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ABSTRACT 

In an agent-based simulation, a plausible decision in a specific context cannot stay be valid in the face of 

the changing situation. Therefore, the result of the decision making process is mostly related to the 

agent’s situational awareness and its adaptation to the new context and situation of the environment. A 

sound estimation of the situation requires a clean understanding of the operational domain, not only the 

data taken from sensors. In this paper, it is aimed to improve decision making by increasing the 

situational awareness of an agent by incorporating the decision making mechanism with the prior 

knowledge about the problem domain, such as the existing rules. Specifically, an existing adaptive 

decision making architecture, which is based on the deliberative coherence theory, is adopted to be driven 

by situational awareness. Moreover, a case study incorporating unmanned surface vehicles that are aware 

of the international sea traffic rules is demonstrated. 

1 INTRODUCTION 

Decision making problem is studied by many disciplines for a long time. A desirable characteristic of an 

autonomous agent is to have the capability to choose and execute tasks in accordance with the objectives 

of the prescribed duties and to continuously evaluate the state of the environment by taking into account 

the environmental changes. Autonomous agents should have a decision making mechanism that provides 

adequate facilities to select the most appropriate tasks (plans) that are valid in the current context and 

situation. The crucial point of selecting the most appropriate task and effective execution of the objectives 

is to construct a convenient decision making mechanism and to feed this mechanism with the accurate and 

instant information that is valid in the current context, where the situation is estimated by observing and 

comprehending the changing operational environment constantly. A sound estimation of the situation 

requires a clean understanding of the operational domain, not only the perceived information taken from 

its run-time monitoring mechanisms, to increase the situational awareness of the agent. For this reason, 

the decision making mechanism and the situational awareness of an agent must be in harmony in 

execution. The decision making mechanism of the agent must also adapt to the changing context and 

situation. Furthermore, the cognitive model of the agent that forms the decision making mechanism must 

be separate and explicitly specified from the agent’s implementation.  

In this regard, this paper presents an approach how to improve decision-making using the situational 

awareness of an agent by incorporating the decision making mechanism with the prior knowledge (e.g. 

the existing rules) about the problem domain. The proposed approach brings together the situational 

awareness and decision-making under a unified connectionist network. In this study, the adaptive 

decision-making mechanism presented in (Topçu 2014) is extended with the situational awareness 

capability and then a case study incorporating unmanned surface vehicles (USV) that are aware of the 

international sea traffic rules is implemented for demonstrating the proposed approach. 
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The paper is organized as follows: First, the existing adaptive decision-making mechanism is 

introduced, then motivation of the study, the technique, and a brief review of context and situational 

awareness is presented. Later, the process of the situational awareness is given. Then, a case study is 

provided to demonstrate the proposed process and to present the implementation of the approach. Finally, 

conclusions and suggested future work conclude the article. 

1.1 Adaptive Decision-Making Architecture 

From the view point of agent-based simulation discipline, we may narrow the decision making problem 

as goal deliberation for an agent. The goal deliberation can be formulated as a constraint satisfaction 

problem (Thagard and Verbeurgt 1998), where goals and tasks found in an execution plan of an 

autonomous agent have relations among them setting constraints such as facilitation and inhibition. 

Thagard and Millgram (1995) present a solution for goal inference by proposing coherence based 

approach. The coherence considerations in practical reasoning constitute the deliberative coherence, a 

motivational coherence, called Theory of Deliberative Coherence (TDC) (Millgram and Thagard 1996), 

which is based on the Explanatory Coherence Theory (Thagard 1989). In this approach, the constraint 

satisfaction is computed by using a parallel distributed processing algorithm (McClelland 2014), where 

the inference is done by selecting the most satisfied constraints. And then the elements (i.e. goals and 

tasks) are divided into two sets as activated or rejected, where the former set forms the most satisfied 

constraints and thus it is selected as the inferred plan to execute (or the decision made). The elements in 

the plan and their constraints constitute a model called a connectionist network (model), which can be 

seen as a kind of recurrent neural network. Here, the elements correspond to units and the constraints 

correspond to links. This connectionist network consists of the goals and the tasks that form the structure 

of decision making. 

Topçu (2014) put TDC in an agent-based simulation context, focusing the implementation perspective 

of TDC with a Systems Engineering view point, to show how an adaptive decision making can be 

realized. As a result, the Deliberative Coherence Driven Agent (DeCoAgent) is proposed as a coherence-

driven agent that has adaptive decision making ability based on the TDC computations (Topçu 2014). A 

practitioner may implement DeCoAgents employing DeCoAgent library (İşçi, Topçu and Yılmaz 2014), 

which is available as open source (İşçi and Topçu 2015). DeCoAgent library is implemented as an 

extension to Jadex (Braubach, Lamersdorf and Pokahr 2003), which is an agent development and 

execution environment. In this work, this library is ported to MS .NET development environment 

(DeCoAgent 2015) and then is extended to cover the proposed (situational awareness) techniques 

presented in this paper.  

1.2 Motivation 

The connectionist network is a local artificial neural network (ANN) model, where each goal and action 

in a connectionist network is represented by an individual unit. In other words, the units and links of the 

network represent the knowledge (the elements and their relations) locally. The default relation strengths 

are predefined and coded for all models. Therefore, when a decision problem is given (or identified by an 

agent), agent adapts its connectionist network, and then computes the activations of each unit to find the 

ones that maximize the coherence. The primary goal units in the network take a priority value as input 

according to the agent situation. Then, the agent computes the activation potentials for each unit and 

decides which goals/tasks are active according to those priorities. Here, the major consideration is to feed 

the network with the correct priority input values according to the situation of the agent. Therefore, the 

situational awareness of the agent is very affective on the given decision. Moreover, for many situations, 

we have some prior knowledge. Prior knowledge can be in different forms and encapsulated in agent’s 

situational awareness. For instance, for some situations, we know what a correct decision is and what the 

desired response of an agent should be. Or we know the rules of the environment fully or partially (e.g. 

game rules). Or we may have some domain-specific knowledge coming from another system (e.g. an 
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operational order from a command and control (C2) system or a scenario from a simulation manager). In 

the presence of a prior knowledge, if the agent can use this prior knowledge to increase its situational 

awareness, then we may feed the decision mechanism (i.e. connectionist network) with the predicted 

priorities according to the situation. Consequently, we may assert that the decision making ability of an 

agent is increased and the agent’s situational awareness is used more affectively in the decision making 

process. 

1.3 Technique 

The decision making behavior of a connectionist network can be influenced in two ways: (i) to change the 

priorities of the goals, and (ii) to change the structure (topology) of the connectionist model. In this paper, 

the connectionist model behaviors are determined by changing the priorities of the primary goals. This 

work ensures that the prior knowledge is formed by the agent’s situational awareness. So, we aim to 

increase the situational awareness of an agent by training the existing rules in the operational domain. In 

order to improve the situational awareness of an agent, first, contexts are determined by evaluating the 

information from sensors and existing rules, and secondly, the agent’s situation is attained by testing the 

contexts in the ANN.  

1.4 Context and Situational Awareness 

Human beings are fairly capable of transferring ideas, thoughts, and emotions to be understood by others. 

When humans talk with humans, they are able to use implicit situational information or context (Dey 

2001). In a contrary manner, the agents are not as successful as the humans on this issue. The agent’s 

situational awareness is obtained from contexts. “Context is any information that can be used to 

characterize the situation of entity” (Dey and Abowd 2000). Here, we can consider the entity as an agent. 

If a factor can be used to specify the situation of the agent, then this factor is considered as context. All 

the contextual factors compose the current situation of entire environment. The current situation known 

by the agent is defined as the agent’s situational awareness. As discussed earlier, the agent’s situational 

awareness is very influential for the validity of the decision made. Endsley defines the situation awareness 

as “the perception of the elements in the environment within a volume of time and space, the 

comprehension of their meaning, and the projection of their status in the near future” (Endsley 1995). In 

other words, situation awareness is to be aware of what is happening in the dynamic environment, 

aggregating which context factors influence the situation, and understanding of relationship between 

actual information. Before decision and action, Endsley divides situation awareness into three levels. 

These are perception of elements in current situation (Level 1), comprehension of current situation (Level 

2), and projection of future status (Level 3). Level 1 is to perceive prominent information in the 

environment. Level 2 is to comprehend what this information emphasizes. And Level 3 is to predict the 

future situations from the existing information. In this paper, an agent, DeCoAgent, having the capability 

of first two levels and partially the third level is explained. So, a DeCoAgent is capable of being aware of 

situations in a dynamic environment, adjusting its goal priorities dynamically, and making changes in its 

decision making model. 

2 PROCESS 

The adaptive decision making driven by the situational awareness incorporates a supervised learning 

process. The learning process encompasses two phases: training the existing rules of the domain to the 

agent and then testing as depicted in Figure 1. Actually, training can be done prior to the agent execution. 

In the training phase, each network is trained using the existing rules about the environment before the 

agent simulation run. This phase is called as adapting the context. In the simulation run, the agent 

employs this trained (situational awareness) network to determine its current situation to facilitate the 

decision making. The situation of the environment and the agent internal state is transformed into 
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appropriate inputs, called as situation model, to decision making mechanism. So, this phase is called as 

using the context. The situation model is an abstraction of the state of the situated agent at a specific time 

or context. The representation of the knowledge of the situation model can vary from a simple direct 

binary coding of sensor inputs to complex object models. For the sake of simplification, we will assume 

that the representation of the situation model is as simply a context vector representing the priorities for 

each goal. For instance, in a naval simulation, when a surface contact is identified as a friendly ship, then 

the priorities of each goal are set accordingly. Thus, an input vector (1 0 1) for the current situation 

represents the goal priorities for g1, g2, and g3 respectively (see right drawing in Figure 1). 

 

 

Training

Testing

Input 

Data

Context Vector 

(Priority values)Updated 

Weights

Adapting 

Context

Using 

Context

Situational Awareness Decision Making

Connectionist Network

Goal

Task t2t1

g1

Chosen 
Tasks

Training 

Data

priority

prioritypriority

g2 g3

 

Figure 1: Adapting and using context. 

The situational awareness process is modeled with cascaded ANNs connected with each other. An 

assemble architecture, which is composed of feedforward ANNs and a back propagation ANN, is given in 

the case study section. In the situational awareness network, the input data are obtained from various 

available sensors (for instance, geodetic position of a surface contact obtained from a navigation radar). 

Using this data, the ANNs, which are devised to represent different sensors and context factors, determine 

the contexts of the agent by computing outputs. Then, using those contexts, the agent’s situation is 

determined. Lastly, this situation is fed to the decision making mechanism (i.e. the connectionist network) 

as priorities (context vector in Figure 1). 

In the training phase, the results (i.e. actual response) are compared with the desired output. If the 

error rate between the actual and the desired response is larger than a predefined error rate, then the error 

is back propagated. Thus the weights are re-adjusted to lower the error. At the end of training, the weights 

of each neuron is adjusted and updated in a way that represents the problem domain. As the learning 

algorithm requires a set of desired response to a given input, it is called supervised learning.  

In the decision making phase, the primary goals in the network take a priority value according to the 

agent situation and agent calculates the activations (i.e. activation potential) of each unit and decides 

which goals/tasks are active according to those priorities. As a result, the capability of decision making of 

an agent is improved due to the fact that the connectionist network is adjusted according to the domain 

knowledge and is ready for goal deliberation in response to the new situations. 

The following case study demonstrates in detail how this process is modularized and implemented. 

3 CASE STUDY: NAVIGATION SAFETY 

As a case study, we will use a modified version of patrol mission scenario (Ünal and Topçu 2014) given 

to a group of autonomous unmanned surface vehicles (USV). In the scenario, the top goal of USV is to 
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conduct intelligence, surveillance, and reconnaissance operations against sea piracy and it ensures 

maritime security of the merchant vessels. USV is responsible for patrolling, monitoring, preventing the 

sea piracy and protecting the merchant vessels. USV carries out all of these operations in the 

responsibility area (Topçu 2014). In this paper, the case study is extended as a proof of concept to 

demonstrate that an autonomous USV gains the ability of safe navigation by employing the approach, 

presented in this paper, where the situational awareness mechanism is integrated to its decision-making 

mechanism. The extended USV has the ability to navigate safely in the sea conforming to the 

international rules of the road as it carries out its assigned tasks (e.g. traverse task) against sea piracy and 

ensures the maritime security of merchant vessels. As a result, the USV autonomously decides when to 

maneuver to avoid collision (according to the international rules) or when to execute its assigned task 

using the approach proposed in this paper. The previous version of the USV decision making mechanism 

did not have this capability. 

Seaman experience the numberless collision events at sea daily. In general, the ship collision event is 

induced by human error. In this regard, this paper also presents an agent-based simulation system for the 

decision making process avoiding ship collision in maritime traffic. If an autonomous agent having 

collision avoidance decision-making process and updating its decision making abilities considering the 

uncertain environmental conditions and situations, collision events can be reduced.  

In order to obtain situational awareness from the sensor information, the data from the sensors are 

evaluated in a context by taking account of all the rules affecting the environment. In this regard, 

information is obtained from maritime regulations from International Regulations for Preventing 

Collisions at Sea (COLREG) (IMO 2003) and training them to USV. The USV agent can make decision 

to determine its situation by receiving the inputs from the ship’s sensors and COLREG, which is trained 

to cascading neural networks. In this work, employing the feedforward backpropagation neural network 

as the ANN architecture has two features. First, the feedforward feature of it ensures to process and recall 

patterns. Second, the backpropagation feature of it can train the network. 

In the scope of the case study, it is demonstrated how to train the USV with the international safety 

navigation rules first, and then how the USV employs this to predict the current situation and integrates it 

with its decision mechanism. Therefore, the situational awareness capability developed in this case study 

has a potential to realize the e-navigation concept. In order not to disrupt the scope, the collision 

avoidance maneuvers are implemented in its simplest forms (e.g. changing the course using a predefined 

degrees).  

3.1 Agent Architecture 

Each USV in the case study is modeled and implemented as a DeCoAgent. The architecture of USV 

agent, depicted in Figure 2 (next page), conforms to the DeCoAgent generic architecture presented in 

(Topçu 2014).  

 Each USV has an adaptive decision making module for goal reasoning driven by a situational 

awareness manager (i.e. Navigation Advisor). Navigation advisor is used to feed the goal priorities 

according to the current situation. Then the goal deliberator (coherence computation component) decides 

which goals are active/valid in the current situation, where it maintains a connectionist network of tasks, 

goals, and the relations among them and calculates the activations and the total coherence of the 

connectionist network. The coherence computation continues until the activation of nodes in the 

connectionist network becomes stable. Task selection is simply mapping the active/valid goals to the 

related tasks (execution plan) that control the actuators (e.g. rudder). The adaptive decision making and 

the architecture of the situational awareness component is presented in the following sections. 
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Figure 2: The architecture of USV DeCoAgent. 

3.2 Adaptive Decision Making 

The principle duty of the agent’s adaptive decision making mechanism is to select which goals to be 

persuaded. In order to do that agent monitors the environment, estimates the situation, evaluates the goals 

and tasks, determines the active and valid goals, and executes the appropriate plan of the selected goals 

and tasks. The agent uses the connectionist network for goal reasoning and making decision. The 

connectionist network of the USV is simplified to depict the new dynamic situational awareness. A 

modified version of the connectionist network of the USV decision making mechanism is presented in 

Figure 3. 
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Figure 3: A sample USV connectionist network used for decision making. 

According to deliberative coherence theory, the each unit is considered as a goal or an action (e.g. 

Safety and Traverse in Figure 3) in the connectionist network and a unit is considered as a neuron in the 

ANN. If the unit facilitates the other, there is a positive constraint between them (e.g. Communication 

task facilitates Safety goal). If the unit is incompatible with other, there is a negative constraint between 

them (e.g. Safety and Traverse goals are incompatible). The positive constraint is depicted with a straight 

1281



Topçu 

 

line, the negative constraint is depicted with a dashed line in the connectionist network. In the partial 

connectionist model of USV decision making mechanism, some goals are desirable. There is a priority 

value of each primary goal (e.g. a priority for Traverse and Safety goals). The goal priority determines 

how much a goal is desirable. These priorities of primary goals are dynamically fed by the agent’s 

situational awareness model including the agent and the environment states. Finally, the USV decision 

making mechanism computes unit activation potentials (i.e. makes a decision) by taking account of these 

goal priorities in order to determine which goals to pursue. The connectionist network in the context of 

agent-based simulation is discussed in detail in (Topçu 2014). 

4 SITUATIONAL AWARENESS MODEL 

The proposed model to evaluate the ship collision risk is attributed as a knowledge based system. This 

knowledge based system includes ship to ship collision situations and collision avoidance maneuvers by 

considering the COLREG. COLREG is composed of international rules that are treated as international 

laws, and it is well known for sailors. If a risk of collision between two power-driven vessels is deemed to 

exist, the mariners on the bridge decide on the need for any collision avoidance maneuver through their 

assessment of the collision regulation. The mariners take into account the International Collision 

Regulations to diminish or thoroughly remove the occurrence of risk of collision with another ship. In the 

case study, the encounter situations between two ships are assessed by the autonomous agent that having 

decision-making ability considering not the whole COLREG rules, but the main types of situations. The 

COLREG rules (IMO 2003) considered in this study are Rule 7, 8, 11, and 13 - 17. Additionally, 

according to COLREG, if the give-way ship does not take appropriate maneuver to avoid collision on the 

encounter situation, the stand on ship should take action. This situation is seen as a behavior anomaly. 

4.1 Architecture – Cascading Neural Networks 

There are many context factors that affect the situation in safe navigation. For instance, in night, the 

navigation lights seen by the officer of the watch, and the relative sector, where those lights are seen, 

specify different context factors. As the combined contexts specify the situation, we use an ANN for each 

context factor and then cascade them to define the situation. Thus, the cascaded neural network feeds the 

situation networks (see Figure 4).  
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Figure 4: Context networks and situation networks. 

The priority network is used to determine the priorities of primary goals in the connectionist model as 

the controller network is used to determine the action that will be taken by the actuators (i.e. the rudder). 

Both networks are perceptron networks. Figure 5 depicts the detailed architecture of situational awareness 

network for COLREG capability. In this model, the input data consists of the information of own ship 
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(the position, speed, and course) and of the surface contacts (i.e. target surface ships) such as the speed, 

course, and true bearing, which are obtained from the sensors. This information is preprocessed and then, 

the results that attained are evaluated by feedforward neural networks found in input layer. 
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Figure 5: The structure of feedforward backpropagation neural network for ship collision avoidance 

(Sayar 2015). 

The feedforward neural network is employed as the main model for ANNs found in Input Layer. The 

information that is processed moves in one direction and forward from input layer to output layer. The 

feedforward feature of this neural network ensures to process and recall patterns. Thus, the contexts 

related to the environment acquired as the output after the process of the first neural network layer. The 

data obtained from sensors (e.g. track position) is preprocessed to obtain input for context networks. Here, 

data obtained from Radar and compass are transformed into data that will be used as input in context 

networks.  

The first neural network (See Network 1 in Figure 5) is used to determine the context of navigation 

lights of the target ships as defined in COLREGs in night navigation. From this network, the (navigation 

lights) context is acquired by processing the input data (W, G, and R) about navigation lights of target 

ship seen by the own ship. W, G, and R stands for the White, Green, and Red navigation lights 

respectively. This network is basic feedforward perceptron network with 3 inputs and 2 outputs.  

All the rules of the COLREG apply in all respects, but the mariners particularly consider COLREG 

Rule 13, 14, 15, and 16 of Part B, Section II (IMO 2003), when making decisions on finding effective 
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collision avoidance maneuver. When these rules are evaluated and interpreted, three main types of 

situations and five different sectors are obtained (Tsou and Hsueh 2010). The sector context network 

(Network 2 in Figure 5) is a basic feedforward perceptron network with 5 inputs and 3 outputs. The input 

data (i.e. sectors S1 through S5) about the location of target ship relative to the own ship is used to 

determine the relative sector context.  

The risky approaching input fed to the Network-3 is used to determine the context of approaching and 

safety condition of the target ships. It determines whether our ship is approaching the track and the 

Distance to Closest Point of Approach (DCPA) is within the safety range. The safety context is acquired 

by computing two parameters processing the input data (Time to Closest Point of Approach (TCPA) and 

DCPA). After that, this context information is used as input data for the second layer (Network 3), as 

depicted in Figure 5, which is modelled as a feedforward back propagation neural network. This neural 

network architecture includes the input layer and output layer and additionally the hidden layer. The ship 

agent can make decision that it is in which situation by receiving the necessary inputs on the ship’s 

sensors and COLREG. Through this layer, the agent’s situational awareness is increased substantially by 

using the feature of back propagation can train the network. Then, the ship agent makes decision which 

the ship collision avoidance maneuver will apply for preventing the ship collision. At the end of the 

Network-3, the output ensures which collision avoidance maneuver as starboard (S) or/and port (P) is 

appropriate. 

4.1.1 Feeding the Decision Mechanism 

Using the cascaded neural networks, the priorities of decision making mechanism can be driven in some 

combinations. A situation neural network can feed all the priorities, or each priority is driven with a 

different situation network), or a hybrid of both configurations can be employed. In our case study, 

feeding mechanism conforms to the first configuration. Using these priorities, the USV agent calculates 

the activation potentials of each unit and decides which goals/tasks are active according to those 

priorities. Thus, the USV agent can navigate safely and avoid from a probable ship collision situation and 

perform more effective decision making process using the prior knowledge dictated by COLREG, which 

is formed by the agent’s situational awareness, while it conducts these operations against sea piracy and 

ensures the maritime security of merchant vessels in its responsibility area. The networks and the related 

decision making parameters for each agent can be monitored separately.  

4.2 Situational Awareness Component 

The Situational Awareness Component (SAC) is responsible to evaluate the sensor inputs and then to feed 

the deliberation subsystem by deciding the goal/task priorities. One of the decisions made by a watch 

officer is to decide when to begin to carry out a COLREG rule and when to end it. In our case study, a 

COLREG range is pre-defined and is changeable by the user. It indicates the maximum range that a 

COLREG rule will be applied. It can be evaluated as the eye visibility range (COLREG Rule 11). When 

there are multiple tracks in COLREG range, then the SAC determines the critical tracks. A critical track is 

the one that has a TCPA, which is greater than zero, and the DCPA, which is lower than safety range, for 

each surface contact in the maximum COLREG range (i.e. in sight of the USV). Safety range is the 

captain’s intent that no ship will enter this range. A TCPA greater than zero indicates that two ships are 

approaching each other. A TCPA smaller than zero indicates that the CPA has occurred in the past, and 

the ships are drafting apart. After determining all the critical tracks, the SAC sorts the critical tracks 

according to their TCPAs and selects the track with the smallest TCPA as the most critical track. Then, 

the USV determines its situation (i.e. which COLREG rule is applicable) according to this track. The 

situation neural networks calculate how to maneuver and if an action (e.g. turn to starboard) is required 

then the USV carries it out. The action is carried out until DCPA is greater than the safety distance. So, 

this is the stop condition for ending carrying the COLREG rule. When the COLREG rule indicates to 
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keep the course and speed of the ship (e.g. crossing green lights), then the USV checks the second critical 

track to determine its situation and applies the same algorithm defined here. 

Perception is the phase of collecting data from sensors by observing the environment. In the case 

study, radar (i.e. a sensor) provides all the tracks found in the radar cover range. Radar detection 

algorithm is simply filtering all the agents found in the radar cover range assuming that track position, 

heading, and speed is obtained from this radar scan. Using these data, radar computes the track distance, 

true bearing, TCPA, and DCPA according to the USV. The sensor data are used as input to the situational 

awareness model. Comprehension is the phase, where the agent assesses its situation by determining the 

contextual factors. Comprehension is carried out on two distinct level. At the top level, the perception is 

mapped to goal priorities to feed the deliberation subsystem (i.e. Coherence Computation Component). In 

the case study, there is no need to execute Safety task, when there is no track in maximum COLREG 

range. At the lower level, when the USV executes the Safety task (this indicates that it is in COLREG 

situation), it assesses its situation by determining COLREG contexts (e.g. track is at which sector, which 

navigational lights are seen etc.) and determines the rudder (i.e. an actuator) actions (port or starboard) by 

the help of the COLREG navigation advisor, which is a cascaded neural network that is trained with 

COLREG rules (see Figure 5). Projection is the prediction of the possible maneuver that a critical track 

must do according to COLREG. This is used to detect the behavior anomaly of other surface vessels that 

do not comply with COLREG. The situational awareness component predicts the course of actions (in 

terms of COLREG maneuver) of each critical track. Basically, the cascaded neural networks are rerun for 

each critical track. Thus, the projected behavior is estimated. 

4.3 Related Work  

In literature, there are many different researches and methods related to the navigation of autonomous 

systems in the scope of e-navigation (see (Sayar 2015) for a detailed overview). One of these techniques 

includes ANN Fuzzy Inference System (ANFIS) by Selma and Chouraqui (2013), Zhuo and Hearn 

(2008). In this model, a hybrid approach that combined neural and fuzzy techniques for problem of 

control is presented. This model is trained with the back propagation gradient descent method using 

appropriate input-output data. Another ANFIS model is proposed by Shing and Jang (1993). This model 

employs a hybrid learning model and is constructed an input-output mapping based on human knowledge 

and stipulated input-output data pairs. Tsuo and Hsueh applied a concept of e-navigation as a framework 

and Ant Colony Algorithm in the field of artificial intelligence to set up a collision avoidance model 

(Tsou and Hsueh 2010). This model consists of navigational practices, a maritime regulations knowledge 

and timely navigation information from e-navigation system. Liu and Shi use the fuzzy neural inference 

network model that constructed by combining the fuzzy technology and ANN (Liu and Shi 2005). This 

model comprised three subsets. The first two take the data from the user and make inference which ship 

encounter situation is. The subset 3 takes the outputs of other subsets as input and makes a decision. ANN 

models in the related studies are mostly employed as a controller for controlling the movement of a ship. 

In this work, the neural network is employed to determine and increase the situational awareness by 

training the network with the existing rules about the environment in order to improve the decision 

making ability of an agent.  

5 CONCLUSIONS AND FUTURE WORK 

The paper proposes a new approach to improve decision making by increasing the situational awareness 

of an agent by incorporating the prior knowledge about the environment, such as the existing rules, to the 

decision making mechanism. The situational awareness of an agent can be increased by training the 

existing rules about the environment, and then using this dynamic assessment, the state inputs in form of 

goal priorities can be fed into the agent’s decision making mechanism to improve its decision making 

ability as a result. The prior knowledge is acquired at the end of training process of the agent’s situational 

awareness component, where it is modeled as cascaded neural networks. Specifically, this work extends 
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the adaptive decision making architecture, which is based on the deliberative coherence theory, by 

feeding it with cascaded neural networks to acquire the prior knowledge with supervised learning 

techniques that involve error correction (minimizing) learning rule. A case study is implemented as a 

proof of concept to demonstrate that an autonomous USV gains the ability of safe navigation using the 

situational awareness integration approach presented in the paper. The demonstrated case study includes 

the maritime regulations from International Regulations for Preventing Collisions at Sea as a knowledge 

base and navigational information about the surface vessels. The selected case study is an agent-based 

simulation that targets the e-navigation concept (autonomous navigation) and it is believed that it can be 

extended for realistic navigational traffic management by incorporating intelligent collision avoidance 

algorithms. The extended USV safely navigates in the sea conforming to the international rules of the 

road (i.e. COLREG) as it carries out its assigned tasks. As a result, the USV autonomously decides when 

to maneuver to avoid collision (according to the international rules) or when to execute its assigned task 

(e.g. traverse) using the approach proposed in this paper. This provided ability adds value to the previous 

autonomous USV models in agent-based simulations. 

In order to develop the simulation, a DeCoAgent library is implemented. All the libraries and the case 

studies are available at DeCoAgent Web Site (DeCoAgent 2015). In this work, it is assumed that all the 

agents run in the same host but the work is ongoing with distributing the agents using High Level 

Architecture (HLA) (IEEE Std 1516-2010 2010). Moreover, the autonomous surface vehicles (agents) 

need to communicate with each other in order to avoid and prevent a possible collision. Sometimes, they 

just need to understand each other’s intention as the most man onboard ships do. 
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