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ABSTRACT

In simulation studies, the goal specifies the objective or purpose of the study and thus drives the entire
experimentation process. Relevant experiments and respective experiment hypotheses are derived from the
study’s goal and the model’s observed behavior provides evidence whether these hypotheses hold. Current
assistance systems do not integrate research hypotheses. Thus, the researcher has to make important design
decisions which limits both replicability and reproducibility of the results. In this paper, the process of
simulation studies is systematized based on a formally specified hypothesis. By this means, the research
hypothesis becomes the key element of the study and guides the entire process. Hypothesis-driven simulation
studies allow for the automated design, execution, and evaluation of experiments based on specific research
questions. This facilitates documentation and execution as well as replication of simulation studies.

1 INTRODUCTION

Simulation studies aim at answering model-specific research questions by means of experiments (Maria
1997). By executing a model with different parametrizations, the corresponding outputs can be observed, a
better understanding of the model’s behavior is gained, and respective questions can be answered (Zeigler
et al. 2000). Thus, simulation has become a major source of knowledge. It is applied in many scientific
disciplines and economic sectors for advancing knowledge and for supporting decisions as it provides
efficient, economic, and convenient approaches for analyzing complex systems (Tolk et al. 2013).

Conducting sound simulation studies and identifying relevant experiments is not trivial. The process is
extensive and both model- as well as goal-specific adaptations need to be made (Montgomery 2012). The
goal of a simulation study specifies the objective or the purpose of the study. Based on this goal, testable
hypotheses are specified and simulation experiments are designed to test these hypotheses (Yilmaz et al.
2016). According to Mill (1868), a hypothesis can be scientifically defined as “any supposition which
we make [...] in order to endeavour to deduce from it conclusions in accordance with facts which are
known to be real”. It can be expressed as a logical argument where one or many premises claim to prove
a conclusion. In case empirical observations contradict the hypothesis, it is refuted and must be rejected
(Whewell 1847). To assist the confirmation of hypotheses in simulation, various procedure models exist that
advise the researcher on essential steps for conducting sound and successful simulation studies (Timm and
Lorig 2015). Additionally, management frameworks exist that assist reproducible design, execution, and
analysis of experiments (Teran-Somohano et al. 2015). Both procedure models and experiment management
systems provide valuable and comprehensive support for simulation studies and experiments.

However, using the aforementioned systems and models is no silver bullet. Important design decisions
that drive the entire study and that are essential for sound hypothesis testing are still made by the researcher,
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e.g., the selection of factors to study. Thus, experimenter bias might occur when these decisions are
insufficiently documented or methodologically ungrounded (Uhrmacher et al. 2016). This results in limited
replicability and reliability of the results. To overcome this, we believe that the design of simulation
experiments for testing hypotheses should not (only) be the researcher’s responsibility. Instead, the process
of the study must be systematically aligned with the research hypothesis. This includes providing assistance
that guides hypothesis testing in simulation studies by extending existing approaches accordingly.

In this paper, we aim at systematizing the process of simulation studies based on a formally specified
research hypothesis. We propose a process for hypothesis-driven simulation studies which covers two tasks.
Relevant experiments are systematically derived from the hypothesis and the simulation outputs are both
aggregated and evaluated with respect to proving or disproving the hypothesis. To assist the process, the
required formal specification of hypotheses is provided by the FITS language which has been proposed by the
authors (Lorig et al. 2017). In FITS, hypotheses are expressed as a number of premises that are inferentially
linked to a conclusion. Based on a formally specified hypothesis, important factors are identified, relevant
experiments as well as the corresponding designs are derived, and the execution of a sufficient number
of simulation replications is carried out. By this means, the systematic generation and documentation of
credible and reproducible simulation results is facilitated. This approach is complementary to existing ones
where the planning of experiments is assisted but important design decisions are met by the experimenter.
It is a first step towards facilitating and automating systematic hypothesis testing in simulation studies.

The paper is structured as follows. In Section 2, the background on assistance of computer simulation
as well as specification of experiments is introduced. Subsequently, in Section 3, our approach for
deriving relevant experiments from formally specified hypotheses is presented. For this purpose, techniques
for specifying hypotheses, defining performance measures, identifying important factors, and deriving
experimental designs are presented and combined. In Section 4, the approach is evaluated by means of a
case study, while Section 5 provides both conclusions as well as an overview of future work.

2 BACKGROUND

The proposed process for assisting and automating the hypothesis-driven design, execution, and evaluation
of simulation studies embraces the efforts of automating science. King et al. (2009) underline the importance
of automating and recording experiments in sufficient detail to allow for reproducibility as a fundamental
pillar of science. Waltz and Buchanan (2009) pick up on this and emphasize the importance of combining
experimental design, data collection, and both formation and revision of hypotheses in one process. This
demand and potential is also discussed and postulated by the discrete event simulation community (Yilmaz
et al. 2014). Hence, the integrated assistance of the entire life-cycle of a simulation study is proposed
(Teran-Somohano et al. 2015). Approaches for addressing this demand are twofold: Frameworks and other
assistance systems are developed for guiding and facilitating efforts in simulation. Additionally, languages
and other formal standards are designed to allow for the specification of experiments. Besides simplifying
and standardizing the documentation of simulation, the latter approaches aim at supporting the automation
of simulation. Experiment settings become machine-readable and can be processed by assistance systems.

Ören et al. (1984) described the potential for assisting and automating monotonous tasks in simulation,
e.g., design, execution, and evaluation of experiments. During the design phase of simulation experiments,
assistance can support the selection and preparation of input data and assess the significance that can be
expected from a specific set of input data (Lattner et al. 2011). Additionally, the number of replications that
are required for given inputs can be estimated (Hoad et al. 2010) and searching optimal values for the input
parameters can be assisted (Better et al. 2007). For the execution of simulation experiments, scripts facilitate
covering large parameter spaces. Different parametrizations are automatically generated by iterating the
variables’ values within a given range (Griffin et al. 2002). For evaluating the results of simulation runs,
a number of assistance functionalities also exists. These include but are not limited to the automated
analysis of simulation output data and the automated statistical evaluation of the results (Robinson 2005).
Furthermore, there are integrated frameworks which combine multiple assistance functionalities for guiding
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and assisting simulation experiments. This includes domain specific frameworks like SAFE (Perrone et al.
2012) but also cross-domain frameworks like JAMES II (Himmelspach and Uhrmacher 2007). Frameworks
that consider hypotheses for addressing specific research questions are limited to natural language (Yilmaz
et al. 2016).

For the specification of experiments, domain specific languages (DSL), ontologies, and other formalisms
have been proposed. With respect to the reproduction of experiment, the environment or context of
the experiment can be described as an experimental frame (Zeigler et al. 2000).For the description of
the experiment itself, dedicated markup languages, e.g., SED-ML (Köhn and Le Novère 2008), and
corresponding guidelines have been proposed (Waltemath et al. 2011). Such approaches are complemented
by ontologies for describing scientific experiments (Soldatova and King 2006). Additionally, DSL whose
expressive power focuses on individual domains have been proposed for describing experiments, e.g.,
SESSL (Ewald and Uhrmacher 2014) and the framework proposed by Teran-Somohano et al. (2015).
This is of particular interest when models are changed or reused as associated and previously executed
simulation experiments can be reused (Peng 2017).

To conclude, a wide range of valuable assistance functionalities, languages, and formalisms exists.
Yet, the demand for assistance for the formation and revision of hypotheses in simulation studies is not
considered. With regard to this paper’s aim, a research gap can be identified as follows. Current assistance
systems do not guide the simulation process based on formally specified hypotheses. Furthermore, existing
formalisms do not allow for the systematic derivation of relevant experiments for verifying such hypotheses.

3 PROCESS OF HYPOTHESIS-DRIVEN SIMULATION STUDIES

In the process proposed here, existing approaches will be extended, adapted, and combined to systematically
take research questions into account when planning and conducting a simulation study. By this means, the
hypothesis becomes the key element of the study and guides the entire process. To allow for such hypothesis-
driven simulation studies, three aspects must be considered: First, the components of simulation studies
and their interconnections need to be hierarchically differentiated. Second, the process of simulation studies
has to be methodologically aligned with the hypothesis. Finally, the responses received when executing
the simulation must be aggregated to apply statistical hypothesis tests to answer the research question.

3.1 Components of Simulation Studies

Simulation studies are conducted to achieve a better understanding of how a system works by performing
experiments with a model of the system. In the classical sense, simulation studies consist of two parts, the
conception and implementation of the simulation model (modeling) and the design, execution as well as
evaluation of simulation experiments (experimentation) (Law and Kelton 1991). The modeling part requires
domain-specific expertise for the creation of a valid model which appropriately represents the real world
system. As a result, models are highly individual, it is difficult to compare or assess a model’s quality, and
the assistance of the modeling part of a simulation study is challenging.

To successfully conduct simulation studies, the modeling part is not always of primary interest as a
well-suited model of the studied system may already exist and can be reused. The credibility and replicability
of a simulation study instead depends on the design, execution, and evaluation of the experiments. Thus, as
a first step towards hypothesis-driven simulation studies, the focus lies on the well-documented, replicable,
and assisted experimentation in simulation studies. Experimentation with the model investigates the system’s
behavior with the objective of providing evidence for or against the simulation study’s leading question
or assumption (the goal). The model’s behavior is determined by its inner structure. However, often the
structure is neither accessible nor essential for assessing the model’s behavior. Thus, we pursue a black
box approach where the experimentation only relies on the observable behavior of the model.

Based on an overall research question, the aim of the approach presented here is to plan and conduct a
simulation study with respect to assisting hypothesis-driven experimentation. Simulation studies implement
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a hierarchical structure where experiments need to be derived from the study’s goal on the one side and
consist of complex processes and respective sub-processes on the other side. Thus, a terminological
distinction between the components that are relevant in studies and their interdependencies must be made
to allow for the systematic assistance of simulation studies (see Fig. 1).
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Figure 1: Components of a simulation study.

Winsberg (2010) defines simulation studies as inferential processes that investigates complex phenomena
by means of computational techniques. To achieve the objective of a simulation study, i.e., address specific
research questions, corresponding performance measures are specified and simulation experiments are
conducted to analyze and compare the influence different parametrizations of the model have on the values
of the performance measures. Each experiment describes a series of tests where changes are made to the
inputs of the model to observe changes of the outputs (Montgomery 2012). A simulation study consists of at
least one simulation experiment per question that has been asked regarding the system. For each simulation
experiment one or many simulation runs are designed in which the system’s response to a specific set
of inputs is observed (Maria 1997). In contrast to deterministic simulation models, simulation runs that
execute stochastic models with probabilistic inputs demand multiple simulation iterations to allow for a
statistical assessment of the result’s mean value depending on its standard deviation. Each iteration of a
stochastic simulation run is initiated with the same parameters but a different stream of random numbers
which results in different output values. Finally, depending on how progress is calculated in the simulation
model, each simulation iteration may consist of multiple simulation steps. Each step (tick) represents
progress of the simulation clock and the computation of a new state of the model (Zeigler et al. 2000).
For the consideration of warm-up periods or for defining time-based termination of simulation iterations,
the concept of simulation steps is reasonable.

3.2 Decomposition and Execution of Simulation Experiments

After terminologically discriminating between different hierarchical components of simulation studies (cf.
Fig. 1), the systematic aggregation and disaggregation of the components must be enabled. To this end, the
components must be aligned with the process of the study, linked according to existing procedure models, and
the transitions between the components must be technically specified. By this means, we can systematically
derive, adapt, and transfer the components with respect to the study’s goal. The resulting integrated process
(cf. Fig. 2) specifies the links between the components. It closes the gap between the structure of simulation
studies and the methodological requirements for systematically answering research questions by means of
simulation. To illustrate the extended process and the potential for assisting hypothesis-driven simulation
studies, an example from industrial manufacturing process simulation is applied.

According to most simulation procedure models, the necessary first step of a simulation study is the
proper definition of the goal (Law and Kelton 1991, Banks 1998). This is essential, as the study’s goal
specifies the objective as well as the purpose of the study. Thus, it drives the entire experimentation process
as relevant experiments need to be derived from the goal in order to achieve it (Conway and McClain
2003). The boundaries for defining reasonable goals are determined by the examined scenario which is
given by the model providing the study’s context. Based on a manufacturing scenario, a variety of research
questions can be thought of, e.g., whether the storage is sufficient in case the order changes (Lattner et al.
2011). A possible question that drives the simulation study could read as follows: Will the manufacturing
cycle efficiency (MCE) increase by more than 10% if the number of machines is increased from 15 to 17?

For each question which is stated as goal of a simulation study, one or more testable hypotheses
need to be constructed that can be verified by means of experiments. Yilmaz et al. (2016) distinguish
between three types of experiment hypotheses in simulation-based knowledge generation. In this work, only

1363



Lorig, Lebherz, Berndt, and Timm

!"#$%&'"()

!'$*+
,--$#.'"()

/0-0&12345$0-'"()
6"-2(701"0-!"#$%&'(

!"#$%&'"()

89.01"#0)'
89.01"#0)'4:+.('30-"- ;()2%$-"()-!"#$%&'(

!"#$%&'"()

/$)

<&2'(14;(#=")&'"()

60-">)4?(")'
/0-$%'-!"#$%&'(

!"#$%&'"()

@'01&'"()

?&1&#0'1"A&'"()4B4

/&)*(#4C$#=014!'10&#
/0-.()-0-

)!#$*+$,-"./0."1$&

2$*3'*4"(/$&5$"#0*$#
!"#$%&'(

!"#$%&'"()

!'0.

@)210#0)'-4(D4E"#04

F!"#$%&'"()4;%(2GH
!'0.I"-04/0-.()-0-

6!"#$%&&'()*+#,-#).*#/'+*07

!"#$%&'(

8$9.:/"1:'(&;#1:4"1:'(

8"(%'4&<04!$*&=$($*"1:'(

>49'*1"(1&?"/1'*#

@$#:A(&'3&;B9$*:4$(1#

?'*4".&C9$/:3:/"1:'(

@$3:(:1:'(&'3&2$*3D&5$"#0*$#

E"*4F09&2$*:'%

80(&G$(A1H&,&I$*4:("1:'(

-$(1*".&I$(%$(/J

'3&8$#9'(#$#

C044"*J&'3&8$#0.1#

C1"1:#1:/".&KJ9'1H$#:#&

I$#1:(A

LAA*$A"1:'(

!
20
)
&
1"(

F8
9.
%&
)
&
'(
1+
4<
1&
#
0
I
(
1G
H

I:4$&C$*:$#&'3&8$#9'(#$

@)
'0
1.
10
'&
'"(

)
;
(
)
'0
9'

Figure 2: Process for conducting hypothesis-driven simulation studies.

phenomenological hypotheses are relevant as both mechanistic and control hypotheses make statements about
mechanisms of the model which are unavailable in the black box approach pursued here. Phenomenological
hypotheses make assertions about the input-output-relationship of a model. They consist of statements
regarding the values of outputs in the case of specific input values.

To test phenomenological hypotheses, statistical hypothesis testing approaches can be used. They assess
the probability of an observed output in relation to other possible outputs. To make preparations for the
application of hypothesis tests, the following requirements must be met. A null hypothesis (H0) as well as
a corresponding alternative hypothesis (H1) need to be formulated and a data sample needs to be generated.
Both H0 and H1 need to be derived from the study’s goal. Here, H1 describes the assumption that the
model’s behavior will change under the defined conditions while H0 assumes that any changes made to
the parametrization of the model or the model itself will not have any effect on the model’s response. To
define a set of corresponding hypotheses, measures need to be defined first which provide information that
can be used for assessing the response of the model.

For some research questions, the outputs of the model can be directly used for measuring the performance
of the model but most commonly additional quantitative criteria (performance measures) are defined and
used to compare the behavior of the model under different parametrizations. In the manufacturing context,
key performance indicators (KPI) are suitable performance measures as they enable and facilitate the
assessment of manufacturing processes. In the example above, an assumption is made regarding the MCE
of a manufacturing process. MCE is an important indicator of process performance and is defined as the
ratio between value-added time and manufacturing cycle time (throughput time).

Performance indicators are goal-specific and often not part of the outputs of a simulation model. Instead,
output variables need to be mathematically combined to new (target) variables which can then be used to
assess the model’s performance. In the example used here, all output variables that represent non-value-
added times, i.a., wait time and queue time, need to be summed up to a new variable manufacturing cycle
time. Such (intermediate) variables are created artificially with respect to assessing the performance of the
model but are not directly used as performance measures (Ören et al. 1984). As a next step, the output
value process time can be divided by the intermediate variable manufacturing cycle time to receive the
target variable manufacturing cycle efficiency.

In the example given here, the formulated question consists of a relative statement regarding the model’s
behavior; a 10% increase of the MCE when two machines are added. When applying statistical hypothesis
tests, the definition of a test statistic that summarizes the dataset is required. As the study’s goal consists
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of the assessment of the MCE, the mean of the MCE’s distribution is a suitable test statistic. Consequently,
a possible pair of experiment hypotheses can read as follows.
H0: If the no. of machines is increased from 15 to 17, the mean MCE will not increase by more than 10%.
H1: If the no. of machines is increased from 15 to 17, the mean MCE will increase by more than 10%.

To provide systematic assistance to this process, the goal of the study, the respective experiment hypotheses,
and the process for deriving the hypotheses from the study’s goal need to be formally specified. For this
purpose, the authors have proposed FITS, a language which enables the formal specification of statistical
hypotheses in simulation (Lorig et al. 2017). This allows for both automated parametrization and evaluation
of simulation studies. Necessary experiments are systematically derived from the hypothesis, resulting
simulation runs are executed, and outputs are analyzed with a suitable hypothesis test.

�

instances classes feature

|parametrization hypothesis information test contraints

# H0 H1 significance level sample size

Figure 3: Structure of an experiment hypothesis in FITS.

In Fig. 3, the structure of an experiment hypothesis in FITS language is shown. A FITS expression
consists of three parts: the parametrization of the model, information on the statistical hypothesis, and
additional test constraints. In the parametrization part, specific values or ranges of values are assigned to
the independent variables of the model. As the closed-world assumption applies in FITS, the #-operator
(ceteris paribus) is used to assign standard values to all remaining input variables of the model which
have not been explicitly declared. Based on the parametrization of the model, detailed information on both
null (H0) and alternative hypothesis (H1) are provided in the hypothesis information part of the expression.
First, a number of output or target variables are defined to serve as performance measures and respective
statistical measures are required for determining the central tendency of these measures. Subsequently,
both H0 and H1 are formulated based on values or value ranges of the performance measures. Finally, test
constraints as significance level and sample size are stated. As the proper definition of test constraints is
challenging, we aim to provide assistance for this step of the simulation study, too, which is presented
later on. Excluding test constraints at first, the following expression illustrates how H0, H1, and the two
competing parametrizations from the example above can be formally specified using FITS:

ParSet1(machines(17)) ∧ ParSet2(machines(15)) ∧ #
⇒ µ1(MCE) ∧ µ2(MCE) ∧ (H0(µ1−µ2 ≤ 10%) ∨ H1((µ1−µ2 > 10%))

As a next step, experiments are conducted to generate outputs and to test whether the experiment
hypothesis holds. According to the definition of experiments (cf. Sec. 3.1), conducting experiments includes
changing the model’s inputs for observing outputs. The Design of Experiments (DOE) is challenging, as
decisions have to be made regarding which input variables (factors) are altered and which values (levels)
are relevant and feasible. This results in a trade-off between computational complexity and coverage of
the parameter space. Furthermore, the selection of a suitable hypothesis test is necessary at this stage.
The experimentation process needs to be aligned with the hypothesis test’s requirements to be able to
observe and record the values of the test statistic during experimentation. For all of the resulting relevant
parametrizations, individual simulation runs are executed to obtain comprehensive and sound results.

In the presented example, the simulation study consists of a single experiment with a corresponding
pair of hypotheses. Based on these hypotheses, a two-sample test is required to test whether or not the null
hypothesis holds. In this case, a two-sample t-test for normal populations and independent observations
is suitable for testing the hypotheses. Hence, individual samples have to be drawn for each parameter set
(i.e., 15 and 17 machines) by means of simulation. To execute simulation runs, specific values need to
be assigned to all input variables. This also includes those whose factor levels are not explicitly part of
the hypothesis. In general, the model’s responses for all possible factor level combinations are of interest
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to fully assess the response surface of the performance measure. However, full factorial designs are not
feasible for large models with many factors due to the combinatorial explosion of simulation runs.

In this case, the identification of a minor set of factors that have a major impact on the performance
measure is advisable according to the parsimony principle (Occam’s razor) (Kleijnen 2008). For this
purpose, different factor screening approaches have been proposed like the Morris method (Morris 1991)
and sequential bifurcation (SB) (Bettonvil and Kleijnen 1997), while SB requires a smaller number of
simulation runs compared to the Morris method. Each approach requires an individual set of conditions
to be met by the model, e.g., whether correlations between factors are allowed. Thus, and because of
the required mathematical understanding, it is reasonable to assist the selection and application of factor
screening in simulation studies. Technically, SB pursues a divide and conquer approach for identifying
factor effects by systematically altering the input factor levels.

After identifying a set of factors that is important with respect to the study’s performance measures,
the systematic variation of the factor levels by means of individual simulation runs needs to be planned. To
decrease the number of required simulation runs as well as the computational efforts, fractional factorial
designs have been proposed in the DOE field. Examples are 2k factorial designs or latin hypercube designs
which define a subset of levels for each factor to be tested during the simulation (Sanchez 2005). After
applying SB to identify important factors, the use of a 2k factorial design seems suitable as both approaches
use two levels (low and high) for each factor. Each possible combination of the identified factor levels
results in a specific parametrization of the model and consequently defines an individual simulation run.

Finally, when executing the designed simulation runs, the impact stochastic inputs have on the variation
of simulation outputs has to be considered. By replicating simulation runs, a larger sample is drawn so that
statistical measures of dispersion can be applied, the variance can be quantified, and statements regarding the
parent population can be made. To define the number of replications needed for a sufficient estimate of the
performance measure’s mean, different approaches exist: rule of thumb, graphical methods, or confidence
intervals with specified precision (Hoad et al. 2010). For the assistance and automation of the simulation
process, a confidence interval-based approach is suitable as it is the least dependent on the expertise of
the analyst, makes use of statistical inference, and thus can be algorithmically described based on a given
significance level (Lattner et al. 2011). Each simulation iteration that results from the same simulation run
shares the same parametrization but the outputs differs due to the generated random numbers.

For some types of models, simulation iterations can be divided into individual simulation steps. An
example is discrete-event simulation where the states of the model change at discrete points in time and a
simulation clock keeps track of the model’s current time. In contrast to real world time progress, simulation
time skips periods where no events occur and instantly jumps to the point of time the next event takes
place (Fujimoto 2015). Each simulated point in time is an individual step of the simulation. By this means,
time constraints such as warm-up periods or temporal termination conditions can be easily implemented.
Additionally, the simulation analyst can keep track of the response variables’ progress over time.

3.3 Aggregation and Interpretation of Simulation Results

After conducting all simulation runs and all respective iterations, the response of each iteration must be
aggregated to draw conclusions and to confirm or disconfirm the assumptions of the study. If the model
implements a stepwise progress of time, the output most likely will have the shape of a time series and thus
a number of decisions needs to be made. The response of the iteration can either be defined as the value of
the model’s outputs at a specific point in time, e.g., the last step of the simulation, or the central tendency
of the outputs over a period of time. When averaging output values, both the consideration of the values of
all steps or the resetting of statistical measures after a defined warm-up period are feasible. Alternatively,
the outputs of each simulation step can be seen as an individual sample and analyzed accordingly.

To overcome the gap between the model’s outputs (Vo) and the performance measures that are part of
the study’s goal, target variables (Vt) were specified based on the model’s output variables in a previous
step. First, each iteration’s response (V It

o ) is extracted from the time series of output data in step-based
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Figure 4: Aggregation of performance measures in simulation studies.

simulation models or directly by observing the output values in unspecified models. Then, to obtain each
run’s results, the values of the specified target variables (V Run

t ) need to be calculated based on the model’s
responses ( f ) and aggregated for each simulation run (µ). Here, the order in which the two steps are
applied is of particular relevance as they are not interchangeable without the risk of producing biased or
incorrect results. The functions f and µ do not per se commute with each other. Thus, f ◦µ 6= µ ◦ f must
be assumed and a differentiation between V Run

t and V ′Run
t needs to be made (cf. Fig. 4). This is important

to avoid misinterpretations of the results due to an (inadvertently) incorrect aggregation of the outputs.
V Run

t expresses average values of output variables that are independently calculated over a number of
iterations and related afterwards. V ′Run

t , in contrast, is applied when interdependencies exist between the
outputs and a reliable estimation of the performance measure is only provided when calculated for each
scenario. The same differentiation applies for the aggregation of results from different simulation runs
for drawing conclusions from an experiment. To avoid this pitfall and to achieve sound results, thorough
planning and intelligent assistance of the process of aggregating performance measures is necessary.

Finally, after aggregating the responses of both the executed iterations and runs, statistical hypothesis
tests need to be applied to the data of each experiment for proving or disproving the previously defined
pair of hypotheses. The selection of an appropriate test has taken place at an earlier stage of the process.
This is to ensure all samples that are required to perform the hypothesis test are correctly drawn and to
design the experiments accordingly. After rejecting the null or alternative hypothesis based on the results
of the hypothesis test, the initial assumption or research question of the study can be assessed or answered
and the simulation study is completed. However, the discoveries of the study may only be interpreted with
respect to the study’s scenario. It serves as an explanatory framework and is given by the model.

4 CASE STUDY: APPLICATION AND EVALUATION OF THE PROCESS

In Sec. 3, we presented an integrated process for the systematic conduction of hypothesis-driven simulation
studies. For evaluation purposes, we apply this process to a simulation study. After introducing the NetLogo
model we use here, the goal of the study is formulated, experiments with their respective hypotheses,
corresponding hypothesis tests, and important factors are derived, simulation runs are designed, the number
of iterations is estimated, and the simulation is executed. Subsequently, the mean values of the performance
measures are calculated based on the iterations’ outputs, the responses are statistically aggregated for each
run, and hypothesis tests are performed to prove or disprove the experiment’s hypotheses. By this means,
we systematically provide an answer to the initial assumption stated as a goal of the simulation study.

To ensure the replicability of the results presented in this paper, both a model and a simulation framework
which are publicly available are used. The supply chain model by Gil (2012) can be downloaded via the
Modeling Commons repository and was developed in NetLogo. The model implements an artificial market
with four different types of participants, i.e., customers, retailers, distributors, and factories. Following
this order, each participant has an individual stock, a resulting demand for a product, and purchases the
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product from the subsequent participant. The customer purchases from the retailer et cetera. Thus, the
model implements a single product supply chain and can be used to analyze how stock levels and demand
calculation change under different forecast and inventory management strategies.

The chosen model aims to illustrate the bullwhip effect, where minor variations of the customers’ demand
escalate and result in major variations in the factories production volume due to forecast uncertainties and
safety stocks. Thus, we state the following assumption as a goal of the simulation study: ”If the average
demand of the customers increases by 10 units, the retailers’ average EOQ (economic order quantity)
per customer will increase by more than 10 units.” Applying the FITS approach (Lorig et al. 2017), the
following combined experiment hypothesis can be derived from the aforementioned goal. As the increase
of the customers average demand is not stated as an absolute value, a reference must be provided based
on which the increase is quantified as an absolute value. Accordingly, Welch’s t-test for two independent
samples is well suited for verifying the resulting pair of hypotheses:

ParSet1(Demand W (20)) ∧ ParSet2(Demand W (10)) ∧ #
⇒ µ1(EOQ÷Clients N) ∧ µ2(EOQ÷Clients N) ∧ (H0(µ1−µ2 ≤ 10) ∨ H1((µ1−µ2 > 10))

In this example, the EOQ (a standard method for inventory management) is part of the model and provided
as an output variable. Yet, the target variable (EOQ÷Clients N) which was chosen as a performance
measure is not part of the model and needs to be calculated. Additionally, the experiment’s stated hypothesis
defines two parameter sets (ParSet) in each of which a specific value is assigned to the input variable
Demand W. No assignments are made for the remaining variables which indicated by the #-operator (FITS
syntax for ceteris paribus). The model consists of 14 factors and each factor is defined by a range of
admissible values. In this example, we limit the scenario to 1 factory, 3 distributors, and 7 retailers.
Furthermore, we only consider the (s,Q) inventory policy and customers purchasing daily. Still, the amount
of possible factor value combinations is too high for a full coverage of the parameter space. Hence,
important factors are identified and experimental designs applied for reducing the computational efforts.
When screening for important factors, correlations between the inputs can occur. For an unbiased estimation
of the effect groups of factors have on a performance measure, the use of a screening technique which
can handle two-factor interactions is advisable. We assume that a first-order polynomial with two-factor
interactions is a suitable metamodel for approximating the inputs’ effects on the performance measure.
Therefore, we chose sequential bifurcation (SB) with fold over design as applied in (Kleijnen et al. 2003).

Compared to the estimated total effect (β4−12 = 91.75), the factors Clients N (β4 = 21.77), Demand W
(β8 = 15.89), and Product cost (β12 = 32.50) constitute more than 75% of the main effect. In contrast, the
effect of the remaining factors is negligible. One of the important factors, the demand of the customers,
is part of the experiment hypothesis and thus the factors levels of interest are given. Both the number of
clients and the product costs are not part of the hypothesis. Yet, as they were identified as being important
for the selected performance measure, they need to be altered during the simulation, too. The importance of
these factors was identified using SB with high and low values for each factor. Consequently, experimental
designs which discriminate between low and high values are preferable. Applying a 2k factorial design
results in four different parametrizations which need to be simulated for each of the two parameter sets
defined in the hypothesis. Consequently, eight individual simulation runs emerge (cf. Table 1).

For each simulation run, the number of necessary replications for achieving satisfactory results has to
be individually estimated. We applied the confidence interval method with specified precision as described
by Hoad et al. (2010) with a 1% accepted deviation of the confidence interval about the mean. As the
resulting values of mean and standard deviation originate from different sample sizes, Welch’s t-test for
two samples and both unequal variances and sample sizes is applied for a pairwise verification of the
experiment hypothesis.

The results show that H0, i.e., the average EOQ per customer will not increase by more than 10 units
through an increasing demand, can only be rejected if at least one factor level is high. To interpret these
results, the negative effect both factors have on the performance measure needs to be taken into account.
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Table 1: Pairwise factor level combinations, simulation replications and results as well as statistical
hypothesis tests and implications of all executed simulation runs.

Factor levels Simulation results Hypothesis test
Demand Prod. Cost Clients # replications cumulative mean standard deviation Welch’s t-test rejection

Run 1 10 low low 28 17.857 0.488 t = -14.281 t ≤ 1.678
Run 5 20 low low 30 25.600 0.675 df = 47.142 ⇒ accept H0

Run 2 10 high low 26 56.731 1.402 t = 29.815 t > 1.679
Run 6 20 high low 26 80.962 1.990 df = 44.911 ⇒ reject H0

Run 3 10 low high 30 33.567 0.898 t = 16.042 t > 1.674
Run 7 20 low high 30 48.167 1.289 df = 51.777 ⇒ reject H0

Run 4 10 high high 32 106.094 2.878 t = 40.428 t > 1.674
Run 8 20 high high 30 152.200 4.021 df = 52.266 ⇒ reject H0

In this case, SB demands the inversion of the factors such that switching the factor level from low to high
has a positive overall effect. A low factor level represents a large number of customers with respectively
high product costs and vice versa. Consequently, when increasing the customers’ demand from 10 to 20,
a significant increase of the study’s performance measure of more than 10 units can be confirmed when
the model is executed with small values for the number of clients, the product cost, or both factors but not
for large values of both factors. Without further knowledge of the bullwhip effect it can be assumed that
an increasing demand from customers results in a proportional increase of the retailers’ order quantity. In
contrast to this, the simulation shows that retailers will adjust their order quantities disproportionately. In
terms of the study’s scenario (the supply chain model) this discovery can be interpreted as indicating that
retailers forecast less conservatively when ordering cheaper products. Furthermore, a smaller amount of
customers increases the forecast uncertainty, too, resulting in higher order quantities.

5 CONCLUSIONS

In this paper, we have presented an integrated process for the systematic conduction of hypothesis-driven
simulation studies. The aim of this process is to enable the assisted and automated design, execution, and
evaluation of simulation experiments based on the study’s goal. To achieve this, the proposed process
assists the formal specification of one or several experiment hypotheses based on the goal of the study. By
formally specifying hypotheses and corresponding tests, necessary experiments, resulting parametrizations,
and the number of required iterations per simulation, runs can be systematically derived. This facilitates
the conduction of simulation studys as the selection and application of suitable techniques is assisted.
Furthermore, the replicability and reproducibility of the study’s results is improved as the process allows
for a detailed and automated documentation of the procedure as well as an effortless repetition of the entire
process, i.e., when modifying the research question or the model.

This work is a first step towards the development of a research assistance system capable of assisting
hypothesis-driven simulation studies by systematically deriving relevant parametrizations. The presented
evaluation illustrates that the automation of this process is feasible. The selection criteria for choosing
adequate and applicable methods and for connecting them in a suitable way do exist. Yet, algorithms for
automating the selection process based on ontologies or decision trees need to be implemented. Furthermore,
the proposed process is designed in a modular way so existing assistance services for individual steps of
the process can easily be integrated and exchanged, e.g., approaches presented in Sec. 2.

Future work will focus on the integration as well as systematic and hypothesis-specific selection and
application of further methods and techniques for each step of the process. This extension includes but is
not limited to a more detailed differentiation of statistical hypothesis tests, factor screening approaches,
experimental designs, and techniques for the estimation of replications. The approach’s limitation to
phenomenological aspects of experiments can be compensated by enriching the hypothesis specification.
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