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ABSTRACT

The number of projects relying on volunteer computing and their complexity are growing fast. This
distributed paradigm enables the gathering of idle resources (processing power and storage) to run large
systems by providing scalable, practical and low cost platforms. The heterogeneity of the resources and their
unreliable behavior call for advanced optimization methods. In particular, an efficient resource allocation is
key for the systems’ performance. This work presents a mathematical formulation and a solving approach
based on a metaheuristic for the resource allocation problem. This approach is designed to deal with
data-intensive applications, which must guarantee the availability of the data at all times. Moreover,
a simheuristic is proposed to deal with the stochasticity of resources’ quality. A set of computational
experiments are performed to: (1) compare the performance of the metaheuristic and the simheuristic in
a stochastic environment; and (2) quantify the effect of the stochasticity on the solutions.

1 INTRODUCTION

Volunteer computing (VC) is becoming increasingly popular because it may provide scalable, practical
and low cost platforms. This computing paradigm relies on computational resources (nodes) donated by
volunteers. As a consequence, VC systems tend to be large-scale, heterogeneous and distributed. They aim
to satisfy computational and storage demands of a number of applications. A disadvantage in comparison
with dedicated servers is that these systems may suffer from a lack of reliability, since users are free to
connect and disconnect the nodes whenever they want. This behavior may cause significant delays or a
loss of data. Thus, it is essential to assign users (i.e., participants of the system who require computational
resources) to nodes (see Figure 1) in a smart way to guarantee the fulfillment of the tasks or the availability
of the data, and to minimize the quantity of nodes required. In order to create a robust system, replication
techniques are used. However, it increases the quantity of nodes needed. A selection mechanism is expected
to combine nodes with different availability levels guarantying that the whole system achieves a good quality
of service (QoS). Given the dynamism in the VC systems, this mechanism should be fast in order to readjust
the map of assignations as soon as possible.

Since the problem is an extension of the facility location problem, which is N P-hard (Mirchandani
and Francis 1990), it is also N P-hard. Thus, a heuristic / metaheuristic procedure (Talbi 2009) is required
to obtain high quality solutions to real-size instances in reasonable amounts of computing time. We suggest
the variable neighborhood search (VNS) metaheuristic (Hansen et al. 2010). In order to take account of
the stochasticity associated to the nodes’ quality, another solving approach is proposed which assumes
that these qualities are random variables that follow specific probability distributions, either theoretical or
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Figure 1: Resource allocation problem.

empirical ones. In particular, a simheuristic (Juan et al. 2015) integrating Monte Carlo simulation (MCS)
into the VNS metaheuristic. While the metaheuristic searches for promising solutions, MCS techniques
enable the assessment of these solutions in a stochastic environment. This approach is designed to deal
with data-intensive applications, which need to guarantee the availability of the data at all times. A set
of computational experiments are carried out to illustrate both the problem and the methodologies, and to
compare their performance in a number of scenarios.

The rest of this paper is organized as follows. Section 2 reviews some of the existing literature on
resource allocation in VC. Section 3 formally introduces the problem, including a mathematical model of
the version considered in this work. Section 4 provides a description of our metaheuristic and simheuristic
approaches. While section 5 describes an extensive set of computational experiments, section 6 extends
the analysis of the results. Finally, Section 7 outlines the main conclusions and provides some suggestions
for future research.

2 RELATED WORKS

The literature on the selection of nodes to assign users or tasks in VC systems has increasingly grown
during the last decade. For instance, Estrada et al. (2008) design a distributed genetic algorithm to build
scheduling policies in VC systems. The method searches over a wide space of scheduling policies generated
by employing a subset of IF-THEN-ELSE rules. Guler et al. (2015) present a number of heuristics which
distribute jobs aiming to maximize the amount of work done by the users without violating money budget
constraints. The heuristics rely on the price of the electricity consumed by the peers and its temporal
variation, and the CPU time used. Ghafarian et al. (2013) and Ghafarian and Javadi (2015) develop methods
to schedule scientific and data intensive applications workflow, in order to enhance the use of VC systems
and increase the percentage of workflow that meets the deadline satisfying QoS constraints. Cabrera et al.
(2014) focus on the random behavior of the resources regarding the times they are online (available) and
offline. The authors propose a hybrid algorithm combining a metaheuristic with discrete-event simulation.
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In the context of resources assignation in online distributed social networks, Duong-Ba et al. (2014)
propose several heuristics to address the client-server assignment problem, aiming to find an optimal (or near-
optimal) assignment that minimize the total communication load and also achieve a reasonable load balance.
User communication patterns are key in the heuristics. Considering the same problem, Zhang and Tang
(2014) describe a few heuristics for continuous distributed interactive applications. The heuristics attempt
to reduce the network latency to maximize the interactivity under consistency and fairness requirements.
Nishida and Nguyen (2011) develop a heuristic based on relaxed convex optimization, which provides a
near-optimal client-server assignment for a prespecified trade-off between load balance and communication.
A communication pattern represents the input of the heuristic, which can be used in distributed scenarios
such as instant messaging systems. Selimi et al. (2016) discuss the challenges of community network
micro-clouds such as the dynamic nature of micro-clouds, limited capacity of nodes and links, asymmetric
quality of wireless links for services, and deployment models based on geographic singularities rather than
network QoS, among others. The authors present a bandwidth-aware service placement algorithm which
outperforms the current random placement adopted by Gui f i.net (a project originally created to solve the
broadband Internet access difficulties in rural areas in Catalonia, Spain, with more than 32,500 operating
nodes). Panadero et al. (ited) develop the multicriteria biased randomized method to select nodes ensuring
a minimum QoS to the users. The method is based on a lexicographic ordering multicriteria strategy based
on the intrinsic properties of the donated nodes. In addition, biased randomization techniques are used to
distribute and balance the load of the nodes. It is tested by simulating a real large-scale social network.

3 DESCRIPTION OF THE PROBLEM

The (deterministic) resource allocation problem is defined over a set of users U = {1, . . . ,n} and a set of
nodes R = {1, . . . ,m}. Each user i (∀i ∈U) requires a deployment with a quality not lesser than qi and a
minimum number of nodes si. Similarly, each node j (∀ j ∈ R) has a quality r j, a bandwidth b j, a maximum
number of connections t j. For each pair user-node, li j represents the latency. There is a maximum latency
(lmax) for all the connections. In addition, a minimum bandwidth (bmin) is required. The decision variable
xi j is equal to 1 if the user i is assigned to the node j, and 0 otherwise. y j constitutes another binary
decision variable that is equal to 1 when the node j is used, and 0 otherwise.

The problem can be formally described as:

Min ∑
∀i∈U

∑
j∈R

xi j (1)

∑
∀ j∈R

r j · xi j ≥ qi ∀i ∈U (2)

∑
∀ j∈R

xi j ≥ si ∀i ∈U (3)

b j ≥ bmin · y j ∀ j ∈ R (4)

∑
∀i∈U

xi j ≤ t j ∀ j ∈ R (5)

li j · xi j ≤ lmax · xi j ∀i ∈U,∀ j ∈ R (6)

xi j ≤ y j ∀ i ∈U,∀ j ∈ R (7)

y j ≤ ∑
∀i∈U

xi j ∀ j ∈ R (8)

xi j ∈ {0,1} ∀i ∈U,∀ j ∈ R (9)

y j ∈ {0,1} ∀ j ∈ R (10)
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The objective function (Equation 1) minimizes the number of connections/assignations established.
The restrictions are described next. Equation (2) and Equation (3) impose the number of nodes to which
a user is assigned and their quality are greater than or equal to minimum values established. Equation
(4) forces to only select nodes with a relatively high bandwidth. Equation (5) ensures that the number of
connections for a given node does not excess the maximum. Equation (6) limits the maximum value of the
connections’ latency. Finally, Equations (7) and (8) relate the decision variables, and Equations (9) and
(10) determine their domain.

4 METHODOLOGY

First, this section describes the metaheuristic for the resource allocation problem considering deterministic
nodes’ quality. Later, the simheuristic that models qualities as random variables is presented.

Metaheuristic algorithm

Our solving methodology is based on the VNS metaheuristic, a popular metaheuristic in both combinatorial
and global optimization. It was first proposed by Mladenović and Hansen (1997), and has been successfully
applied in a number of research fields such as scheduling, vehicle routing, telecommunications, biology,
and artificial intelligence. Hansen et al. (2008), Hansen et al. (2008) and Moreno-Vega and Melián (2008)
provide comprehensive reviews of this metaheuristic. Basically, the VNS metaheuristic performs systematic
changes of neighborhood in order to find a local minimum by intensifying the search, and to escape from
the associated valley by diversifying. The main assumptions are: (i) a local minimum with respect to one
neighborhood structure is not necessarily so for another; (ii) a global minimum is a local minimum with
respect to all possible neighborhood structures; and (iii) typically, local minimum with respect to one or
several neighborhoods are relatively close to each other. The basic version (Algorithm 1) can be described
as follows. The number of neighborhoods (K) and the maximum computational time (T ) constitute the
inputs. In the literature, K is usually set to a small value and the neighborhoods are nested. First, an
initial solution (currentSol) is built. An outer loop sets the current neighborhood to the first one and
includes another loop, which builds and assesses new solutions. These solutions are created by ‘shaking’
the current solution considering its k-th neighborhood, and improved by means of a local search. If there is
an improvement (i.e., newSol is preferred over currentSol), the new solution is copied into currentSol and
the current neighborhood is set to the first one. This process represents a descending phase which aims to
find a local minimum. Otherwise, the next neighborhood is studied. The inner loop is executed until the
last neighborhood is explored. Finally, currentSol is returned.

The initial solution is generated as follows. First, the nodes are sorted by quality, from the best to the
worst, while the users are randomly ordered. For each user, nodes are iteratively selected until both the
minimum quality and the minimum number of nodes required are achieved. Before assigning a node, it has
to be checked that the maximum number of connections is not exceeded. Instead of choosing always the
nodes in the first positions (i.e., those with the best quality), biased randomization techniques (Juan et al.
2010) are employed to select nodes relying on a Geometric distribution, which boosts the diversification
of our algorithm.

The shaking of a given solution destroys the connections of p% of the users, maintaining all the other
connections. The partial solution is repaired by establishing new connections with the same procedure used
to generate the initial solution.

After the shaking stage, the local search attempts to improve newSol and find a local optimum by
applying fast movements. First, the users are decreasingly sorted by their number of connections in
decreasing order. For each user with a number of connections greater than the minimum, the following
steps are taken: (1) the nodes are sorted by quality in decreasing order; (2) a list of the other users with
at least two connections less is created; (3) for each node, the algorithm checks whether the number of
connections of that user can be reduced replacing some of them by one to that node considering the option
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Algorithm 1 Basic structure of the VNS metaheuristic.
VNS(instance,K,T )

1: t ← 0
2: initSol ← initialSolution(instance)
3: currentSol ← initSol
4: do
5: k ← 1
6: while (k ≤ K) do
7: newSol ← shake(currentSol,k)
8: newSol ← localSearch(newSol)
9: if (newSol � currentSol) then

10: currentSol ← newSol
11: k ← 1
12: else
13: k ← k+1
14: end if
15: end while
16: t ← elapsedTime
17: while (t < T )
18: return currentSol

of modifying the connections of one user at most from the list. It is important to highlight that only feasible
solutions are considered by the algorithm.

Simheuristic algorithm

This approach, represented in Figure 2, builds on the previous one to account for the stochasticity of the
nodes’ quality. It is considered that each quality is a random variable following a probability distribution.
Basically, the approach integrates MCS into the VNS metaheuristic.

The stochasticity affects the Equation (2) of the model. For a given solution, it cannot be guaranteed that
this restriction will not be violated when applied in a stochastic environment. However, the decision-maker
may specify a minimum probability associated to the restriction.

The approach includes MCS to estimate the probability for a given solution by following these steps:
(1) create a number of scenarios, where each scenario is characterized by a specific value for each random
variable generated from the corresponding probability distribution; (2) for each scenario, compute the
proportion of users who do achieve the quality required; (3) compute the mean of these proportions, so
called reliability of the specific solution. Since MCS techniques tend to be time-consuming, they are only
used to assess promising solutions. The solutions labeled as promising are the initial one and those which
provide a lower number of connections than currentSol. In addition, a relatively small number of scenarios
is simulated to obtain estimates in small amounts of time during the main loop. Instead of storing only
the best stochastic solution (i.e., that with the lowest reliability), the top best solutions assessed are stored.
Once the loop is finished, MCS is applied to those solutions with a higher number of scenarios to obtain
more accurate estimates.

5 COMPUTATIONAL EXPERIMENTS

Tests

The metaheuristic algorithm has been implemented using the programming language Java Standard Edition
7.0. Java permits a rapid, platform-independent, development of object-oriented programs, and is popular
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Figure 2: Proposed VNS-based simheuristic for the resource allocation problem.
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Table 1: Composition of nodes per instance.

High Medium Low
Instance 1 5% 20% 75%
Instance 2 5% 40% 55%
Instance 3 10% 45% 45%
Instance 4 10% 50% 40%
Instance 5 10% 60% 30%
Instance 6 20% 40% 40%
Instance 7 70% 15% 15%
Instance 8 70% 20% 10%

for developing optimization algorithms. Moreover, its use allows us to integrate the library of stochastic
simulation ‘ssj’ (http://www-labs.iro.umontreal.ca/∼simardr/ssj/), which provides the tools to compute
multiple measures related to probability distributions, applying quasi-Monte Carlo methods. All the
computational experiments have been carried out on a workstation with an AMD quad-core processor of
2.3Ghz with 4GB of RAM memory. As operating system we have used Windows 7.

The algorithm has been executed ten times with different seeds, storing only the best solution. The
maximum computing time has been set to 150 seconds per execution. The VNS metaheuristic has 5
neighborhoods, characterized by a given value of p: 5, 10, 15, 20, and 25, respectively. The parameter of
the Geometric distribution employed to apply biased randomization is set to 0.5. The number of scenarios
simulated to assess the promising solutions is 200, and the number of scenarios to obtain accurate estimates
for the best solutions is 2000.

Instances

In order to illustrate and test our approaches with realistic instances, we have considered a simulation of
a real micro-blogging application called Garlanet (Garlanet 2016 and Serra et al. 2016). It is a Twitter-
like decentralized alternative implementation of a micro-blogging social network. Thus, it constitutes a
real-time data-intensive application. It stores the data in heterogeneous computers voluntarily contributed
by its participants. In more detail, there is a microservice for each user that keeps its messages and data
information. These microservices are replicated across different nodes to guarantee their availability. The
application has a centralized control system (CCS), which detects available nodes at any moment and
assigns the most suitable nodes to each microservice. Moreover, the CCS guarantees that all the users meet
the constraints of minimum number of nodes and minimum QoS. The quality of each user is defined as
the sum of the quality of the nodes that host its data.

The simulator defines three kinds of nodes according to their quality: low, middle and high. While
nodes of the first type have a high probability of disconnection and a low probability of reconnection, those
of the last type show the opposite behavior. Thus, the quality of a node is represented as the predicted
probability of being connected during a specific period of time. This is a normalized value between 0 and
1, which is updated as the simulation progresses. To generate diverse instances, we have randomly taken
snapshots of the simulator outputs. The generated instances are composed of different percentages of high,
medium, and low quality nodes. Table 1 depicts the combinations considered. There are realistic instances
(1 to 6) where low quality nodes prevail, and other ‘ideal’ cases (7 and 8), which are more unlikely. The
number of nodes and users for all instances are set to 300 and 2100, respectively. In other words, a seventh
of the users contribute donating resources. The minimum quality required for users is 2.5.

The instances described are deterministic. Thus, in order to assess the simheuristic approach, they have
been adapted by replacing the deterministic quality of the nodes by random variables. In particular, we
have employed T N(µ,σ , l,u) referring to the truncated Normal distribution, where the parameters are the
mean, the standard deviation, and the lower and upper limits, respectively. We have considered: µ = r j and
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σ2 = c ·µ . 6 values of c (0.0025, 0.01, 0.05, 0.07 and 0.09) have been tested in order to explore different
realistic levels of stochasticity.

6 ANALYSIS OF RESULTS

This section presents and discusses the results obtained in two computational experiments. The subsection
6.1 analyzes results for the deterministic version of the problem (i.e., assuming deterministic nodes’ quality),
while the subsection 6.2 discusses the stochastic version considering that the decision-maker requires a
minimum probability of satisfying the constraint of the nodes’ quality.

6.1 Deterministic environment

Table 2 gathers the results for the deterministic version. Column 2 represents the number of connections
(user-node) needed to meet all the requirements and constraints of the system. Column 3 shows the
computational time required to find the best deterministic solution. Columns from 4 to 9 show the
reliability of the solution when it is applied in a stochastic environment for different levels of variability.
The reliability is defined as the mean proportion of users with a quality higher than or equal to the minimum
required, considering all the scenarios. We have used the constraint solver CPLEX to address the last
instance, and it has provided the same solution in 76 seconds. Thus, the difference of times (1.24 seconds
with the metaheuristic vs 76) is significant.

According to the results, as the percentage of nodes with a low quality increases, the total number of
connections also increases. This happens because the users need more replicas to meet the minimum quality
requirement. The instances 7 and 8 (which represent the best cases, where the 70% of the nodes have a
high quality) have 6300 connections. This number of connections represents the ‘ideal’ case, where all
the users meet the requirements and system constraints, using the minimum number of mandatory replicas
per user. Oppositely, the instance 1 (which represents the most difficult case) requires 10324 connections,
an average of 5 connections per user.

MCS has been applied to assess the performance of the best deterministic in environments with different
levels of uncertainty. Figure 3 depicts the results. The reliability degrades for all the instances as the level
of uncertainty increase. The instances from 5 to 8 present a reliability of 100% when the value 0.0025 of
c (the lowest uncertainty) is applied. This occurs due to the dominance of high and medium quality nodes,
and the low level of variance. For the other instances, the reliability is about 98.74% in average. When
the highest level of variance is used (c = 0.09), the instance 1 presents the worst reliability, while the best
instances (7 and 8) presents a reliability over the 95% due the high number of nodes with high quality.
The other instances present a reliability over the 80%.

Table 2: Best deterministic solution in deterministic and stochastic environments

Best deterministic solution
Reliability (%) in a stochastic environment

Connections
[]

Compt.
time (s)

c=0.00025
[RS1]

c=0.01
[RS2]

c=0.03
[RS3]

c=0.05
[RS4]

c=0.07
[RS5]

c=0.09
[RS6]

Instance 1 10324 1.86 98.30 94.64 91.48 89.34 84.32 78.32
Instance 2 9573 1.43 99.20 97.54 95.94 92.45 87.53 80.97
Instance 3 9120 1.35 99.12 98.32 97.76 94.95 87.54 81.34
Instance 4 8932 1.75 98.34 97.86 94.97 91.35 86.34 81.34
Instance 5 8134 0.98 100.00 98.54 94.03 92.18 87.33 84.82
Instance 6 7935 1.35 100.00 98.34 97.65 94.54 87.22 82.98
Instance 7 6300 1.32 100.00 100.00 97.34 97.34 96.86 95.56
Instance 8 6300 1.24 100.00 100.00 98.20 98.43 97.28 97.22
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Figure 3: Reliability of the best solutions for different levels of stochasticity.

6.2 Stochastic environment

Table 3 presents the stochastic results using c = 0.07 with different levels of minimum reliability required.
It can be observed that as the reliability required grows, the number of connections increases to meet this
requirement. The average computing time required to find the best stochastic solution was 98 seconds
(approximately 84% of the computing time is devoted to the simulation).

Focusing on column 2 (reliability≥ 82%), the number of connections is the same as for the deterministic
case. This happens because the system is over this value for all the instances. Concerning the instances
7 and 8, they present the same number of connections for all the levels compared to the deterministic
case. The reason is that the reliabilities are greater than 95%, due to the predominance of high quality
nodes. Focusing on the instance 5, which presents the most likely scenario in a real system, the effects of
increasing the reliability required are less significant than with the other instances. Referring to the instance
1 (the worst scenario), from a reliability higher than 85%, the total number of connections increases to
meet the demanded reliability. In this case, the metaheuristic provides a solution with 10624 connections,
an average of 5 connections per user.

Table 3: Best stochastic solution with c = 0.07 for different levels of reliability.

Best stochastic solution
Reliability ≥ 82 Reliability ≥ 85 Reliability ≥ 90 Reliability ≥ 92 Reliability ≥ 95

Instance 1 10324 10624 12182 12953 15026
Instance 2 9573 9573 10825 11493 12867
Instance 3 9120 9120 9956 10407 12073
Instance 4 8932 8932 10253 11082 12392
Instance 5 8134 8134 8806 9313 9923
Instance 6 7935 7935 8462 8925 10334
Instance 7 6300 6300 6300 6300 6300
Instance 8 6300 6300 6300 6300 6300
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7 CONCLUSIONS

Systems relying on volunteer computing are increasing both in number and complexity. Their performance
greatly depends on an efficient allocation of resources, which constitutes a challenging task. A mathematical
formulation has been provided for this problem. It minimizes the number of connections, considering
constraints related to the number of nodes and the quality required by users, and latencies and bandwidth
levels. A solving approach based on the VNS metaheuristic has been proposed. However, these systems
tend to be very dynamic because of the behavior of the nodes. Accordingly, a simheuristic approach has
been described to take account of the stochasticity related to the nodes’ quality. It integrates Monte Carlo
simulation into the metaheuristic. The idea of this approach is that ignoring the stochasticity may lead to
a solution that provides a poor reliability when implemented in a real-life environment. In contrast, the
proposed approach allows us to: (1) compute the reliability of solutions; and (2) guarantee a minimum
level of reliability. A set of computational experiments have been carried out using realistic instances
provided by a simulator of a micro-blogging application. These experiments illustrate the approaches and
allow us to compare them in scenarios with different levels of stochasticity.

Several lines of future research stem from this work. For instance, different metaheuristics could be
compared, and the stochasticity related to latencies could be considered. Similarly, it would be interesting
to study the stochasticity of several real systems and perform sensitivity analysis to understand how the
stochasticity affects the systems’ performance.
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