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ABSTRACT 

In face of high urbanization and increasing mobility, models and simulations are used to find answers for 

urban planning problems. However, simulations face criticism for over-simplifying complex reality, 

having models disconnected from the context of their use or excluding policy-makers from the building of 

models. Smart city approaches did not overcome that reality even if they relied more and more on 

microscopic models, together with data available through technology. This article describes a hybrid 

approach combining the expert knowledge on the city and its limits in terms of data, with models having 

the right dimensionality to provide policy-makers and urban managers with the necessary information for 

understanding and managing the city.  This approach has been applied in Venice, but it describes in more 

general terms a way of bridging the world of theoretically sound models with their potential use. 

1 INTRODUCTION 

Planning, managing, and operating cities and urban networks are hard tasks since these are complex 

systems with a lot of uncertainties. Cities, as other complex adaptive systems, experience a great deal of 

emergent phenomena and non-linear relationships of their components, making them most often very 

unpredictable and deterministically chaotic (Portugali 2012, Batty 2013). Even with the extensive use of 

simulation and models in smart cities, building simulations is often a matter of intuition. This paper 

presents a hybrid approach for building simulations to explore urban planning with focus on inclusion of 

expert knowledge of cities in the building, running, and validation of simulations. In light of decades of 

modeling for complex adaptive systems, the approach recognizes and specifies the role of expert 

knowledge and data to steer the building of simulations, as well as circumstances in which expert 

knowledge can be used as a source for direct quantitative input to low dimensional simulations. This 

hybrid approach consists of a top-down process of building theoretically sound models and a bottom-up 

process that includes the context of the use of the simulation, the data available and the expert knowledge. 

This can prevent modelers from building models that aim for high degrees of realism or high theoretical 

rigor, without providing tools for validating the results or enriching the knowledge over the model target. 

Furthermore, the approach lowers the gap between the modeling world and the real world constraints that 

cities face when applying simulation results (Lee 1994). In this paper, we present the results of the 

application of this approach in Venice, Italy, during the course of the FP7 Framework EU project PETRA 

(Personal Travel Advisory Systems). 

The remainder of this paper consists of four parts; the next section presents the background of 

models, simulations, data and expert knowledge for urban planning. The third section presents the details 

of the proposed approach, followed by a section presenting the application of the method in Venice, Italy. 

Finally the conclusions about this approach are stated.  
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2 A REVIEW OF LITERATURE AND INTENDED CONTRIBUTIONS OF THE PAPER 

2.1 Models, Simulations, Data and Expert Knowledge for Urban Networks 

Models and simulations have been used for decades to investigate cities, design new systems and 

services, or predict the evolution of land-use and urban networks. Models, usually mathematical, relied on 

optimization, discrete mathematics and operations research to optimize functions on urban systems 

(Larson and Odoni 1981, Vuchic 2005). Such models investigated for example effects of different routing 

alternatives or different transport network architectures on the city in general (Pattnaik, Mohan, and Tom 

1998). However, the failure to find optimal solutions for most urban problems due to mathematical 

infeasibility, computational demand or modeling difficulty made reductionist approaches more popular. 

Idealization in modeling reduced urban systems to yet simpler representations. As is the case in some 

economic models, simplicity of models and simulations allowed urban planners and scientists in 

particular to understand first order effects of certain factors on problems related to urban management 

(Grüne-Yanoff 2009). By isolating particular parameters, models have succeeded in providing more 

insight into certain causalities in cities. The combination of such sub-systems results, through technical 

coupling or through comparison and combination of results, allowed city experts and planners to infer to 

the real systems they represent (Zomer, Moustaid, and Meijer 2015). 

The idealizations and levels of details in these simulation models made the creation of knowledge 

about the real systems of the city often a hard task. In fact, relying on assumptions and heuristics to 

overcome their limitations, these models sometimes described systems that were totally different from the 

world they were supposed to simulate (Sugden 2000). Moreover, the view of cities being complex 

adaptive systems was embraced as they were treated less and less as deterministic systems in a steady–

state (Batty 2013). Picking up on the notion of complexity, and taking advantage of more computational 

powers, there was a shift from highly-idealized approaches to approaches that take every possible source 

of complexity into account. Similar to micro-economics, this bottom-up approach tried to consider the 

interactions between city components and aspects such as the self-organizing nature of cities (Lee 1994). 

Agent-based, fractals, chaos theory or cellular automaton models, fed with data and relying on 

geographical information systems opened the way for new kinds of analysis (Batty 2007, Santé et al. 

2010). Shifting even towards more scenario-based approaches, where the role of simulations and models 

is to provide decision-makers tools for exploring options, rather than giving a final response to a complex 

problem. It allows the understanding of complex systems without the need to assume the existence of a 

steady-state (Batty 2007). This resulted in microscopic simulations that were indeed less idealized when 

describing the cities as a space, allowing sometimes better understanding of arising complexity. However, 

the microscopic models often made assumptions regarding microscopic entities and their interactions 

making them suffer similar validity problems. Such models also require considerable amount of data to 

run, and to assess their predictions’ validity (Ranjitkar, Nakatsuji, and Asano 2004). Models have to 

overcome these deficiencies by macroscopically assessing their microscopic variables. The lack of data 

for validation can either be caused by impossibility of sensing the data needed, or by simulations making 

projections that are not verifiable (Store and Kangas 2001).  This again poses a problem as to whether or 

not microscopic approaches are best to deal with urban systems. Batty (2015) argues that enriching a 

model hoping to improve its simulation of the existing situation, makes its validation more problematic. 

Hence two main issues emerge regarding models and simulations for urban planning. Firstly, highly 

idealized and simplified models and simulations relate less to reality, making any inference from such 

models and simulations often hard or impossible. Secondly, highly detailed models were never proved 

valid for the processes and behaviors they describe, partly because of computational powers, but mainly 

because of the lack of data for validation. This called for different heuristics that can sometimes involve 

expert knowledge in different ways. Garthwaite, Kadane, and O’Hagan (2005) define expert knowledge 

as the expertise someone holds on a subject of interest. This knowledge can be the result of life 

experience, training or education. The use of expert knowledge has served prior construction of 
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simulations in defining their scope. The scope of simulations and models determines the relevant 

dimensions and parameters. This choice is usually motivated by intuition and the justified beliefs of urban 

experts and modelers. Those parameters and dimensions define the boundaries of the system simulated as 

well as the aspects of the system that experts believe need investigation. Modelers then build simulations 

to address particular questions (Matthewson and Weisberg 2009). This has been widely used, and the 

research has usually focused on the best methods to elicit the expert knowledge (Kuhnert, Martin, and 

Griffiths 2010). Expert knowledge has also been used for validation of simulations through face 

validation when quantitative or logical methods of validations are impossible or irrelevant (Kuhn 1970). 

This approach is now particularly used to validate simulations of complex systems, where the only 

possible validations were to see whether or not the results of the simulation make any sense in the real-

world. 

2.2 Synthesis and Contribution of the Paper 

The inclusion of expert knowledge in the building or validation of simulations has been done before but 

not in structural ways, even less for smart city simulations. Expert knowledge has been successfully used 

for face validation or scope definition of simulations, but it has been less successful when used as a direct 

input to run simulations. In this article, we argue that expert knowledge can complement data when using 

low dimensional models, i.e. models with only a few parameters, with the right level of idealization and 

approximations. In line with Chahal and Eldabi (2008) hybrid approach, we combine expert knowledge 

with low-dimensional models in a way that increases the realism and relevance of simulations for smart 

cities. We regard this as a hybrid approach. This approach also shows a method to reach simulation 

models that can exhibit the information needed by the simulation users, while taking into account the data 

and the knowledge available to run the simulation. 

The following section presents the details of our hybrid approach. The approach will be applied to 

Venice, where a low dimensional theory-based model was combined with expert knowledge to construct 

and run a simulation that provides plausible quantitative results, as well as tools to urban planners to 

investigate the mobility of the city 

3 HYBRID APPROACH FOR CONSTRUCTING SIMULATIONS FOR SMART CITIES  

Maria (1997) proposes an 11-step process for building simulations consisting of investigating target 

systems, choosing models, extracting and generalizing results. The approach proposed in this paper, 

shown in Figure 1, agrees to a large extent with Maria’s approach. This approach however focuses on 

smart cities and is specific to using data and expert knowledge to shape the construction of simulations. It 

distinguishes itself by defining conditions under which expert knowledge can be used as a direct input for 

simulations. 

 

 

Figure 1: Data and experts in the building of simulations for smart-cities. 

1553



Moustaid and Meijer 

 

Simulation building for smart cities starts from the target object of the simulation, which can be the 

city or one of its subsystems or aspect systems. This is followed by an investigation of the subject, its 

means in terms of data and technology and the knowledge around it. From that, the simulation goals can 

be drawn. Modelers choose the kind of simulation model to use, and then implement the simulation. The 

improvement, verification and validation of simulations are done before projecting learnings on the 

original system. The following sections detail these steps. 

3.1 Target Object, Goals and Means 

Goals for smart cities range from designing new services to developing new strategies and measures to 

lower congestions, traffic, CO2 emissions, new social activities, economic prosperity or even higher 

social inclusion. Investigating ways of achieving such goals requires a high knowledge of the means of 

the city, and the factors that can be manipulated to make these goals achievable. City experts and problem 

owners clearly express the processes and factors of interest. Those can be the exact predictions that are 

needed for particular factors, but it can also be seeking to investigate sub-systems of the city, or 

understanding effects of certain factors or behaviors on the goals they seek to achieve (Matthewson and 

Weisberg 2009, Batty 2013). Experts also have knowledge of possible actions that cities can realistically 

take as well as social, technical, and economic aspects that cannot be understood through quantitative 

methods. This work by experts and problem owners is the ground work for defining the simulation scope. 

It sets the base for a modeler to define the simulation scope. 

3.2 The Simulation Making, Scope and Level of Details 

A perfect simulation of a target would create a one-to-one relationship between the simulation and the 

aspects of that target. However, Nagy et al. (2007) claim that this is impossible. Simulation construction 

becomes a process of choosing the focus systems or sub-systems, the relevant variables, and the 

appropriate idealizations and assumptions. In quest of higher generality or precision, simulations can be 

coupled to provide better learnings about their target systems. Deciding the trade-offs between different 

virtues of models, such as generality, realism and precision is the most crucial aspect of this process 

(Levins 1993, Matthewson and Weisberg 2009). For urban modeling, this is where the data and expert 

knowledge play a crucial role. The choice of a simulation model is mainly a choice of the details that the 

model takes into account and the objective of the model. Besides the classical use of expert knowledge to 

define the scope of the simulation, this approach sees that idealizations can be made in a way that allows 

expert knowledge to be directly useful for running simulations. Experts in cities can provide direct input 

to simulations if the simulation parameters correspond to aspects that experts have knowledge on. For 

example, experts can provide estimates or numbers to run simulations when data cannot provide these 

same details. A low-dimensional model can elicit the knowledge of experts best as they are not required 

to provide highly detailed information, but only estimates, probability distributions, and recognized 

patterns in the city.  Hence, a modeler building a simulation should take that into account when choosing 

the level of details to have in a simulation.  

3.3 Validation of Simulations and Inference to Real Targets 

Validation of simulations has been a major debate between simulation scholars for decades. Kleindorfer, 

O’Neill, and Ganeshan (1998) show different schools of thought when it comes to simulation validation, 

resulting in quantitative, qualitative or mixed approaches. They assert that pure logical or empirical 

validations of simulation in particular have failed in the world of simulation. This is the case particularly 

for cities and generally complex adaptive systems where sometimes this kind of validation is impossible 

or even anecdotal. Sargent (2005) and Balci (1986) detail different kinds of methods of validation. They 

cite for example different quantitative methods of assessing the validity of simulation results as well as 

the importance of validating conceptual models, verifying simulation models specifications and 
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simulation implementation. In the approach presented in our paper, we make a clear distinction between 

models that seek to produce data or information that is directly used in prediction or assessment of real 

targets, and models that, through simplifications or isolations, increase the knowledge about aspects of the 

system. Both require different kinds of validation. In the first case, the simulation predicts aspects of the 

real system and claims to provide true predictions. In accordance to Popper’s view the predicted data has 

to be checked against the real-system data, and indeed the model can be improved, calibrated, or even 

replaced using the results from validation processes (Popper 1959). Validation does not prove the 

simulation model to be true or false, since  in the context of complex systems, such as cities, it is highly 

improbable that predicted data matches the system data, and even when it is matched to a certain extent, it 

is hard to assess the validity of the deviation of simulation predicted data from real-system data. At the 

same time, most models can hardly be proven wrong through assessment of predictions as it is easier to 

explain inaccurate results with auxiliary assumptions used to make predictions through the model. The 

difficulty of quantitative methods of validation resulted in the need of face validations, i.e. experts making 

judgment on whether results of the simulation are coherent with their knowledge of the system. This 

method of validation recognizes that experts are knowledgeable enough of cities to determine whether or 

not the results of a simulation are within the scope of possibility (Gigerenzer 2008).  

In the second case, i.e. if a model is highly simplified, the validation is value-dependent (Kleindorfer, 

O’Neill, and Ganeshan 1998). A model can be called adequate if it is fruitful to understand aspects of the 

city. Those aspects can be social, economic, political or environmental. Such simulation models include 

for example some of gaming and participatory simulations (Raghothama and Meijer 2015).  

The inference from simulation models to their target comes in two categories. Firstly, when 

simulations models claim truth; their output is directly used to predict, evaluate, replace or assess aspects 

of the modeled system. Secondly, when simulations are merely tools of investigation; simulation users are 

needed to make inference into real systems, based on historical knowledge, psychological and social 

considerations. 

4 ILLUSTRATION OF THE APPROACH THROUGH VENICE USE CASE 

In the following section, a hybrid approach was followed to build a simulation for the city of Venice. The 

simulation provided urban-planners from different agencies tools that deal with problematic aspects in the 

pedestrian network of Venice. The process identified the goals of Venice within the PETRA project, and 

then built a simulation choosing a low dimensional theory-based model that provided enough generality 

and realism, and which had the right idealization level to use the means of Venice in terms of data and 

expert knowledge. The simulation was then used to predict some aspects of the pedestrian network. It also 

served as a tool for investigating the degrees of freedom that urban planners possess to solve problems of 

crowdedness related to known scenarios in the city. The validation of the simulation consists of both an 

empirical and a qualitative analysis. 

4.1 Venice Background, Goals, and Means 

Mamoli et al. (2012) describe Venice as a puzzling paradigm of modern cities. Venice, being almost 

isolated from the mainland, has a historical pedestrian network enabling free movement and creating 

social, economic and cultural activities for the city users. The increasing number of tourists every year, 

and the growth of the Venice population make the city constantly test its capacities (Massiani and Santoro 

2012). The tourist capacity of Venice was estimated by Canestrelli and Costa (1991) at around 25,000 

visitors per day which has been exceeded since the 1980s (Van der Borg and Costa 1993). Today, tourist 

visits are estimated at about 60-70,000 visits per day causing over-crowding in the pedestrian networks, 

attractions as well as public transportation. Hence, the objectives of the city of Venice in terms of urban 

planning within the PETRA project is to have tools to mitigate the traffic states, and to provide tools to 

urban planners to advise the city users in order to make their journeys in the city more enjoyable. In order 
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to achieve such objectives, the city possesses some technologies gathering data, as well as an extensive 

knowledge of the mobility in the city, its infrastructure and users. 

The study of the mobility in Venice has always focused on the pedestrian movements. The main 

access points to the historical city are the train and the bus station in addition to the parking space at 

Piazzale Roma (Figure 2). Part of the inflow of pedestrians from these points is then distributed in an 

uneven way on the pedestrian network. The rest of the flow is distributed through the waterbus 

transportation. The continuing over crowdedness of pedestrian networks sometimes makes locals change 

their travel habits in order to get faster or more comfortable travel plans (Massiani and Santoro 2012).  

 

 

Figure 2: Map of Venice and points with high numbers of city users. 

These findings were consistent with the findings of the work done during the PETRA project together 

with mobility experts from ACTV (Venice public transport operator) and AVM (Venice Mobility 

Agency). As geographical expansion of Venice is not an option in face of levels of crowdedness that 

exceed the city capacity, the optimization of Venetian services and information systems is a necessity. 

The waterbuses provide ways of distributing flows around the city. The distribution of flows over the 

pedestrian network can be done by providing information to users to prevent crowding, and can make the 

experience of the city more enjoyable to its users. 

Besides the extensive knowledge available through experts dealing with mobility issues in Venice for 

decades, Venice has few sources of mobility data, mainly highly aggregated and coarse-grained. The data 

available consisted of (1) counts of ticket validation at the water bus stations, (2) estimation of arrivals 

from the main train station and land buss stations, (3) counts of parked cars at the main island, (4) 

estimates of the number of visitors for the main attractions in the city and (5) details of the public 

transport network such as operating times and capacities. In addition to this data, social media data is 

available through samples of anonymous Flickr users. Flickr is a service allowing its users to store and 

possibly share their pictures. The pictures are available with a timestamp, geo-tag, and an anonymous user 

ID, allowing the assessment of the succession of places users visited. This provides a way to understand 

mobility patterns in the city. 

4.2 The Making of the Simulation, Low Dimensionality and Expert Knowledge 

Given the later investigation of scope, goals and means of the city, the simulation goal was identified as 

twofold. Firstly, it aims to provide urban planners and strategists a toolkit to collaboratively assess new 

strategies and policies via a coherent model of mobility patterns capturing in the simplest way several 

aspects of the city. The second role is using the simulation to provide information necessary for travel 

advice given a mitigated state of traffic. Realistic estimation of travel-times on pedestrian routes, at 

different times of the day depending on crowdedness levels is particularly needed. This information is a 

direct input to the travel planner that provides advice to city users. Making a simulation of the Venetian 
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network is solving the following problem. How can we build a simulation that can provide information 

needed to advise users, and a testing platform for different strategies that can be deployed to address 

mobility problems in Venice? This has to be solved with the limited resources in terms of data and a great 

knowledge of mobility in Venice. The knowledge of experts included known problematic scenarios and 

tools to address them. 

Pedestrian flows have been treated using various methods. Microscopic approaches include agent-

based, social force or cellular automaton models (Helbing and Molnár 1995; Daoliang, Lizhong, and Jian 

2006). In order to focus on the essentials (realistic pedestrian travel times), and in order to use best the 

available aggregated data and the extensive expert knowledge of mobility in Venice, only macroscopic 

approaches could be considered. In fact, to use best the extensive knowledge of experts on the flows in 

the city, the simulation should simulate the movements in the city as movements of flows, and not 

particles. The simulation of the network at the level of flows also makes the highly coarse-grained data 

useful for the simulation, without further need of assumptions on pedestrian behaviors. In addition, the 

only aspect of the simulation that required a high degree of realism was travel-times, which required this 

aspect of the simulation model to be realistic and tested against data. The model of Flötteröd and Lämmel 

(2015) presents a macroscopic bidirectional pedestrian flow model that relies on few measurable 

parameters (maximum pedestrian velocity, jam density and an avoidance parameter representing the time 

that a pedestrian loses avoiding another pedestrian walking in opposite direction). The model shows a 

good fit when tested against data. The model is adequate for the needs of urban planners in the city of 

Venice as it has the possibility to provide realistic travel times given crowdedness levels. A generalization 

of the model to take into account pedestrian intersections has made the model applicable for simulation of 

pedestrian networks. 

The choice of this model enabled the expert knowledge to provide quantitative input that covers up 

for the lack of data. In fact, the final simulation model needs two parameters to be computed. Data and 

expert knowledge were used for that purpose as follows. The first parameter is the estimation of incoming 

and outgoing flows to the pedestrian network. This was done by combining numbers given by the water 

transportation ticket validation counts, and estimates of influxes and out-fluxes for the main access points 

to the pedestrian network, with expert knowledge of the distribution of these rates. The experts were able 

to provide the likely distributions of each of the major access and exit points depending on day scenarios. 

This increased the realism of the inflow and outflows to the pedestrian network.  The other parameter that 

needs to be computed is the turning fractions at intersections; that physically means the proportion at 

which pedestrians break when going through an intersection. The Flickr data provided the origin and 

destinations of pedestrians, while expert knowledge provided the mostly likely paths that pedestrians 

could take. In fact, the geo-tagged pictures gave the positions of pedestrians at different time-stamps. By 

knowing the paths that all pedestrians took, one can estimate the turning fractions at the intersections. The 

paths between geo-stamps are not available through data, but the expert knowledge on flows and tourist 

paths in Venice through the years provided those paths. 

In order to increase the realism of the travel-times, the cartography describing the environment of the 

application of this model has been gathered to exactly fit its use; providing besides the geographical 

attributes, the length, and the width of links. The trade-off between precision of the model parameters and 

generality of the model is done in respect to Matthewson and Weisberg's (2009) criteria of trade-offs, 

meaning that precision is added only to make the general model fit the context of its use.  

Besides the ability to provide verifiable travel-times, the model was flexible to support strategies that 

urban-planners wish to have in a simulation. This included for example, testing total or partial closing of 

some pedestrian links, increasing incoming or outgoing flows to the city, as well as adding water 

transportation stations (the simulation supports adding more access points to the pedestrian network).  

The simulation was scenario based. The scenarios investigated were high, normal and low-crowded 

weekdays or weekends accounting for a total of six scenarios. Expert knowledge provided distribution 

probabilities for entrances and exits to the network depending on the scenario. The fact that the simulation 
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was scenario-based made it relate to the goals of the city. The defined scenarios described an 

isomorphism with the states that needed to be mitigated by the city authorities. This allows the app users 

to get the travel-times between Points of Interest (PoI)s given the mitigated traffic scenario. Figure 3 

shows the final architecture of the simulation of the pedestrian network, combining the data, expert 

knowledge and a macroscopic low-dimensional model of pedestrian motion.  

 

 

Figure 3: Simulation architecture, including input data, expert knowledge, and outputs. 

4.3 Validation of the Simulation 

The validation of our approach relies on two pillars. First, the part of the simulation that is intended to 

investigate the pedestrian network is proved valid for providing tools of investigation to decision-makers. 

Second, a quantitative validation to show that the expert knowledge combined with a low-dimensional 

theory-driven model and highly aggregated data can provide quantitative results of significance. The two 

pillars of the validation provide evidence that the two goals of the simulation were met using the proposed 

hybrid approach. 

4.3.1 Expert Validation 

In line with Kuhn (1970), a validation workshop intended to test whether the level of detail of the 

simulation and options could be a tool for investigating the mobility in Venice and gain more knowledge 

of potential strategies. Besides the validation with ACTV and AVM, a workshop was done with different 

agencies in Venice including the local police, the office of tourism and the city of Venice. The 

participants had no prior knowledge of the simulation or its abilities before the workshop. This is 

particularly important so as to avoid influencing their expectations during the workshop. The participants 

were organized in groups, with each group consisting of members from different authorities and agencies 

over the city. Each group was challenged with a scenario that affects mobility to elicit the actions they 

would take against that real-life scenario. The simulation is valid if it provides them with the options to 

test these actions and if the results were plausible. The scenario discussed by one of the groups regarded 

the closure of the bridge connecting the historical city with Venice’s main area during morning peak 

hours. The map on the left hand side of Figure 4 shows the alternative modes of transportation that the 

group concluded. On the right hand side of Figure 4 screenshots of the simulation of their actions is 

presented. The darkness of the colors of links indicates their crowdedness. The level of information 

shown in that visualization was deemed to be detailed enough to understand the behavior of the city 

according to participants, and the results made sense. The high crowdedness in certain areas such as 

Rialto Bridge (Point 4, Figure 2) can be explained by higher rates of pedestrians coming through the 

alternate route 3, Figure 4 and walking pedestrians on routes 1 and 2. 
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Figure 4: Routes to be investigated on the left, and screenshots of the resulting simulation on the right. 

Another scenario discussed by a different group regards the closure of the bridge in evening peak 

hours when the amount of visitors leaving the city exceeds the available capacities. The actions that were 

taken in this case were informing operators about the overload in the system, and informing the 

commuters about other means of transportation as well as providing them with estimates of waiting times 

to board the available transportation. These actions intended to provide information to city users from 

operators. Even though the simulation does not at all simulate the microscopic behavior of city users, its 

effects on flows can be simulated. However, this would require the simulation user to assume the 

response of city-users to the information they receive. Based on that response, the turning fractions can be 

updated adequately to see the effect on flows around the network. For example, if the action is to ask 

users in a part of the city to select other paths, the turning fractions on intersections along those paths 

should reflect that. 

The summary of this validation is that the simulation does indeed in a very simple way provide a 

possibility space that can be useful to understand movements of flows in the city of Venice, providing 

plausible results. The face validation, besides showing the plausibility of simulation results, shows that 

the hybrid approach succeeded in capturing the relevant dimensions of the problem and the right level of 

details to understand mobility in the city. 

4.3.2 Quantitative Results 

The quantitative results of the simulation that need a measure of realism were the estimates of travel-

times. This was investigated by looking into travel times between PoIs. The validation of travel times was 

done through a travel app in Venice. This travel app’s user can report if the travel times provided by the 

simulation and displayed through the app are valid. The travel app indeed mitigated the traffic scenario by 

reading on real time counts of ticket validation of public transportations, and then displayed to the users 

the travel times corresponding to the simulation of that mitigated scenario. Users’ response provide a 

feedback loop of the travel times and evaluates their consistency. The beta testing of the App from ACTV 

has identified the travel times to be credible. The test on a large audience has however not taken place. 

Hence, Figure 5 also shows the results when comparing the travel times returned by the simulation 

between four major axes of the city of Venice with the travel times returned by Google Maps for the same 

trips. The comparison to Google Maps is due to its wide use by travelers in Venice. The simulation travel 

time variation is due to the variation of number of people in the city, and in this case increases with higher 

visitor numbers. The comparison with Google Maps is only illustrative as the models behind Google 

Maps travel times are unclear; hence a more substantial comparison is hard to reach. The results show that 

simulated travel times are very close to Google Maps estimates. Deviations however might occur between 

results. This is explained by the simulation feature where travel times depend on crowdedness levels. 

Further sensitivity analysis of these results shows the origins in the difference of travel times between 

the simulation and Google Maps. In fact, for the road Academia-Train station where Figure 5 shows a 
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difference of about 8 minutes; depending on the crowdedness level, the simulated travel-time for this path 

changes from 21 minutes for a minor crowdedness level to 44 minutes at extremely crowded times. 

Google Maps’ travel time for that trip is within that interval. Those numbers make sense as the effect of 

increased crowdedness is known to decrease travel time in traffic theory. 

 

 

Figure 5: Simulation results (for a normal day) compared to a widely used time-traveler calculator in 

Venice. 

5 CONCLUSION 

In this paper, a hybrid approach for constructing simulations for smart cities was presented. The essence 

of this approach is the inclusion of expert knowledge and data, in the best possible way, in the 

development and execution of simulations. The authors argue that the use of simulations for urban 

environments requires such a hybrid approach in order to embrace the complexity of the problem, but also 

to cover for the often lacking or imprecise data available in cities. In particular, local expert knowledge on 

the exact dimensions of the problem can be combined with low dimensional model-based simulations to 

avoid suggestive over-precision and incomprehensive simulations.  

The proposed hybrid approach was used to build a simulation of the pedestrian network of Venice 

that suffers from high number of tourists. As a result, the developed simulation combined a theory-based 

model with available data and expert knowledge. Due to the low dimensionality of the model, it was 

possible to incorporate the expert knowledge in a way that increased realism of travel-times in the 

pedestrian network. Moreover, the use of this hybrid approach resulted in a simulation environment that 

addresses exactly the required dimensions of the problem by the city’s urban planners and policymakers. 

In fact, it does not do anything more than this, and therefore it is not claiming any more generic 

representation of reality than those dimensions included.  

The simulation was validated through both a quantitative analysis and a face validation. The 

validation shows that the approach succeeded in providing plausible results as well as a space of 

exploration of options for decision-makers in the city of Venice. This proved that the hybrid approach is 

useful for constructing relevant simulations for smart cities; by addressing the right dimensions, choosing 

the right models, and using efficiently data and expert knowledge. 
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