
Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

DESIGNING HIGHWAY ACCESS CONTROL SYSTEM USING MULTI-CLASS M/G/C/C
STATE DEPENDENT QUEUEING MODEL AND CROSS-ENTROPY METHOD

Yifan Wang Haengju Lee

Daniel Kim

Seong-Hee Kim

Department of Information

H. Milton Stewart School of and Communication Engineering

Industrial and Systems Engineering Daegu Gyeongbuk Institute of

Georgia Institute of Technology Science and Technology

765 Ferst Dr., NW 333 Techno Jungang-daero

Atlanta, GA 30332-0205, USA Daegu, 42988, REPUBLIC OF KOREA

ABSTRACT

In this paper, we consider a futuristic scenario where there exists a special lane in a segment of a highway;
vehicles which wish to use the lane must send access requests ahead of time; and only the vehicles whose
requests are accepted can use the lane. While some existing express lanes try to control traffic by dynamic
pricing on the usage of the lanes based on consumer demand, we control traffic by accepting or rejecting
access requests to the lane. Vehicle classes are defined by vehicle sizes and carry a different number
of passengers. Our goal is to find an optimal allocation of the lane capacity among different vehicle
classes which maximizes the long-run average passenger throughput. We use a multi-class M/G/C/C state
dependent model to calculate the long-run average passenger throughput for a given allocation and use
a cross-entropy method to find an optimal allocation among a large number of possible allocations. We
briefly discuss how this problem formulation is applicable to general resource sharing problems and then
discuss how to dynamically control acceptance/rejection of access requests to further enhance the real-time
efficiency of our system.

1. INTRODUCTION

The highway is an essential part of the transportation system. It not only serves as a faster option for long
distance traveling but also affects the whole traffic condition for metropolitan areas. Especially for those
cities with major interstate highways going through the metro area, like Chicago and Atlanta, highway
traffic is particularly critical. In these cities, congestion occurs regularly during rush hours as the demand
increases, and it significantly undermines the efficiency of the highway and thus that of the whole road
system in the city. The conventional way to solve the higher traffic demand problem is to expand the road
system. Besides its expensive cost, this idea is often not even implementable due to geological reasons. A
more innovative way is to regulate the traffic demand to ensure the traffic performance.

Ravi et al. (2007) present the idea of using dynamic pricing as a control mechanism for the high-priority
lane. Theoretically, by varying the price of using the priority lane, the demand could be controlled to
avoid congestion. For example, Peach Pass on I-85 in Georgia varies its rates between $0.01 per mile
to a flat $13.95 for any length trip, and the price at a specific location and point in time is determined
by consumer demand. In this paper, we consider a different approach, namely a highway access control
system: there exists a special lane in a segment of a highway; vehicles which wish to use the lane must
send access requests ahead of time; and only the vehicles which receive approvals can use the lane. This is
a futuristic scenario, but with the proposal of self-driving vehicles and the wide use of wireless networks,
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traffic surveillance and control could be done in real time and this idea could be implementable and effective
in enhancing highway traffic.

The idea of a traffic access control system is not new and has been proposed in the literature. It is
first introduced from the airway transportation system by Akahane and Kuwahara (1996) for the purpose
of managing a travel demand by means of reservation. Later Wong (1997) proposes a booking procedure
to control an individual vehicle’s departure time in advance as a method of governing road traffic. The
idea of traffic reservation or access control may take some time to implement, but the results tend to be
promising according to Wong (1997). Feijter, Evers, and Lodewijks (2004) also advocate the advantages
of the reservation system by explaining that a reservation system improves the reliability and the efficiency
of the system. Zhao et al. (2010) provide another pioneering example using cordon-based control for
congestion mitigation in a downtown area. A real-time module is used to make real-time operational
decisions whether a vehicle should be permitted or declined to enter the control area. By stimulating users
to reserve in advance, the system would make sure that the total number of vehicles always stays under the
determined capacity, which would improve the efficiency and the traffic conditions in the controlled area.
Liu et al. (2013) extend the reservation model by Zhao et al. (2010) to a highway system. They propose a
token-based reservation system and a real-time scheduling algorithm to monitor the traffic condition and
maintain the efficiency of the high priority lane. The token-based reservation is shown to increase the
control accuracy. However, it requires a significant effort to monitor a large number of tokens, which makes
it difficult to implement in practice.

For a highway system, Jain and Smith (1997) present an M/G/C/C state dependent queueing models for
modeling the traffic flow where M/G/C/C represents a queueing model with (i) a Poisson arrival process,
(ii) service times whose distribution follows any general distribution. (iii) C number of parallel servers
and (iv) C number of total system capacity. So a new customer is rejected if the queueing system has
C existing customers in the system at the time of its arrival. Jain and Smith (1997) consider a linearly
or exponentially decreasing traffic flow speed model as the number of vehicles increases in a segment
of highway and compare the analytical and simulation results with the actual traffic data. Furthermore,
they provide an analytical model to calculate the rejection probability of a new arriving customer. This
model can be used to calculate the performance of a road traffic system such as a rejection probability and
long-run average throughput for a given lane capacity where a long-run average is defined as an average
over an infinite time horizon.

If all vehicles are equal in size, the maximum capacity of a certain segment of a highway is usually set
to the number of vehicles at which the traffic flow speed becomes zero. As the speed tends to decrease as the
number of vehicles increases, using up the maximum capacity is not necessarily better especially if the goal
is to maximize the long-run average throughput. Instead, the overall system performance might be better
when the number of vehicles is forced to stay lower than the maximum capacity. Indeed, Greenshields et al.
(1935) show that if a traffic flow speed model is linear and the incoming vehicle rate is infinity, then the
maximum throughput is achieved when the maximum number of vehicles allowed to be entered in highway
is limited to half of the maximum capacity. In this paper, we consider one lane in a segment of highway
and design the access control system for the lane to maximize the long-run average passenger throughput.
There are multiple classes of vehicles based on their sizes. We extend an M/G/C/C state dependent model
from Jain and Smith (1997) to a multi-class M/G/C/C state dependent model, which enables us to calculate
the long-run average throughput for a given space allocation among classes. When the service rates or times
of a class only depend on the state of the class but independent of other classes’ states, then a closed-form
solution for the long-run average throughput can be derived as in Example 2 of Zachary (2007). However,
when service rates depend on the state of the entire system including other classes’ states as in our problem,
a closed-form solution does not exist but a set of balance equations need to be solved for each possible
allocation. The total number of possible allocations is usually large and balance equations are a large
set of linear equations. Therefore it takes time to set up balance equations, calculate the throughput for
each possible allocation, and find the best optimal allocation by the exhaustive approach. Instead, we
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employ the cross-entropy method which has been shown to be useful for optimization when objective
function values can be obtained only through a black-box simulation or calculation. Rubinstein (1997)
introduces the cross-entropy method for estimating a rare event probability and Rubinstein (1999) shows
that the cross-entropy can be used for (approximately) solving complicated optimization problems. The
cross-entropy method is successfully applied to many deterministic and stochastic optimization problems
including Alon et al. (2005) which apply the cross-entropy method to a buffer allocation problem in a
production line. Note that the value of the objective function in our problem is deterministic in a sense
that its exact value is calculated numerically while Alon et al. (2005) estimate their objective function
value (i.e., throughput of a production line with a limited buffer space) by stochastic simulation. There are
other types of methods which can be used for black-box optimization. However, the goal of this paper is
to design a highway access control system rather than compare the performances of different optimization
techniques. Therefore comparing different types of optimization techniques is out of scope in this paper.

Our problem can be viewed as a general case of resource sharing in a sense that limited resources are
shared by customers from various classes and customers are rejected when there are no available resources.
Each customer requires a number of resources simultaneously; the number of resources needed for each
class is different; processing times are determined by the total current workload; and the utility or value
of a completed job from each class is different to the decision maker. That is, one class is more valuable
than the other class to the decision maker such as first-class passengers and economy-class passengers in
the airline industry. This problem occurs in many other fields such as internet-based gaming service and
online music streaming service, to which our method can be applicable.

The paper is organized as follows. Section 2 defines our problem and introduces notations. Section 3
presents how to find an optimal allocation. Section 4 proposes a dynamic acceptance/rejection policy to
enhance the real-time traffic performance. Experimental results are presented in Section 5, followed by
conclusions in Section 6.

2. PROBLEM AND NOTATION

This section formulates our problem and defines notations.
Consider one lane in a segment of a freeway of length L in which a vehicle is allowed to enter only

when an access request to use the lane is accepted. Let R represent the number of vehicle classes. A vehicle
in class r for r = 1, . . . ,R has mr as the expected number of passengers and sr as the relative vehicle size
to the vehicle size of class 1. We assume that class 1 has the smallest vehicle size and set its size to one.

Let Ar represent the maximum number of vehicles from class r that the access control system can have
simultaneously on the lane at any point in time. (s1A1, . . . , sRAR) represent the assigned spaces to each
class. The access request arrival rate from class r (during a certain time interval such as rush hours or non
rush hours) is denoted by λr and it is assumed to follow a Poisson arrival process. The long-run rejection
probability for class r is denoted by qr. The long-run average vehicle throughput of class r is (1−qr)λr
and the long-run average passenger throughput of class r is mr(1−qr)λr. Then the overall long-run average
passenger throughput is

∑R
r=1 mr · (1−qr)λr. Further, let Nr(t) represent the number of vehicles of class r at

time t. Then the total spaces occupied at time t is NT (t) =
∑R

r=1 srNr(t). It is assumed that the traffic flow
speed at time t is a non-increasing function of NT (t) and is denoted by V(NT (t)) to represent its relationship
to the total spaces taken at time t. We use Cmax to denote the number of vehicles of class 1 at which the
traffic flow speed becomes zero. Table 1 provides a summary of our notations.

Our problem is formulated as follows:

maxA1,...,AR

∑R
r=1 mr(1−qr)λr

subject to Nr(t) ≤ Ar, r = 1, . . . ,R;∑R
r=1 srAr <Cmax;

Ar ∈ {0, . . . ,Cmax−1}, r = 1, . . . ,R.

(1)
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Table 1: Notation.

Notation Definition

R the number of vehicle classes (class 1 has the smallest vehicle size)

r class index

L length of a segment

Cmax maximum capacity of the access control lane in the units

of the number of vehicles of class 1 (thus an integer)

Ar maximum number of vehicles from class r that the access control system can have

at any point in time (srAr spaces are exclusively assigned to class r)

CT maximum number of total spaces the access control system can occupy at any

point in time (all classes share CT spaces together)

mr the expected number of passengers in a vehicle of class r
sr the relative vehicle size in class r compared to the size of vehicles in class 1 (s1 = 1)

srAr spaces allocated to class r (not necessarily an integer)

λr the arrival rate of access requests from class r
Nr(t) number of vehicles in class r in the lane at time t
NT (t) total spaces occupied at time t, i.e.,

∑R
r=1 srNr(t)

V(NT (t)) traffic flow speed at time t
qr long-run rejection probability of class r

The above formulation assumes that class r has space srAr exclusively dedicated to itself and a vehicle
from other classes is not allowed to take the space. One may want to control access requests simply by
one pooled space CT <Cmax and consider the following problem formulation:

maxCT

∑R
r=1 mr(1−qr)λr

subject to
∑R

r=1 srNr(t) ≤CT ;

CT ∈ {0, . . . ,Cmax−1}.
(2)

In a usual optimization of a limited resource allocation, an optimal solution is often to use up all
available resource. However, in a highway traffic system, the optimal solution never uses up Cmax but
keeps total spaces used by all classes below Cmax because V(NT (t)) is non-increasing function of NT (t)
and V(Cmax) = 0. In this paper, we interpret mr as the expected number of passengers in a vehicle of class
r but depending on a problem, it could be interpreted as something else such as prices earned when a
request from class r is accepted. For example, in an internet-based game site with a limited capacity, mr
may represent access fees paid by user class r. Then an optimal allocation of the limited capacity among
the classes could be found by solving (1) or (2) to maximize the long-run average total collected fees.

Problem (1) finds a static allocation (s1A1, . . . , srAR) where srAr is the spaces assigned exclusively for
class r. If class r uses up all spaces srAr but there are no vehicles of other classes on the lane, then a new
request from class r is rejected although there are spaces available in the lane. In contrast, Problem (2)
finds a pooled space CT shared by all vehicle classes. In this case, a request from class r can be accepted
as long as there are spaces available in the lane. We find optimal solutions of both problem formulations
and compare them. For Problem (1), when a class has open spaces, it may be desirable to allow some
spaces to be used for other classes. In Section 4 we implement this static allocation with a dynamic control
policy which accepts a request from class r even when Nr(t) = Ar if allowing the vehicle to use sr spaces
from sr′Ar′ is unlikely to interrupt future acceptance/rejection decisions for class r′.

Throughout the paper, we assume that there are only two classes and thus R = 2 for simplicity.
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Figure 1: Rate diagram when (s1, s2) = (1,2) and (A1,A2) = (2,2) where each state (numbers in a circle)

represents the number of vehicles in each class at time t, (N1(t),N2(t)).

3. STATIC ALLOCATION

In this section, we present a multi-class M/G/C/C state dependent queueing model to calculate the long-run
average passenger throughput for a given allocation and then a cross-entropy method for optimization
search over a large number of possible allocations.

3.1 Multi-Class M/G/C/C State Dependent Queueing Model

We describe a multi-class M/G/C/C state dependent queueing model for a specific allocation (A1,A2).
The mean travel time for the access control lane when there is only one car of class 1 is denoted by L

and is set to L = L/V(1). Thus the mean travel time in state (i, j) is L/V(s1i+ s2 j) =L V(1)
V(s1i+s2 j) . In terms

of service rates, the service rate for state (i, j) is μ
V(s1i+s2 j)

V(1)
where μ is set to 1/L = V(1)/L. Then for a

given allocation (A1,A2) from Problem (1), transition rates from state (i, j) to (i′, j′) are as follows:

transition rate from (i, j) to (i′, j′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1, if (i′, j′) = (i+1, j) for i = 0,1, . . . ,A1−1;

λ2, if (i′, j′) = (i, j+1) for j = 0,1, . . . ,A2−1;

i ·μV(s1i+s2 j)
V(1)

, if (i′, j′) = (i−1, j) for i = 1, . . . ,A1;

j ·μV(s1i+s2 j)
V(1)

, if (i′, j′) = (i, j−1) for j = 1, . . . ,A2;

0, otherwise.

For allocation CT from Problem (2), transition rates are the same as above except for the values of
lower and upper bounds of i and j. Figures 1 and 2 show rate diagrams for (A1,A2) = (2,2) and CT = 6,
respectively, when (s1, s2) = (1,2) and Cmax is a number greater than or equal to 6.

Kobayashi and Mark (2008) call multi-class M/G/C/C state dependent queues as a generalized Erlang
loss queue and captures the multi-class nature of the generalized Erlang loss queue. They show that multi-
class M/G/C/C state dependent queues are insensitive to distribution types if the classes of vehicles all
arrive as independent Poisson arrival rates and there are no priorities. Their model is similar to our problem
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Figure 2: Rate diagram when (s1, s2) = (1,2) and CT = 6 where each state (numbers in a circle) represents

the number of vehicles in each class at time t, (N1(t),N2(t)).

formulation (2) except that service rates of class r are determined by srNr(t) rather than total workload∑R
r=1 srNr(t). Zachary (2007) considers a more generalized case where service rates are determined by

the total workload and shows that insensitivity in stochastic networks to service distributions still holds.
Therefore, we calculate stationary distribution π= [πi, j] for Problems (1) and (2) by setting up corresponding
multi-class M/M/C/C state dependent queues and solving balance equations. Then the long-run rejection
probabilities are

q1 =

A2∑
j=0

πA1, j and q2 =

A1∑
i=0

πi,A2

for Problem (1) and

q1 =
∑

(i, j):s1i+s2 j=CT

πi, j and q2 =
∑

(i, j):0≤CT−(s1i+s2 j)<s2

πi, j

for Problem (2). Then we can calculate the long-run passenger throughput for a given allocation.

3.2 Cross Entropy Method

The number of possible allocations for Problem (2) is Cmax. Thus the number of possible allocations linearly
increases as Cmax increases. This means that as long as Cmax is not very large, the optimal allocation can
be searched by the exhaustive method where π is calculated for every possible allocation.

On the other hand, in Problem (1), any (A1,A2) such that s1A1+ s2A2 <Cmax can be a potential allocation
and the number of pairs can be large. This problem is more pronouncing when Cmax or the number of
classes increases. One may find the best optimal allocation by setting up balance equations and calculating
π for each A = (A1,A2) for every possible allocation, but this exhaustive method is not desirable due to
computation time. Instead, we use a cross-entropy method known to be efficient for quickly searching for
the best solution when the search space is large and evaluation of the objective function takes time. The
main idea of the cross-entropy method is to convert a deterministic optimization problem to a rare-event
probability estimation problem. Initially, a ‘flat’ sampling distribution is used for generating the n number of
possible solutions. Then each solution’s performance is calculated and the sampling distribution is updated
by giving higher probabilities to solutions with good performances and lower probabilities to solutions
with bad performances. These steps are repeated until the sampling distribution converges and a solution
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with the largest probability is returned as the best solution. A full description of our cross-entropy method
is described next.

Initialization: Pick a number of sampled allocations n, an integer for a stopping condition c, and a
weight for updating a sampling distribution 0 < α < 1. Set a value ρ, a quantile probability. Set
iteration counter k = 0 and the maximum possible values for each class M1 and M2 are M1 =Cmax−1

and M2 =
⌊

Cmax−1
s2

⌋
where �x� returns the greatest integer less than or equal to x.

The initial sampling distribution �(0) is a 2 by (M1+1) matrix of [P(0)
r j ] such that

P(0)
r j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
M1+1
, r = 0, j = 0, . . . ,M1;

1
M2+1
, r = 1, j = 0, . . . ,M2;

0, otherwise,

Sample Allocations: Sample n number of possible allocations A(i) = (A(i)
1
,A(i)

2
) for i = 1, . . . ,n using

� =�k as follows:

1. Generate a random permutation (w1,w2) of {1,2}.
2. Sample A(i)

w1
∈ {0,1, . . . ,Mw1

} with pmf (Pw1,0, . . . ,Pw1,Mw1
).

3. Set U =
⌊

Cmax−sw1
A(i)

w1

sw2

⌋
.

4. Sample A(i)
w2
∈ {0, . . . ,U} with pmf

(
Pw2 ,0∑U
i=0 Pw2 ,i

, . . . ,
Pw2 ,U∑U
i=0 Pw2 ,i

,0, . . . ,0
)
.

Performance Calculation: Calculate π and the long-run average passenger throughput TH(A(i)) for
i = 1, . . . ,n by solving balance equations and order these from largest to smallest, TH1 ≥ · · · ≥ THn.
Define γ = TH�ρn�.

Update: Using the same sample, update �(k+1) = [P(k+1)
r, j ] as

P(k+1)
r, j = α

∑n
i=1 �

{
TH(A(i)) ≥ γ

}
·�
{
A(i)

r = j
}

∑n
i=1 �

{
TH(A(i)) ≥ γ

} + (1−α)P(k)
r, j ,

where �(A) is an indicator function of event A.
Set k← k+1 and find ξr the index of the maximal element of the rth row of �(k) for r = 0,1. Return
(ξ1, ξ2) as the current best allocation.

Stopping Rule: Stop if (ξ1, ξ2) has not changed for c consecutive times.

Note that Sample Allocations and Update steps are from Alon et al. (2005). Also, Alon et al. (2005)
recommend that 0.7 ≤ α ≤ 0.9, 0.05 ≤ ρ ≤ 0.2 and c = 5. We use α = 0.8, ρ = 0.2 and c = 5 in this paper.

4. DYNAMIC CONTROL POLICY

Solutions to Problem (1) provide dedicated allocations in a sense that, for example, no access request from
class 1 would be accepted when (N1(t),N2(t)) = (A1,0) although there are s2A2 spaces available. To further
enhance space utilization, we dynamically control acceptance of requests depending on the current state
(N1(t),N2(t)). The idea is simple. When there is a new request from class i whose spaces are full, we check
the availability of spaces from class j � i. If spaces are available, then the probability that the acceptance
of this new request of class i interferes future request acceptance of class j is computed. If the probability
is low, then the new request is accepted to spaces assigned for class j. Otherwise, it is rejected.
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Suppose that the current state is (N1(t),N2(t)) and there is a request from class i. Currently there is
no space and thus Ni(t) = Ai. Category j � i has N j(t) vehicles, occupying s jN j(t) spaces. If there is no
space to accept the new request (i.e., s jN j(t)+ si > s jA j), then the new request is rejected. Otherwise,
calculate the probability that the new request finishes its trip in the access control segment before it causes
a rejection of a new request from class j. The trip finish time of the new request, denoted by endi, is
endi = L/V(NT (t)+ si), which is a constant. Category j currently has spaces for additional (A j −N j(t))
vehicles from class j. As the request arrivals are assumed to follow a Poisson process, the inter-arrival
times are exponentially distributed with rate λ j. The elapsed time of the (A j−N j(t))th new request from
class j from the current clock t, denoted by S j, is Erlang distributed with parameters A j −N j(t) and λ j.
So if the (A j−N j(t))th new request from class j arrives before L/V(NT (t)+ si), which corresponds to the
event S j < endi, then the acceptance of the new request of class i interferes future acceptance and rejection
decision for class j. We accept the new request and let it use spaces from class j if the probability that
S j < endi is smaller than some threshold 0 < ε < 1.

A formal description of the dynamic acceptance policy is given as follows:

Given: The current state is (N1(t),N2(t)). A request from class i arrives and currently the capacity is
full as Ni(t) = Ai. Set a small constant 0 < ε < 1.

Initial Check: For j� i, if s jN j(t)+ si ≤ s jA j, calculate pa
j = Pr(S j < endi) where S j is an Erlang random

variable with parameters A j−N j(t) and λ j and endi is L/V(NT (t)+ si); else, set pa
j = 1.

Decision: Reject the new request if pa
j > ε for all j. Otherwise, accept the new request and assign spaces

from class j with smallest pa
j . If the request from class i is accepted, set N j(t) ← N j(t)+

si
s j

.

This dynamic decision is expected to increase space utilization for an allocation in Problem (1).

5. NUMERICAL RESULTS

In this section, we present analytical and simulation results using some traffic data.

5.1 Configurations

We consider two classes of vehicles. The overall arrival rate is denoted by λ with the proportion of traffic
coming from each class (p1, p2). Then arrival rate of class r, λr, is set to λpr. The overall arrival rate λ is
set to λ = 3960 vehicles per hour for most settings but varies from 3960 to 7200 in Section 5.2. Two sets
of (p1, p2) are tested: (0.8,0.2) and (0.5,0.5). The size of vehicles in each class sr is assumed to be (1,2)
and the expected number of passengers carried in a single vehicle from class r is assumed to be (1,1.5).

For traffic flow speed models, we consider linear and exponential models modified from Jain and Smith
(1997). Suppose that there is only one class with size 1. A linear model assumes that V(NT (t)) is calculated

as V(NT (t)) = V(1)− V(1)
Cmax

NT (t), where V(1) is referred to the free flow speed for a lone occupant and Cmax

is the jam density.

An exponential model represents traffic flow speed as V(NT (t)) = V(1)exp
[
−
(

NT (t)−1
β

)−φ]
, where

φ = ln
ln(V(Na)/V(1))

ln(V(Nb)/V(1))

/
ln

(Na−1)

(Nb−1)
, β =

Na−1

[ln(V(1)/V(Na))]1/φ
=

Nb−1

[ln(V(1)/V(Nb))]1/φ
,

and (Na,V(Na)) and (Nb,V(Nb)) are two points of a number of vehicles and its corresponding traffic flow
speed which are selected from the empirical data to define traffic flow model.

5.2 Optimal Allocation with Various Arrival Rates for Single Class

In this section, we consider a single class with size 1 (i.e., R = 1 and s1 = 1) and show how the optimal
space allocation changes as λ changes when a linear traffic flow model with V(1) = 75 and Cmax = 220 is
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considered. Arrival rate λ varies from 3960 vehicles per hour to 7000 vehicles per hour. Figure 3 shows
rejection probabilities of vehicles at allocation A1 = 0,1, . . . ,Cmax−1 for various λ. For each λ, an allocation
with the smallest rejection probability produces the largest long-run average throughput and thus should
be an optimal allocation. When λ = 3960, the optimal allocation is 192. When λ increases to 7000, the
optimal allocation changes to 130. This demonstrates that using all possible spaces Cmax is not necessarily
good when service gets slower as there are more customers in the system. Also, note that as λ increases,
the optimal allocation converges to a half of the maximum capacity Cmax for the linear traffic flow model,
which matches the results of Greenshields et al. (1935).
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Figure 3: Rejection probability for allocation A1 (or CT ) for various arrival rates λ.

5.3 Static Optimal Allocations for Two Classes

Now we consider two classes. Remind that (s1, s2) = (1,2) and (m1,m2) = (1,1.5). The overall arrival rate
is λ = 3960 vehicles per hour with (p1, p2) = (0.8,0.2) or (p1, p2) = (0.5,0.5). A linear traffic flow model
is used with V(1) = 75 miles per hour.

To demonstrate the efficiency of the cross-entropy (CE) method, we solve Problem (1) using both the
exhaustive method and the CE method for Cmax = 110,160 and 220 with (p1, p2) = (0.5,0.5). The CE
method uses parameters α = 0.8,ρ = 0.2 and n = 400. In all cases we tested, the CE method stops after
13 iterations. Both methods return the same allocation as the best and the CE method evaluates fewer
allocations than the exhaustive method until it stops as shown in Table 2.

Table 2: Optimal solutions returned by the exhaustive method and the cross-entropy method.

Optimal allocation Number of solutions Number of solutions

Cmax (A1,A2) searched by the exhaustive method evaluated by the CE method

110 (66,1) 3136 689

160 (76,13) 6561 817

220 (83,29) 12321 928

Table 3 compares optimal solutions of Problem (1) by the CE method and Problem (2) by the exhaustive
method when Cmax = 220 and (p1, p2) is either (0.8,0.2) or (0.5,0.5). For both cases of (p1, p2), dedicated
space allocations result in higher passenger throughput. However, we found that there are cases that the
pooled allocation performs better than the dedicated allocation. For example, when (m1,m2) is (1,2) instead
of (1,1.5) with V(1) = 75 and (p1, p2) = (0.8,0.2), the optimal pooled allocation is C∗

T = 118 with TH =
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4139 and (q1,q2) = (9.92,18.83) while the optimal dedicated allocation is (A∗
1
,A∗

2
) = (82,21) with TH =

4132 and (q1,q2) = (11.11,16.93).
Table 4 reports simulation results for the optimal dedicated allocations with the dynamic control when

ε varies from 0 to 1. When ε = 0, estimated rejection probabilities and throughput from simulation are
very close to analytical results from Table 3. This is expected because the dynamic control with ε = 0 is
same as the pure dedicated space allocation policy. The dynamic control slightly increases throughput as ε
increases, but throughput drops significantly when ε = 1. One would think that the case of ε = 1 should be
same as the pooled allocation with CT = A∗

1
+ s2A∗

2
but, in fact, they are different. For example, when there

is only one space left for each class, the dynamic control with ε = 1 would reject a request from class 2 as
size s2 is 2 whereas the pooled policy would accept the request because two spaces are available in total.
Indeed, the analytical results of a pooled allocation with CT = 83+2(29) = 141 and (p1, p2) = (0.5,0.5) show
(q1,q2) = (22.69,39.95) and TH = 3314 while the dynamic control with ε = 1 has (q1,q2) = (19.86,41.13)
and TH = 3331 (i.e., lower rejection for class 1 but higher rejection for class 2).

The big difference between ε = 0.99 and ε = 1 occurs because pa
j — the probability that the acceptance

of a new request of class i to class j’s spaces interferes future request acceptance of class j — becomes
1 during most of simulation time. When (p1, p2) = (0.8,0.2) and λ = 3960 vehicles per hour, the highway
tends to be full with a few spaces left if there are any. When only 2 ∼ 3 spaces are left, the mean of
the Erlang random variable S j is 2.14 ∼ 3.42 seconds for class 1 and 9.1 ∼ 13.65 seconds for class 2,
respectively. On the other hand, the trip finish-time of the new request, endi, is around 100 ∼ 120 seconds.
Hence, endi is much larger than S j, which implies that accepting a request of class i will definitely interrupt
the future service of class j or pa

j = 1.

Table 3: Optimal solutions (A∗
1
,A∗

2
) for Problem (1) and C∗

T for Problem (2) when Cmax = 220. Rejection

probabilities are in % and THs are in number of passengers per hour.

(p1, p2) Optimal Allocation (q1,q2) TH

(0.8,0.2) (A∗
1
,A∗

2
) = (108,13) (0.99,40.96) 3838

C∗
T = 118 (9.92,18.83) 3818

(0.5,0.5) (A∗
1
,A∗

2
) = (83,29) (0.13,45.89) 3585

C∗
T = 114 (19.59,35.27) 3515

Table 4: Simulation results for optimal solutions of Problem (1) with the dynamic control and 24 hours

run-length. (Rejection probabilities are in % and THs are in number of passengers per hour.)

ε (p1, p2) = (0.8,0.2), (A1,A2) = (108,13) (p1, p2) = (0.5,0.5), (A1,A2) = (83,29)

(q1,q2) TH (q1,q2) TH

0 (0.90, 41.01) 3838 (0.10, 45.85) 3587

0.5 (0.90, 40.98) 3839 (0.10, 45.77) 3589

0.9 (0.90, 40.86) 3840 (0.11, 45.64) 3593

0.99 (0.93, 40.53) 3843 (0.15, 45.56) 3594

1 (10.95, 22.06) 3746 (19.86, 41.13) 3331

5.4 Various Traffic Flow Models for Two Classes

We find the optimal allocation under various traffic flow speed models for Problem (1): one linear model
and three different exponential models with V(1) = 75, λ = 3960 and (p1, p2) = (0.5,0.5). These four traffic
flow speed models are shown in Figure 4. Table 5 gives parameters for the four traffic flow speed models and
returns optimal solutions along with their rejection probabilities and long-run average passenger throughput.
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Figure 4: Different traffic flow models

Table 5: Optimal allocation (A∗
1
,A∗

2
) under various traffic flow models. Rejection probabilities are in %

and THs are in number of passengers per hour.

Model Parameters (A∗
1
,A∗

2
) (q1,q2) TH

Linear V(1) = 75, Cmax = 220 (83,29) (0.13,45.89) 3585

Exponential 1 V(1) = 80, φ = 1.26, β = 94.4 (80,12) (0.79,78.02) 2616

Exponential 2 V(1) = 90, φ = 1.06, β = 69.6 (77,5) (1.97,90.97) 2209

Exponential 3 V(1) = 90, φ = 1.05, β = 107.6 (76,35) (13.02,57.43) 2986

Space allocations are sensitive to speed models and more spaces tend to be assigned to class 1 because
it takes fewer spaces than class 2 and thus contributes less to speed reduction compared to class 2. Also,
we notice that the linear model produces higher throughput than exponential models because traffic flow
speed decreases much slowly in the linear model than in exponential models.

6. CONCLUSIONS

In this paper, we present a freeway access control system which maximizes the long-run average passenger
throughput. The work presented in this paper considers a simple case where there are only two classes
and one lane in a single segment. Research is ongoing on extending it to more than 2 classes and a lane
in multi-segments where part of vehicles from previous segments continue traveling to next segments. In
addition, this paper assumes real-time requests and real-time control. It would be interesting to consider
both real-time access requests and reservation requests ahead of time such as sending a request at 2 pm
for traveling at 6 pm.
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