑
`=1

f
(
`

m

)
V

1
2 T O

i,m

(
`

m

)]2

, for i = 1,2, . . . ,s{2}−m+1,

where the weighting function f is the same as described for the NA estimator. The OA estimator then
follows as

V̂
{2}
OA =

1
(s{2}−m+1)s{2}

s{2}−m+1

∑
i=1

AO
i ( f ;m).

Nonoverlapping Batched Weighted Cramér-von Mises Estimator (OCvM)

We denote CO
i (g;m) as the weighted area under the STS from the ith overlapping batch,

CO
i (g;m) = m−1

m

∑
`=1

g
(
`

m

)[
V

1
2 T O

i,m

(
`

m

)]2

, for i = 1,2, . . . ,s{2}−m+1.
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where the weighting function g is the same as described for the NCvM estimator. The OCvM estimator
then follows as

V̂
{2}
OCvM =

1
(s{2}−m+1)s{2}

s{2}−m+1

∑
i=1

CO
i (g;m).

4 AN M/M/1 QUEUE EXAMPLE

Consider simulating an M/M/1 queue with arrival rate 1 per time unit and service rate x per time unit
with x ∈X = [1.1,2]. It is well known from queueing theory that the mean steady-state waiting time in
the queue is Y(x) = 1/

(
x(x− 1)

)
(Whitt 1989), which is the function we intend to estimate. For each

simulation experiment, a set of k equispaced design points are chosen from X , with x1 = 1.1 and xk = 2.
Each simulation replication (run) is initialized either in empty state or steady state, and the runlength T is
specified by the number of simulated customers. We note that the value of T here determines the steady-state
simulation fidelity level. The simulation output on a given replication is the sample-path average waiting
time of the T customers simulated.

4.1 Experiment Setup

Two-fidelity-level simulation experiment. We consider two sets of two-fidelity-level simulation experiment,
which share the common low-fidelity simulation runs and only differ in the high-fidelity simulation runs.
The low-fidelity design-point set D1 consists of a grid of 25 equidistant design points in [1.1,2] with x1 = 1.1
and x25 = 2. At each design point in D1, n{1} = 10 simulation replications are applied and the runlength
of each replication is 5000. The high-fidelity design-point set D2 ⊂ D1 consists of 4 design points, i.e.,
D2 = {x1,x9,x17,x25}. We consider the following two types of high-fidelity simulation runs:

1. High-fidelity simulation with multiple replications: At each design point in D2, n{2} = 4 repli-
cations are applied with each replication having a runlength of 275,000. Therefore, the simulation
budget expended at each high fidelity design point is 1.1×106.

2. High-fidelity simulation with a single replication : At each design point in D2, a single simulation
replication is applied with a runlength of 1.1×106.

Despite the difference in the two sets of high-fidelity simulation runs, we note that the resulting total
simulation budget for the above two sets of two-fidelity-level simulation experiment stays the same which
is 5.65×106.

Single-fidelity-level simulation experiment. We consider conducting a single-fidelity-level simulation
experiment at the same set of design points as those in D1. Specifically, at each design point in D1, n = 10
replications are applied with each replication having a runlength of 22,600. The total simulation budget
is the same as that of the two sets of two-fidelity-level simulation experiment.

We consider the following metamodeling methods and compare their predictive performance: (1)
stochastic kriging applied with the single-fidelity-level simulation experiment (SK-1L), (2) stochastic co-
kriging applied with the two-fidelity simulation experiment in which high-fidelity simulations are replicated
(SCK-mH), and (3) stochastic co-kriging applied with the two-fidelity simulation experiment in which
a single high-fidelity simulation replication is used (SCK-sH). For implementing SCK-sH, we use the
methods reviewed in Subsection 3 for estimating the variance of a point estimate using the individual
waiting times generated from within a single long replication. Notice that for the sake of brevity, we omit
the results obtained by SCK with OCvM and OA applied. An important decision in this context is to
determine the batch size m to use for variance estimation. For discussions of appropriate batch sizes to use,
see Nelson (2011), Song and Schmeiser (1995) and Song (1996), to name a few. In our implementation,
we set the ratio of the runlength to the batch size b = s{2}/m to 20, 50, and 110 which corresponds to
m = 55,000, 22,000, 10,000, respectively.
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A grid of K = 193 equispaced check-points are chosen from X to evaluate predictive performance
of stochastic co-kriging (SCK) and stochastic kriging (SK). The aforementioned two-fidelity-level and
single-fidelity-level experiments are respectively executed for 100 independent macro-replications, and the
predictive performance measure, the empirical root mean squared errors (ERMSE), is calculated as follows,

ERMSE` =

√
1
K

K

∑
i=1

(
Ŷ`(xi)−Y(xi)

)2
, `= 1,2, . . . ,100, (12)

where Ŷ`(·) represents the prediction given by SCK or SK on the `th macro-replication.

4.2 Summary of Results

The ERMSEs obtained by SCK and SK from 100 macro-replications are summarized in Table 1. The value
in each cell of Table 1 is the average ERMSE obtained across the 100 macro-replications; and the value
in parentheses is the corresponding standard error. We observe that regardless of the initializing condition,
SCK-mH outperforms SCK-sH and SK-1L and SK-1L performs the worst. The performances achieved by
SCK-sH with different batch means methods applied is close to one another, and the ERMSEs obtained
are relatively stable as the batch size increases from 10,000 to 55,000. In terms of experimental design
for the two-level-fidelity simulation experiment, we observe that while keeping the low-fidelity simulation
runs fixed, SCK seems to work better with a few moderately long simulation replications as compared to a
single long simulation replication; and a lack of replications at high-fidelity design points may lead to loss
of predictive accuracy achieved by SCK. Lastly, initializing a simulation run at steady state does not seem
to make a significant impact on the performance achieved by SCK as opposed to initializing in empty state.

Table 1: Results for the M/M/1 queueing example.

Initialization SK-1L SCK-mH SCK-sH + batch mean methods

Empty state 0.484
(0.008)

0.39
(0.01)

batch size NBM NA NCvM OBM

10,000
0.40

(0.02)
0.41

(0.02)
0.41

(0.02)
0.40

(0.02)

22,000
0.40

(0.02)
0.41

(0.02)
0.41

(0.02)
0.40

(0.02)

55,000
0.40

(0.02)
0.41

(0.02)
0.41

(0.02)
0.40

(0.02)

Steady state 0.494
(0.007)

0.38
(0.01)

batch size NBM NA NCvM OBM

10,000
0.40

(0.01)
0.41

(0.01)
0.41

(0.01)
0.40

(0.01)

22,000
0.40

(0.01)
0.41

(0.01)
0.41

(0.01)
0.40

(0.01)

55,000
0.40

(0.01)
0.41

(0.01)
0.41

(0.01)
0.40

(0.01)

5 CONCLUSIONS

In summary, we have presented the stochastic co-kriging methodology (SCK) for approximating an steady-
state mean response surface based on outputs from both long and short simulation replications performed at
selected design points. We have provided details on how to construct an SCK metamodel, perform parameter
estimation, and make prediction via SCK. From a deign of simulation experiments perspective, metamodels
reduce the computational cost of exploring large regions of the design space by replacing replicated long
simulations required to obtain accurate steady-state mean parameter estimates. However, it is well known
that a substantial computational effort is involved in performing long steady-state simulations to build
metamodels. Using SCK proposed in this paper, with the same computational effort expended, it is possible
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to improve the accuracy of the metamodels obtained from the relatively short simulation replications, by
supplementing the outputs from these simulations with outputs from long simulation replications performed
at only a few design points. Therefore, it is possible to explore a design space with enhanced metamodels that
are more accurate than metamodels based entirely on short simulation replications but less computationally
expensive than metamodels based exclusively on long simulation replications.

We have shown the promise of using SCK for approximating a mean response surface using simulation
runs performed to two levels of fidelity. This method can be extendable to multiple levels and there exist
many other types of wisdom that may be incorporated into simulation experimental designs for SCK,
such as approximation results from queueing theory (e.g., Whitt 1989 and Whitt 2006). Future research
topics include investigating design-point sets for performing simulations with different levels of fidelity
and seeking suitable simulation budget allocation rules when a fixed computational budget is given.
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