
Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

FITTING CONTINUOUS PIECEWISE LINEAR POISSON INTENSITIES VIA MAXIMUM
LIKELIHOOD AND LEAST SQUARES

Zeyu Zheng

Peter W. Glynn

Department of Management Science and Engineering

Stanford University

Stanford, CA 94305, USA

ABSTRACT

We investigate maximum likelihood (ML) and ordinary least squares (OLS) methods to fit a continuous
piecewise linear (PL) intensity function for non-homogeneous Poisson processes. The estimation procedures
are formulated as convex optimization problems that are highly tractable. We also study the model mis-
specification issues in settings where the point process is non-Poisson or the underlying intensity is not
piecewise linear. The performances of ML and OLS estimators are exhibited through a computational
study, with both simulated data and real data from a large U.S. bank call center.

1 INTRODUCTION

Many applications settings require simulation models that are fed by point processes that exhibit non-
stationarities. In particular, in many service contexts, the point process describes customer, job, or order
arrival epochs, and the non-stationarity is induced by time-of-day or day-of-week effects. Such applications
lead naturally to consideration of non-homogeneous Poisson processes (NHPPs). A NHPP is a point process
N = (N(t) : t ≥ 0) having independent and Poisson-distributed increments, for which EN(t) = Λ(t), where
Λ(·) is a non-decreasing deterministic function. When Λ(·) can be expressed in the form Λ(t) =

∫ t
0 λ (s)ds

λ (·) is called the intensity (or rate) function of the process, and Λ(·) is known as the integrated (or
cumulative) intensity function.

In this paper, we consider settings in which we have available observed data from which to estimate
the intensity function of the NHPP. Specifically, we assume we have observed n independent realizations
of the point process over a day (when time-of-day effects are the key non-stationarity to be modeled) or a
week (when weekly effects need to be incorporated). When n is very large, one can statistically estimate the
intensity via non-parametric methods; see Henderson (2003) for a specific implementation that is reasonably
easy to simulate. For small or moderate values of n, parametric models may be more suitable. The most
widely used such models in practice involve subdividing the time interval in question (a day or a week)
into sub-intervals, say p of them, and then fitting a constant rate intensity over each of the p sub-intervals.
Such a fitted intensity seems aesthetically unreasonable, given its implausible discontinuities, and is likely
to predict poorly at times that are close to the sub-interval boundaries.

This suggests consideration of the next simplest parametric model, namely one in which the intensity
is linear over each sub-interval, and continuous at the sub-interval boundaries. We call such an intensity a
piecewise linear (PL) intensity. Such a model comes at a modest cost in terms of the number of parameters
to be estimated relative to the piecewise constant version. In fact, if the intensity is assumed to be periodic
(as may occur when the facility is open 24 hours per day or is open 7 days per week), then the PL
model involves precisely the same number of parameters as for the commonly used piecewise constant
model, namely p. We also note that the simulation of NHPPs with PL intensities is only marginally more
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complicated than for piecewise constant intensities; see Klein and Roberts (1984) for a discussion of an
efficient implementation.

One challenge with the PL model is that there is no closed form for the estimators of the parameters,
because it can be that the required non-negativity constraints will become active when computing the
estimated intensity that best fits the observed data. Thus, the problem of computing the PL estimator that
best fits a given data set will involve numerically solving a constrained optimization problem.

This paper studies the optimization problem that arises when maximum likelihood (ML) is applied
to estimation of a PL intensity. We consider the problem both when the point process arrivals are fully
observed (so that each “customer” arrival is observed) and when only interval count data is available.
Section 2 shows that the optimization formulation leads to a very tractable convex programming problem.
In Section 3, we discuss the use of ordinary least squares (OLS) as an alternative to ML estimation of PL
intensities, and discuss and contrast the estimation properties of these different estimators. Both of these
methods are based on specific statistical assumptions, and carry the advantages that a statistical formulation
implies. In particular, such models permit the construction of confidence intervals, goodness-of-fit tests,
and hypothesis tests.

One can also consider PL intensity fitting methods that start from observed data, but are not based
upon a statistical formulation of the problem. For example, one can choose to compute the PL estimator
without any non-negativity constraints, and to dynamically increase the number of sub-intervals (if needed)
until the unconstrained problem solves with a non-negative intensity. In such approaches, one is free to
also add a penalty term to the objective function that measures the model fit. Such penalty terms can
serve to enforce “smoothness” of the solution (by, for example, penalizing large “second derivatives,” as
evidenced by large changes in the slope of the PL intensity from one interval to the next). The papers of
Chen and Schmeiser (2013) and Nicol and Leemis (2014) follow this approach. Methods on piecewise
linear cumulative intensity fitting are discussed in Leemis (1991) and Leemis (2004).

Our main contributions in this paper are:

1. Development of a convex programming formulation of the maximum likelihood estimation problem
for estimating a PL intensity, as well as associated code for computing it (Section 2);

2. Development of an ordinary least squares method for estimating a PL intensity (Section 3), as well
as related code;

3. Study of model mis-specification issues for ML and OLS in settings where the point process is
non-Poisson or the true underlying intensity is not PL (Section 4).

4. A computational study of the ML and OLS estimators, and their performance relative to previous
PL estimators introduced by Chen and Schmeiser (2013) and Nicol and Leemis (2014) (Section 5).

As noted earlier, a principal reason for use of statistically formulated models is the ability to construct
confidence intervals, goodness-of-fit tests, and hypothesis tests. These ideas will be explored in greater
detail in Zheng and Glynn (2017).

2 FITTING PIECEWISE LINEAR INTENSITIES VIA MAXIMUM LIKELIHOOD

Suppose that we wish to estimate the true intensity λ ∗(·) underlying the NHPP N over the interval [0, t]. We
presume that λ ∗ is linear over each of the intervals (t0, t1],(t1, t2], · · · ,(tp−1, tp], where 0= t0 < · · ·< tp = t, and
is continuous over [0, t]. In particular, if y∗i = λ ∗(ti), it follows that λ ∗(s)= λ (y∗;s), where y∗ =(y∗0,y

∗
1, . . . ,y

∗
p)

and

λ (y;s) = yi−1 +

(
yi − yi−1

ti − ti−1

)
(s− ti−1) (1)

for ti−1 ≤ s ≤ ti, 1 ≤ i ≤ p and any y = (y0, . . . ,yp). We start by considering the case where λ ∗ is periodic,
so that y∗0 = y∗p and assuming that the ti’s are known. In this case, the model for λ ∗ has p parameters
y∗1, . . . ,y

∗
p that must be estimated from the data.
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We presume that we have available n independent and identically distributed (iid) observations of the
point process N, call them N1,N2, . . . ,Nn. We start with the case in which the Ni’s are fully observed, so
that the corresponding arrival times are known. The ML optimization problem can be expressed in terms
of the (normalized) log-likelihood Ln(·) given by

Ln(y) =
1

n

n

∑
i=1

∫
(0,t]

logλ (y;s)Ni(ds)−
∫ t

0
λ (y;s)ds. (2)

The ML optimization problem can then be expressed as

max
y0,y1,...,yp

Ln(y0,y1, . . . ,yp)

s.t. y0 = yp

yi ≥ 0, 0 ≤ i ≤ p.

(3)

The ML estimator ŷn for y∗ is, of course, the maximizer of (3).
It is easily seen that −Ln(·) is convex, subject to a linear equality constraint and p+1 linear inequality

constraints. This structure makes the problem computationally tractable, even for large data sets and
moderate values of p. We have written an R/MATLAB code implementation that is available online; see
http://poisson.zhengzeyu.com. In our experiments, this code can successfully solve problems involving
tens of thousands of observations with up to hundreds of parameters; see also Grant and Boyd (2014).

To gain some insight into the convex programming problem (3), we note that we can eliminate the
variable y0, since y0 = yp. It follows that when ŷn = (ŷn1, . . . , ŷnp) is an interior solution, so that ŷni > 0
for 1 ≤ i ≤ p, then ŷn is a root of

∂
∂yi

L (ŷn) = 0

for 1 ≤ i ≤ p. This implies that

1

n

n

∑
j=1

∫
(ti,ti+1]

(
ti+1 − s
ti+1 − ti

)(
Nj(ds)
λ (ŷn;s)

−ds
)
+

1

n

n

∑
j=1

∫
(ti−1,ti]

(
s− ti−1

ti − ti−1

)(
Nj(ds)
λ (ŷn;s)

−ds
)
= 0 (4)

for 1 ≤ i ≤ p−1 and

1

n

n

∑
j=1

∫
(t0,t1]

(
t1 − s
t1 − t0

)(
Nj(ds)
λ (ŷn;s)

−ds
)
+

1

n

n

∑
j=1

∫
(tp−1,tp]

(
s− tp−1

tp − tp−1

)(
Nj(ds)
λ (ŷn;s)

−ds
)
= 0. (5)

We note that the p equations above then uniquely determine the p values ŷn1, . . . , ŷnp when the number
of observed arrivals in each sub-interval is non-zero. This uniqueness holds more generally, even in the
setting where the constraints are active.

PROPOSITION 1 Suppose that the number of observed arrivals in each sub-interval is non-zero (i.e.,

∑n
k=1 Nk(ti−1, ti]> 0 for i = 1,2, . . . , p) and that the total number of observed arrivals is larger than p (i.e.,

∑n
k=1 Nk(0, t]> p). Then, the ML optimization problem (3) solves uniquely.

For the proof, see Zheng and Glynn (2017).

We further observe that we can multiply equation i in (4) by ŷni and (5) by ŷnp and sum them. This
yields the conclusion that

1

n

n

∑
j=1

∫
(0,t]

Nj(ds) =
∫
(0,t]

λ (ŷn;s)ds, (6)
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so that the estimated intensity has the same integral (or associated area) as does the data. We call this
the global equal area property of the ML estimator. This is the sample analog of the “mean-constrained”
intensity function concept introduced by Chen and Schmeiser (2013).

The global equal area property (EAP) may be generalized to settings in which the non-negativity
constraints are binding at ŷn.

PROPOSITION 2 Any maximizer ŷn of (3) satisfies the global EAP.

Proof. We note that rŷn is feasible for r ≥ 0, since ŷn is. Furthermore, Ln(ŷn) ≥ Ln(rŷn) for r ≥ 0,
since ŷn is a maximizer. Note that λ (rŷn; ·) = rλ (ŷn; ·), so

Ln(ŷn)−Ln(rŷn) =− logr · 1

n

n

∑
i=1

∫
(0,t]

Ni(ds)+(r−1)
∫
(0,t]

λ (ŷn;s)ds.

Since r∗ = 1 is a minimizer of L (ŷn)−L (rŷn) over r ≥ 0, d
drL (rŷn)|r=1 = 0, yielding (6).

We turn next to the setting in which the observed data are interval count data. Here, the observations from
Nj on (ti−1, ti] consist of interval counts Nj(si0,si1], . . . ,Nj(simi−1

,simi ] for ti−1 = si0 < si1 < · · · < simi = ti,
where Nj(a,b] is the number of observations associated with Nj on the interval (a,b]. Note that mi is the
number of subinterval observations between slope changes (ti−1, ti] and ti−1 = si0 < si1 < · · ·< simi = ti are
the boundaries of these subintervals. This changes the log-likelihood that enters the ML optimization to
the interval log-likelihood L I

n (·) given by

L I
n (y) =

p

∑
i=1

mi

∑
j=1

log

(
λ (y;si, j−1)+λ (y;si j)

2

)
1

n

n

∑
k=1

Nk(si, j−1,si j]−
∫
(0,t]

λ (y;s)ds.

Of course, here the ML optimization problem becomes

max
y0,y1,...,yp

L I
n (y0,y1, . . . ,yp)

s.t. y0 = yp

yi ≥ 0, 0 ≤ i ≤ p.

(7)

Again, the ML estimator ŷn is the maximizer of (7). As in the fully observed setting, this problem can
be viewed as a convex optimization problem with linear constraints, and the R/MATLAB code discussed
earlier in this section is designed to handle this type of interval count data as well.

A particularly simple case is when mi = 1 for 1 ≤ i ≤ p, so that the count data corresponds precisely
to the PL sub-intervals that are used to define λ (y; ·). In this case, λ (y;si0) = yi−1 and λ (y;simi) = yi. The
analogs to the gradient conditions (4) and (5) are then

1

ŷn,i−1 + ŷni
· 1

n

n

∑
k=1

Nk(ti−1, ti]− 1

2
(ti − ti−1)+

1

ŷni + ŷn,i+1
· 1

n

n

∑
k=1

Nk(ti, ti+1]− 1

2
(ti+1 − ti) = 0 (8)

for 1 ≤ i ≤ p−1 and

1

ŷn,p−1 + ŷn0
· 1

n

n

∑
k=1

Nk(tp−1, tp]− 1

2
(tp − tp−1)+

1

ŷn0 + ŷn1
· 1

n

n

∑
k=1

Nk(t0, t1]− 1

2
(t1 − t0) = 0. (9)

When the interval counts are all positive, (8) and (9) together imply that

1

ŷn,i−1 + ŷni
· 1

n

n

∑
k=1

Nk(ti−1, ti]− 1

2
(ti − ti−1) = 0
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for 1 ≤ i ≤ p, so that

1

n

n

∑
k=1

Nk(ti−1, ti] =
ŷn,i−1 + ŷni

2
(ti − ti−1)

=
∫ ti

ti−1

λ (ŷn;s)ds

for 1 ≤ i ≤ p. In other words, the ML estimator ŷn then has the property that the integral of λ (ŷn, ·) over
each sub-interval (ti−1, ti] agrees with the observed count intensity for that sub-interval. When this holds,
we call this the local equal area property (or local EAP).

We conclude this section by noting that in some service contexts, one need not require periodicity. For
example, if a service facility is only open for part of each day, the intensity need not be periodic. In this
setting, the linear equality constraint y0 = yp is dropped from (3) in the fully observed context and (7) in
the interval count setting, so that the model now has p+1 free statistical parameters (rather than p).

Again, the ML optimization problems can be solved as convex optimization problems subject to linear
inequality constraints; our R/MATLAB code covers these settings as well. The question of whether these
problems have unique maximizers is again of importance.

PROPOSITION 3 Suppose that the number of observed arrivals in each sub-interval is non-zero (i.e.,

∑n
k=1 Nk(ti−1, ti] > 0 for i = 1,2, . . . , p) and that ∑p

i=1 ∑mi
j=1 I(∑n

k=1 Nk(si, j−1,si j] > 0) > p. Then, the ML
optimization problem (7) in the interval count setting solves uniquely.

For the proof, see Zheng and Glynn (2017).

3 FITTING PIECEWISE LINEAR INTENSITIES BY ORDINARY LEAST SQUARES

In this section, we discuss an alternative estimation approach, based on ordinary least squares (OLS), for
fitting a PL intensity to observed data. We focus exclusively on the setting in which only interval count
data are available. Specifically, we consider the following objective function

βn(y)�
p

∑
i=1

mi

∑
j=1

1

n

n

∑
k=1

(
Nk(si, j−1,si j]−

∫
(si, j−1,si j]

λ (y;s)ds
)2

.

Assuming that the intensity λ ∗(·) is periodic, the OLS optimization problem is then given by

min
y0,y1,...,yp

βn(y0,y1, . . . ,yp)

s.t. y0 = yp

yi ≥ 0, 0 ≤ i ≤ p.

(10)

The OLS estimator ŷLS
n is the minimizer of (10), assuming it is unique. An important special case arises

when mi = 1 for 1 ≤ i ≤ p. In that case, one can make ∇yβn(ỹ) = 0 at any ỹ for which the local EAP(
ỹi−1 + ỹi

2

)
(ti − ti−1) =

1

n

n

∑
k=1

Nk(ti−1, ti] (11)

holds for 1 ≤ i ≤ p. If we view (11) as a linear system in the unknown ỹi’s, it turns out that the yi’s are
uniquely determined when p is odd. Specifically,

ỹi =
1

2

p

∑
j=i+1

bn j(−1) j−i−1 +
1

2

i

∑
j=1

bn j(−1)p+ j−i−1I(i ≥ 1)
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for 0 ≤ i ≤ p− 1 with ỹp = ỹ0, where bn j =
2
n ∑n

k=1 Nk(ti−1, ti]/(ti − ti−1). Hence, if ỹ = (ỹ1, . . . , ỹp) is

feasible for (10), the OLS estimator ŷLS
n coincides with this ỹ and is unique. Since the local EAP uniquely

determines ỹ in this case, it follows that ŷLS
n must then coincide with the ML estimator ŷn.

But when p is even, (11) has an infinite number of solutions (unlike the ML setting), and it can be
that there are then infinitely many feasible minimizers of (10). In this case, one may need to add further
requirements on the minimizer (e.g. smoothness of the solution) so as to select the OLS estimator.

As in the ML setting, we are able to provide a sufficient condition guaranteeing a unique minimizer
(and hence a unique ŷLS

n ) to (10).

PROPOSITION 4 Suppose that the number of observed arrivals in each sub-interval is non-zero (i.e.,

∑n
k=1 Nk(ti−1, ti]> 0 for i = 1,2, . . . , p) and that ∑p

i=1 mi > p. Then, the OLS optimization problem (10) in
the interval count setting solves uniquely.

For the proof, see Zheng and Glynn (2017).

Again, the discussion above generalizes in a natural way to the setting where λ ∗(·) is not periodic. We
also note that our R code implementation includes an OLS solver that numerically minimizes (10).

4 MODEL MIS-SPECIFICATION

In this section, we briefly discuss model mis-specification issues for our ML and OLS estimators. We start
by noting that the OLS estimator does not require that N be a NHPP. In fact, the essential requirements

for the consistency of λ̂ LS
n are only that N(·) be square-integrable and that

EN(si, j−1,si j] =
∫
(si, j−1,si j]

λ (y∗;s)ds

for 1 ≤ j ≤ mi, 1 ≤ i ≤ p. In particular, consistency does not rest on the fact that N(s,u] follows a Poisson
distribution for 0 ≤ s ≤ u ≤ t. Our fully observed ML estimator also does not require the Poisson structure
in order to exhibit consistency.

Suppose that we demand only that

EN(0,s] =
∫
(0,s]

λ ∗(u)du (12)

for 0 ≤ s ≤ t. It follows that
1

n

n

∑
k=1

Nk(0,s]→
∫
(0,s]

λ (y∗;u)du a.s. (13)

for s ∈ [0, t]. Furthermore, in view of the global EAP enjoyed by λ̂n, we find that
∫
(0,t]

λ̂n(s)ds →
∫
(0,t]

λ (y∗;s)ds a.s.

as n → ∞. Also, for each feasible y,

∫
(0,t]

logλ (y;s)
1

n

n

∑
k=1

Nk(ds)→
∫
(0,t]

logλ (y;s)λ (y∗;s)ds a.s.

as n → ∞. For feasible y �= y∗ for which
∫
(0,t]

λ (y;s)ds =
∫
(0,t]

λ (y∗;s)ds,
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Jensen’s inequality implies that
∫
(0,t]

logλ (y;s)λ (y∗;s)ds <
∫
(0,t]

logλ ∗(y;s)λ ∗(y;s)ds.

It follows that λ (ŷn;s) → λ (y∗;s) a.s. for s ∈ (0, t]. Again, the consistency argument does not require
Poisson structure.

We turn next to studying the behavior of λ̂n in the presence of (12) when λ ∗ is not piecewise linear.
The global EAP and (13) suggest that ŷn converges to ỹ, where ỹ is the maximizer of

max
y0,y1,...,yp

∫
(0,t]

log

(
λ (y;s)
λ ∗(s)

)
λ ∗(s)ds

s.t.

∫
(0,t]

λ (y;s)ds =
∫
(0,t]

λ ∗(s)ds

y0 = yp

yi ≥ 0, 0 ≤ i ≤ p.

(14)

In other words, λ̂n then converges to the feasible function λ (ỹ; ·) that minimizes the relative entropy of λ ∗
with respect to λ (y; ·). For a full proof, see Zheng and Glynn (2017).

5 COMPUTATIONAL COMPARISON

In this section, we demonstrate the performances of ML and OLS methods on simulated data and real data.
For simulated data, we consider one case in which the true intensity is PL and a second case in which the
true intensity is a smooth non-PL function. For real data, we study the customer arrival data from a large
US bank call center.

There are four methods under consideration. The first two are ML and OLS methods presented in
Sections 2 and 3. The third method is a “mean-constrained” method introduced by Chen and Schmeiser
(2013) and (Nicol and Leemis 2014) where the local EAP is required. The fourth method is the piecewise
constant (PC) intensity estimator; see Law and Kelton (1991). In order to measure the performance of a

fitted intensity function λ̂ (·) in comparison with the true intensity function λ ∗(·), we introduce L1 and L∞
differences, defined respectively by

d1(λ̂ ,λ ∗) =
∫ t

0
|λ̂ (s)−λ ∗(s)|ds

and
d∞(λ̂ ,λ ∗) = max

0≤s≤t
|λ̂ (s)−λ ∗(s)|.

In the first case with simulation data, the true intensity function is PL on (0,24], as shown by the
black line in Figure 1. We run 1000 independent replications where in each replication, we simulate
respectively n = 10,40,160 copies of the NHPP with the given PL intensity. We collect count data from
m = 24 equal-spaced sub-intervals and use them as input data for all fourth methods. For the ML and OLS
methods, we fit a PL intensity with p = 6 equal-spaced intervals. For mean-constrained and PC methods,
we use the best available intensity estimators with the count data available.

In the second case with simulation data, the true intensity function is non-PL but Lipschitz continuous,
as shown by the black line in Figure 2. We run 1000 independent replications and in each replication we
simulate respectively n = 10,40,160 copies of the NHPP with the given non-PL intensity. We collect count
data from m = 12 equal-spaced sub-intervals and use them as input data for all fourth methods. For ML
and OLS, we fit a PL intensity with p = 12 equal-spaced pieces. For mean-constrained and PC estimators,
we use the best available intensity estimators given the count data.

1746



Zheng and Glynn

Tables 1 and 2 present the results when the true intensity function is PL and non-PL, respectively. The
fitting performances of the fourth methods (named by “PL-ML”, “PL-OLS”, “PL-local EAP” and “PC” in
the table) are provided, measured by the L1 and L∞ distance. As shown by the tables, the ML method is the
best. The OLS method is nearly as good as ML. The mean-constrained local EAP method is moderately
worse, since requiring local EAP is heuristic and may lead to overfitting in some settings. The PC estimator
is significantly worse than the other three, since it fails to capture the slope information of the intensity
function, particularly when the intensity is changing rapidly.

We conclude this section by exhibiting an experiment with real data. We fit a PL intensity function to
the customer arrival process of a large US bank call center. This call center had about 50,000 customer
arrivals each day during 2001-2003. To avoid the day-of-week effect and long-term trends, we only use
data from all Mondays of the year 2001. The performance of the ML method is demonstrated where a
PL intensity function with 12 equal-spaced pieces is fitted. In Figure 3, the black line indicates the trace
arrivals histogram and the red line depicts the fitted PL intensity function. As shown in Figure 3, a simple
12-piece model performs well and successfully captures the rapid change in the customer arrival intensity
from 7-9 AM in the morning and 4-6 PM in the afternoon, which may help enhance managerial decision
making compared to a piecewise constant intensity model.

Table 1: Methods performance I.

Case PL-ML PL-OLS PL-local EAP PC

n p m L1 L∞ L1 L∞ L1 L∞ L1 L∞
10 6 24 42.6 5.4 45.1 6.3 277.7 58.2 356.9 79.6

40 6 24 20.0 2.4 21.9 2.7 129.1 26.7 349.9 73.3

160 6 24 9.7 1.50 9.9 1.54 57.3 11.5 348.1 71.2

Table 2: Methods performance II.

Case PL-ML PL-OLS PL-local EAP PC

n p L1 L∞ L1 L∞ L1 L∞ L1 L∞
10 12 46.6 12.1 50.0 12.4 70.0 14.1 102.2 35.8

40 12 30.6 11.42 32.6 11.45 42.5 12.0 94.0 35.2

160 12 24.6 11.1 23.9 11.2 33.18 11.6 91.25 34.9
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Figure 1: Fitting performance when true intensity is PL.
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Figure 2: Fitting performance when true intensity is non-PL.
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Figure 3: Fitting a PL intensity to call center customer arrivals.
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