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ABSTRACT 

The container flow in terminals at a port is often bottlenecked due to the slow operations of the quay 
cranes in a scarce terminal land space. The quay crane scheduling problem (QCSP) is a major problem 
because of the assignment of expensive quay cranes to multiple vessel-holds for container discharging 
and loading operation. This paper presents a hybrid QCSP Solver, which combines genetic algorithms for 
global search with steepest ascent hill climbing for local search. Numerical experiments are performed 
with small- and large-sized random QCSP instances. The experimental results revealed that the hybrid 
QCSP Solver provides a better solution than the stand-alone QCSP Solver. By scheduling the dynamic 
operation of quay cranes it is expected that the developed decision making tool will provide terminal 
planners with a guideline to enhancing the assignment of quay cranes to a vessel. 

1 INTRODUCTION 

The QCSP is a major problem because of the assignment of expensive quay cranes to multiple vessel-
holds for container discharging and loading operations. Thus, the feasible optimal and/or near-optimal so-
lutions affect the overall operational performance of the whole terminal containers. The main goal of 
studying the QCSP is to determine the sequence of discharging and loading operations for a quay crane 
(QC) to perform with the objective function of minimizing the completion time of a ship operation. The 
characteristics of the QCSP are that it is similar to the m-parallel machine problem and that it is different 
because precedence relationships exist among tasks and because certain tasks cannot be performed simul-
taneously. In other words, cranes could not cross with each other. Inputs necessary for the QCSP include 
a ship stowage plan with all constraints, time required to carry out each task, crane travel time between 
different tasks, and crane ready time. Attention has mainly focused on a variety of objective functions to 
find a solution for the QCSP. Examples of such an objective function include minimization of the aggre-
gate vessel delay cost (Peterkofsky and Daganzo 1990; Daganzo 1989 and 1990), maximization of the to-
tal profit by finding a crane-to-job match (Lim et al. 2004), minimization of the maximum relative tardi-
ness of vessel departures (Liu et al. 2005), and minimization of the vessel’s overall completion time (Kim 
and Park 2004; Sammarra et al. 2007; Lee et al. 2008; Legato et al. 2008).  
 Since quay crane service times are not deterministic, the use of the IP formulation to search for the 
optimal solution is no longer truly representative of the discharge/loading operations in port container 
terminals. Also, most mathematical models do not account for uncertainty. Various meta-heuristic ap-
proaches, such as genetic algorithms (GAs), are increasingly applied to the complex non-deterministic 
hard problem due to its remarkable capabilities of overcoming the existing methods. Many researchers 
have attempted to find the optimality for the QCSP to reflect reality. One of the trends in the genetic algo-
rithm research domain is to develop a new meta-heuristic method using artificial intelligence and biologi-
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cally inspired techniques. The concept of a hybrid genetic algorithm is becoming increasingly popular and 
has been successfully applied to many engineering optimization problems as well as a variety of problems 
in different fields, such as aerodynamic design, signal analysis, and water resources planning and man-
agement, among others. Although hybrid approaches using meta-heuristic methods are becoming increas-
ingly popular and have been successfully applied to many engineering problems, the use of a hybrid ap-
proach, which combines a global search with a local search to the QCSP, needs to be more explored. The 
development of an adaptive hybrid genetic algorithm for the optimization of the QCSP is driven and mo-
tivated by both the lack of success in finding an efficient optimal solution algorithm to the QCSP and the 
need for an adaptive hybrid global-local search approach to the QCSP. 

2 PROBLEM DEFINITION 

The QCSP is a search problem involving the loading and unloading of containers with the use of quay 
cranes. The proposed algorithm assumed that a berth schedule has already been provided, although in 
practice the berth scheduling problem is affected by the vessel handling time which is dependent on the 
distance between the berthing position of the vessel and the storage area, the number of quay cranes as-
signed to the vessel, and the number of internal transport vehicles assigned to vessels’ quay cranes (Boile 
et al. 2009). The objective is to find a way to minimize the time a ship must wait in port (load/unload the 
containers as rapidly as possible) and maximize the effective use of quay cranes available (they should 
not be idle). To simplify the complexity of the problem, a few assumptions are made: (1) QCs are identi-
cal in terms of productivity that loads and unloads containers, and (2) A berth schedule has already been 
provided. Consider just the ship and the QCs assigned to the ship. The QCSP has the following con-
straints: (1) QCs are on one track, and therefore cannot cross each other (if quay crane k handles ship bay 
b and quay crane k' handles ship bay b' then k + 1 ≤ k'), (2) Each QC is functional and can be used at any 
time (if it’s not already in use), (3) Some tasks precede others (A > B implies that A needs to be finished 
before B can start), (4) Some tasks cannot be performed simultaneously due to QCs interfering with each 
other, and (5) Every ship bay is handled by only one QC, and a QC can handle only one ship bay at any 
time. 

3  HYBRID GENETIC ALGORITHM 

This section presents a hybrid strategy to develop a hybrid QCSP Solver using genetic algorithm for 
global search and steepest ascent hill climbing for local search, followed by the step-by-step procedure of 
the algorithm development. The step-by-step procedure for development of a hybrid QCSP Solver in-
cludes chromosome encoding, fitness evaluation and objective function, GA input parameters, selection 
operation, reproduction operation using one-point crossover, invert mutation operation, local search using 
steepest ascent hill climbing algorithm, and termination conditions. 

The elitist genetic algorithm (EGA), which is used as a base platform in developing an adaptive hy-
brid genetic algorithm for the QCSP, employs four basic operators, such as elite roulette wheel selection, 
one-point crossover, invert mutation, and steepest ascent hill climbing for local search. The initial popula-
tion of possible solutions to the QCSP is created to apply the algorithm in the very first step of the global 
search. A fitness value of an individual in an initial population is calculated by constructing the sequence 
of quay cranes. The selection of the parent individuals is made through the elitist roulette wheel selection 
operator for the next generation. Using the parent individuals obtained from the selection operator, one-
point crossover operator is performed by exchanging parent individual segments and then recombining 
them to produce two resulting offspring individuals. The invert mutation operator is performed to play the 
role of random local search, which searches a much smaller portion than hill climbing algorithm. The in-
vert mutation is kept as a simple mutation to avoid conflicts with hill climbing algorithm. The local 
search using the steepest ascent hill climbing is then achieved before the move to the new population em-
bedded in the EGA. 
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An integer string is used because it has the added advantage of readability compared to a binary rep-

resentation. The fitness value calculated is the reciprocal of the objective function. The objective function 
is formulated using Weighed (α, alpha) time at which all tasks are completed + Weighed (β, beta) total 
quay crane completion time. The two default values for weighing are alpha = 0.75, and beta = 0.25. Note 
that the time at which all tasks are completed is the makespan. The hybrid algorithm continuously keeps 
track of the chromosome that represents the current most-fit solution. Upon the algorithm reaching the 
termination condition, that chromosome is generated as an output. The makespan is calculated by con-
structing a schedule out of the DNA sequence. It is assumed that the quay cranes can be correctly posi-
tioned since the start. So, if the start of the sequence is {1, 6, 7}, the quay cranes #1, #2, and #3 will be in 
position 1, 6, and 7 respectively. The hybrid algorithm is developed in five steps as follows: 

Step 1: Choose two quay cranes that can work on bay k. Let’s call them qcl and qcr. These quay 
cranes are chosen by looking to the left and right of bay k, and selecting the first two quay 
cranes encountered (one from both sides). This ensures that the constraint that the quay 
cranes cannot cross each other is enforced. If there is only one quay crane, then that’s the 
winner and therefore the quay crane that is used for loading and unloading the bay – go to 
step 4. However, if there are two quay cranes, then go to step 2. 

Step 2: Choose the quay crane with the smaller completion time. This will be the winner – move on to 
step 4. If the completion times of qcl and qcr are equal, go to step 3. 

Step 3: Out of the two quay cranes, choose the one that is closer to bay k. (Absolute value of [current 
quay crane position – bay position]). Move on to step 4. 

Step 4: Check all the other quay cranes, and if their completion times are smaller than the winner that 
we have chosen, set their completion time to the completion time of the winner. This is done 
because since other quay cranes weren’t chosen for this bay, it means they were blocked by 
the winner, and so for their next move they would have to wait for the winner to move on to 
the next bay. 

Step 5: Add the completion time of bay k, to the completion time of the winner QC. Set the position 
of the winner to the position of bay k, and repeat from step 1. Once the schedule has been con-
structed, and all the different time values have been summed up, the fitness value is calculated. 

The selection operation is implemented with a method called stochastic sampling or more commonly 
known as the “Roulette Wheel” selection method. The selection operation generally plays a role of choos-
ing parent chromosomes for crossover operation. This method allows for ‘elitism,’ because the more fit 
chromosomes will get chosen more frequently, however, lower fitness solutions also get a chance. The 
reproduction of the population is handled with a one-point crossover technique. A crossover operator 
combines pieces of information coming from different individuals in a population. The one-point crosso-
ver operator can preserve schemata in a more effective manner because it keeps the first half of both par-
ents intact and is less random than the UX3. The probability of disrupting short defining length is rather 
low, even though the crossover operation in the beginning of an individual is likely to disrupt schema 
(Goldberg 1989). This involves randomly determining a crossover point in the integer chromosome repre-
sentation and swapping all the data beyond that point in both parents. Therefore, the offspring has data 
before the pivot point from parent A and data after the pivot point from parent B.  

In the hybrid genetic algorithm, a technique called “invert” mutation is employed. The invert muta-
tion consists of choosing two random points in the chromosome and inverting the order of everything be-
tween those two points. The invert mutation is proved to be the most effective mutation technique out of 
the four well-known four mutations of swap, insert, invert, and scramble mutations. This is mainly due to 
the no-crossing of quay cranes constraint during the construction of the schedule. For example, let us as-
sume that two quay cranes are available at positions 3 and 8, respectively and the sequence in the DNA is 
{5, 4, 6}. Quay crane 1 starts work on bay number 5 because it is closer than quay crane 2. Now bay 4 is 
available in the sequence, but quay crane 2 cannot access it since it would have to cross quay crane 1 (so 
it is effectively ‘blocked’). Quay crane 2 is now forced to wait until quay crane 1 is completed with its 
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work. However, if the order of those two last numbers is switched and the sequence becomes {5, 6, 4}, 
quay crane 2 would be allowed to start working on bay 6 while quay crane 1 is on bay 5. This occurs con-
stantly when solving the QCSP and thus, a well-timed mutation can lead to finding a better solution. It is 
important to note that while in the example above, a simple ‘swap’ mutation might do the trick it is much 
more efficient to do an ‘invert’ mutation since the swap would only work if the swap occurs between two 
adjacent numbers in the DNA sequence. The range of numbers to invert mutation is not chosen at ran-
dom, but instead it is the number of quay cranes. This allows the user to overcome problems like in the 
example described above, but with more than two quay cranes sometimes swap mutation wouldn’t be 
suitable.  

This procedure is repeated five times for each chromosome in the population (Kim and Ellis 2009). It 
can be argued that the current mutation operation that is implemented here is redundant as it performs a 
function like the local search. Instead it can be used for a more extreme exploring of the search space by 
making very large mutations in the DNA sequence. This, however, has not shown a noticeable improve-
ment in the results because for accurate results the hybrid QCSP Solver is run a couple of times for each 
problem. While the more complex mutation might play a role in one of the results by allowing for a dif-
ferent search space to be explored during execution, it would be very difficult to determine if the better 
result was obtained because of the more extreme mutation operation, or due to the way the random popu-
lation was generated in the beginning of each generation. The mutation was kept as a simple invert muta-
tion. 

4 COMPUTATIONAL EXPERIMENTS 

The hybrid QCSP Solver is written in C++, which allows for good performance as well as portability 
among different systems (the program runs on Windows, Linux, and *BSD). Figure 1 shows the GUI of 
the hybrid QCSP Solver. Genetic algorithms lend themselves nicely to abstraction via C++ classes, mak-
ing the program code clean and easy to understand. The hybrid QCSP Solver has three main classes 
which represent the QCSP problem; CSpecies() represents the whole species and therefore the whole al-
gorithm. Inside, it contains a CGeneration() class, which represents one generation and one population of 
a developing species, and finally COrganism() represents one organism in a population, containing the 
fitness value, schedule, and genetic representation of the schedule. The size of the population as well as 
rates for mutation and crossover can be defined via the command line.  
 A comparison study is performed to demonstrate the effectiveness of the algorithm based on numeri-
cal experiments. Two different experiments were performed to examine the performance of both stand-
alone QCSP Solver and hybrid QCSP Solver. The experiments consist of small-sized QCSP and large-
sized QCSP instances. The QCSP instances are generated using the QCSP Problem Generator that is em-
bedded in hybrid QCSP Solvers. The QCSP Problem Generator allows the user to create random instanc-
es by specifying the number of bays, the number of quay cranes, and minimum and maximum bay com-
pletion times in minutes. For the numerical results for hybrid QCSP Solver, the results obtained from the 
hybrid QCSP Solver by solving small-sized random QCSP instances are compared against both fitness 
lower bound and best possible solution (BPS) algorithm in addition to the comparison between their 
runtimes to examine the difference between their speeds to reach solutions. The 16 large-sized random 
QCSP instances are solved to compare the results between fitness bound and fitness value obtained from 
the hybrid QCSP Solver by three different combinations of objective function weighting values, α and β. 
Input parameter values for both stand-alone QCSP and hybrid QCSP Solver include the population size, 
crossover and mutation rates are set to 50, 0.5, and 0.1 for supporting the solution diversity, respectively. 
Large populations generally result in better solution, but they also increase computational costs and 
memory requirements. The algorithm terminated with the number of generation of 100. The objective 
function weighting values are set to 0.75 and 0.25 for weighed (α, alpha) time at which all tasks are com-
pleted and weighed (β, beta) total quay crane completion time, respectively. 
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Figure 1: GUI for hybrid QCSP Solver. 

4.1 Small-sized Random QCSP Instances 

Five small-sized random QCSP instances are generated using the QCSP Problem Generator. The pro-
cessing time of a bay is generated from a uniform distribution from 50 to 250, allowing for an accurate 
simulation of a real-life problem. To show the performance of the hybrid QCSP Solver, the results ob-
tained from the hybrid QCSP Solver are compared with the results obtained by calculating a fitness bound 
and the BPS. Table 1 tabulates the results obtained from the hybrid QCSP Solver, fitness bound, and BPS, 
by solving five small-sized random QCSP instances. The fitness bound is a lower bound on the objective 
function and it helps in the evaluation of the performance of the hybrid QCSP Solver. It is calculated by 
removing the no-crossing constraint, therefore allowing the quay cranes to move to the bay of their 
choice, regardless if they cross other quay cranes or not. Although practically it is not possible to achieve 
a value identical to the lower bound it is still a good indication of how efficient a heuristic is. The best 
possible solution is achieved by populating the current species with an enumeration of all the permuta-
tions of the genetic sequence. This means that every possible combination of creating the QCSP schedule 
is checked, and the ‘best’ solution is found. BPS is implemented only for small-sized random QCSP in-
stances because it would not be feasible to implement for large instances. The BPS Difference column 
calculates a percentage of how far the solutions obtained from the hybrid QCSP Solver is from the actual 
solution to validate the results. It was shown that the results obtained from the hybrid QCSP Solver exact-
ly match the results obtained from the BPS algorithm. This result indicates that the hybrid QCSP Solver 
can accurately find a solution and in these cases, the best one to the QCSP. It is also important to note that 
the runtime of the hybrid QCSP Solver does not grow exponentially like the problem search space but in-
stead takes a constant 30-50 ms extra for each new bay.  
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Table 1: Comparison results for small-sized instances. 

Experiment 
No. 

Size 
(bays x 
cranes) 

Fitness 
Bound 

BPS Hybrid QCSP Solver 
BPS Dif-
ference Value 

Runtime 
(ms.) 

Value 
Runtime 

(ms.) 
1 7 x 2 2.06186 2.05867 9  2.05867 136  0% 
2 8 x 2 1.58228 1.5804 89  1.5804 167  0% 
3 9 x 2 1.15207 1.15207 882  1.15207 214  0% 
4 10 x 2 1.03093 1.02617 10,051  1.02617 258  0% 
5 10 x 3 1.18483 1.17751 12,104  1.17751 303  0% 

4.2 Large-sized Random QCSP Instances 

Table 2 tabulates the results obtained from the hybrid QCSP Solver and fitness bound by solving 16 
large-sized random QCSP instances for three different combinations of objective function weighting val-
ues. This result shows that when the importance of the total quay crane completion time represented with 
Beta increases from 0 to 0.5, the better fitness is also obtained. A value of 0.5 means that a solution places 
equal importance on having the lowest makespan and the lowest total quay crane completion time. The 
results indicate that the solutions produced by both stand-alone QCSP Solver and hybrid QCSP Solver 
have a pattern in that as the total quay crane completion time increases, the better fitness values are ob-
tained. 
 

Table 2: Comparison results for large-sized instances. 

Exp. No. 
Size 

(bays x 
cranes) 

Max. 
Runtime 

(sec.) 

Alpha / Beta:  
1.0 / 0.0 

Alpha / Beta:  
0.75 / 0.25 

Alpha / Beta:  
0.5 / 0.5 

Fitness 
Bound 

Fitness 
Value 

Fitness 
Bound 

Fitness 
Value 

Fitness 
Bound 

Fitness 
Value 

1 16 x 3 0.69  1.26103 1.25945 0.840689 0.84016 0.630517 0.630318 
2 18 x 3 0.85  1.01317 1.01317 0.675676 0.675676 0.506842 0.506842 
3 20 x 3 1.02  0.913242 0.911577 0.608828 0.608273 0.456621 0.456517 
4 22 x 3 1.23  0.967118 0.966184 0.644745 0.644434 0.483559 0.483442 
5 24 x 3 1.38  1.02459 1.02354 0.683177 0.683177 0.512426 0.512295 
6 26 x 3 1.57  0.727273 0.726744 0.484966 0.484614 0.363769 0.363702 
7 28 x 3 1.79  0.715308 0.714286 0.476872 0.476531 0.357654 0.35727 
8 30 x 3 2.02  0.681199 0.678887 0.454133 0.453361 0.340599 0.340078 
9 16 x 4 0.79  1.83824 1.81488 1.05125 1.04548 0.736106 0.734214 

10 18 x 4 0.98  1.34409 1.32626 0.768344 0.763942 0.537924 0.535332 
11 20 x 4 1.20  1.33156 1.31062 0.76089 0.759157 0.532623 0.531632 
12 22 x 4 1.38  1.50602 1.49254 0.861141 0.857817 0.602954 0.601866 
13 24 x 4 1.64  1.10865 1.09649 0.633513 0.628141 0.443459 0.442478 
14 26 x 4 1.96  0.978474 0.969932 0.559284 0.556715 0.391543 0.390244 
15 28 x 4 2.15  1.04384 1.03093 0.596481 0.59312 0.417537 0.41632 
16 30 x 4 2.44  0.855432 0.844595 0.488938 0.483033 0.34229 0.34118 

 
 The fitness value results obtained from the hybrid QCSP Solver are very promising and always within 
1% of the lower bound. As mentioned in the results of Table 1, the runtime of the algorithm does not 
grow exponentially. Instead, a constant increase of 150-200 ms per each extra bay in the problem is ob-
served for problems with three quay cranes, while a constant increase of 200-300 ms is also observed for 
problems with four quay cranes. This is mostly due to the linear complexity of the local search algorithm, 
and by reducing the number of maximum iterations performed by the hill climbing technique, there is a 
decrease in the execution time. It is important to strike a balance between performance and execution 
time. 

1568



Perelygin and Kim 
 

 Table 3 tabulates the makespan and QC completion time for each experiment used in Table 2 by ob-
jective function weighting value. The intention of the comparison is to examine how the changing of the 
two weighting values, alpha and beta, affects the outcome of the hybrid algorithm. In exp. 1 and exp. 12, 
the hybrid QCSP Solver finds the best solution and therefore changing the weighting values will not lead 
to a better or worse solution for smaller problem sizes. However, already in exp. 9, which is a more com-
plex problem, it is shown that the hybrid QCSP Solver can find the lowest makespan but there are differ-
ent QC completion times to choose from. In the first case (Alpha/Beta: 1.0/0.0) it did not take that into 
consideration. However, when the beta weight is given a value of more than 0.0, the hybrid QCSP Solver 
minimizes it as well, leading to a better result. In addition, it is important to note that experiments 15 and 
16 are highly complex problems. Here the hybrid QCSP Solver must make trade-offs, leading to a higher 
makespan when adding the Beta weighting value but a lower QC completion time. While the goal of the 
hybrid QCSP Solver is to minimize the makespan, it is important that the total QC completion time is tak-
en into consideration so that out of the best solutions with the lowest makespan, the hybrid QCSP Solver 
will choose the one that has a lower total QC completion time. 
 

Table 3: Comparison of makespan and QC completion time for large-sized instances. 

 From Ex-
periment 

 Size 
(bays x 
cranes) 

Alpha / Beta: 1.0 / 0.0 Alpha / Beta: .75 / .25 Alpha / Beta: .5 / .5 

Makespan 
(min.) 

QC Comple-
tion Time 

(min.) 

Makespan 
(min.) 

QC Comple-
tion Time 

(min.) 

Makespan 
(min.) 

QC Comple-
tion Time 

(min.) 

1 16 x 3 794  2379  794  2379  794  2379  

2 18 x 3 987  2959  987  2959  987  2959  

3 20 x 3 1097  3285  1097  3285  1096  3285  

4 22 x 3 1035  3102  1035  3102  1035  3102  

5 24 x 3 977  2928  976  2927  977  2927  

6 26 x 3 1376  4123  1377  4123  1376  4123  

7 28 x 3 1400  4194  1400  4194  1404  4194  

8 30 x 3 1473  4409  1473  4404  1477  4404  

9 16 x 4 551  2181  551  2173  551  2173  

10 18 x 4 754  2981  754  2974  754 2982  

11 20 x 4 763  3015  755  3004  755  3007  

12 22 x 4 670  2653  670  2653  670  2653  

13 24 x 4 912  3617  920  3608  908  3612  

14 26 x 4 1031  4105  1033  4086  1034  4091  

15 28 x 4 970  3857  968  3840  972  3832  

16 30 x 4 1184  4723  1193  4702  1185  4677  

5  CONCLUDING REMARKS 

This paper presented a hybrid genetic algorithm to allocate and schedule a given number of quay cranes 
to vessels planned to arrive in the planning horizon. To develop the hybrid QCSP Solver, stand-alone 
QCSP Solver not having local search was first developed using genetic algorithm alone. Then the hybrid 
QCSP Solver having local search was developed on top of the stand-alone QCSP Solver based on a hy-
brid strategy that combines a global search using genetic algorithm with a local search using steepest as-
cent hill climbing algorithm. A comparison study demonstrates the effectiveness of the algorithm based 
on numerical experiments. It is notable that the hybrid QCSP Solver is expandable to incorporate the real 
quay crane operation conditions as it can serve as a platform from which one can build. This paper can be 
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utilized as a stepping stone for further research by identifying a way to grow terminal automation of quay 
cranes to increase capacity, safety, productivity, and reliability while reducing operation costs. 
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