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ABSTRACT 

Crowd simulation is often used as a crucial tool to analyse crowd behaviours. Ideally, when analysing live 

video streams, we would like the simulator to be able to run concurrently. However, crowd video 

analytics algorithms are usually not able to supply position updates in real time as there exists a 

noticeable time gap between two consecutive human position updates. the crucial problem is therefore on 

how to simulate human positions within the time gap. In this paper, a simulation framework that could 

approximate human displacements in a near real time manner is proposed. A framework based on 

OpenCV that reads video streams and runs real time simulation is implemented. As a result, amongst the 

crowd being tracked, we obtain near real time simulation with acceptable tracking accuracy. Lastly, this 

paper explains the limitation of the proposed framework. 

1 INTRODUCTION 

Simulation of crowd behavior under specific scenarios is of great importance in dealing with uncertainties 

in emergency planning and disaster prevention. With crowd behavior simulation tools, extreme scenarios 

can be evaluated beforehand and thus provide valuable information in the making of civilian safety policy 

(Mitchell and Yilmaz 2008). For instances, with a symbiotic simulation framework running on dynamic 

real time data is able to incorporate expert decision into crisis management and substantially reduce 

damages that may occur in future events (Hetu and Tan 2009). 

Amongst crowd simulation strategies, agent based simulation that runs in synchronization with live 

streaming data provides an approach that make real time risk analysis and decision support possible 

(Fiedrich and Burghardt 2007). As shown in Fig 1, on the left side is the video stream from surveillance 

camera, on the right side is the synchronized crowd simulation. Initiated by Thales, the What If Scenario 

Exploration (WISE) project aims at providing a risk analytics platform that is able to explore “What If” 

scenarios based on live video streams of surveillance cameras. As seen in Fig 2, scenarios such as “What 

if a bomb exploded in the current scene” could be well examined under the live simulation environment.  

 

     

         Figure 1: A virtualization of real time surveillance camera.    Figure 2: A bomb scenario simulation. 
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One crucial part of synchronizing simulated environment and real-world is duplicating the monitored 

population's physical distribution status. An effective way of representing crowd in motion picture is 

through particle representation (Sand and Teller 2006). By calculating the density map of the crowd, the 

overall distribution of the population can be obtained. Thanks to our crowd density estimation algorithm, 

using the density distribution computed, particles that each represents an individual human being can be 

allocated to their corresponding positions in the simulated scene. Notice that each particle is not 

constrained to be a representation for an individual but can also be a cluster of people. However, in the 

case examined in this paper, we treat each particle as one person for demonstration.  

In order to achieve live simulation of the crowd, the simulating engine would then require a 

continuous supply of particle positions obtained from the video streams. However, due to the hardware 

performance limitation, the calculation of density map for each video frame takes a significant amount of 

time such that a noticeable time gap, ranging from seconds to tens of seconds, exists between two of 

crowd distribution updates. As a result, the crowd moving pattern between two position updates is 

missing and the simulation engine is running on discrete records of crowd data. 

In this paper, we propose a method to solve the limitation of supplying discrete crowd distribution 

data. This paper has two contributions: 

 

1. A comprehensive framework based on optical flow to efficiently retrieve the crowd movements 

that is able to run without constant supply of position updates. 

2. A algorithm to approximate crowd movements in between two position updates. 

 

The paper is organized in the following structure. In Section 2, the tactics used for crowd density map 

calculation and particle assignments are briefly introduced together with the optical flow, which were the 

main methods used for human displacement retrieval. Section 3 introduces crowd movement simulation 

algorithm that is running on top of optical flow data. Section 4 discusses the correctness of the movement 

simulation algorithm and general cases that the algorithm is able to handle. In Section 5, we run 

experiments to test the accuracy of the proposed algorithm and provide a comparison between the 

simulated movement and the actual people moving pattern. Finally, we provide the conclusion and future 

work in Section 6. 

2 BACKGROUND 

2.1 Density-based Particle Assignment 

In crowd image and video analytics, two approaches can be used to retrieve the physical distribution of 

the crowd from visual inputs. One is the object-based approach, where each individual person in the 

crowd is identified independently using techniques such as head and shoulder detection (Tu et al. 2008). 

The limitation of the object-based approach is that it is hard to identify each individual from the scene 

when the resolution is too low or when the crowd density is too high and, usually object-based algorithms 

fail in those conditions. 

In our work, we decide to adopt a holistic approach where the flow of crowd is evaluated for motion 

analysis (Ali and Shah 2007).  

Instead of performing individual human identification, the crowd is considered as a whole. We are 

therefore not counting each individual in the crowd but rather compute an estimate of the density 

distribution function over the image. The density distribution function at pixel of image can be defined as: 
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where P is the list of the positions of the pedestrians, 𝒩(𝑝; 𝑃, 𝜎212𝑥2)is a normalized 2D Gaussian kernel 

evaluated at p with the mean at the pedestrian position P and an isotropic covariance matrix with σ being 

a small value (typically, a few pixels) (Fagette 2014). 

 At each pixel of the crowd, a set of visual features is therefore extracted and matched with a 

regression model learned beforehand using Machine Learning and a learning dataset. The regression 

model allows our algorithm to find the corresponding density distribution at each given pixel. We are 

therefore computing a density map providing us with two crucial information: 

 

1. The number of persons present in the crowd, by integration of the density distribution function 

over the image. 

2. The distribution of the crowd on the monitored area.  

 

From there on, the goal is to generate a possible distribution of virtual avatars in the simulated scene 

that is matching the number and distribution of real pedestrians computed via our density estimation 

algorithm. For that, we are using an iterative algorithm that aims at finding the mixture of Gaussians that 

fits at best the density map computed beforehand. This algorithm simply adds a particle at a local 

maximum, subtract from the density map the corresponding Gaussian centered on that particle and 

iterates until the number of pedestrians is met. Different strategies in order to accelerate this computation 

have been implemented such as dividing the image in boxes that are processed similarly as described 

previously independently. Each particle is then seen as a physical representation of a pedestrian of the 

crowd. 

While the particle allocation map used for population representation can be generated by existing 

programs, the bottleneck that prevents the program to perform continuous tracking is efficiency of the 

density map computation algorithm. Currently, it takes seconds to tens of seconds for the density map 

algorithm to process one frame. When it starts to process the next time, the frame it encounters is several 

seconds away, and the particle positions in the frame could vary significantly compared to the previous. 

Ideally, we want to achieve a continuous crowd moving simulation instead of a series of discrete 

“shots” of crowd status. We need to find a way to approximate crowd movement in between two frames 

of particle allocation map. 

2.2 Optical flow-based Displacement Tracking 

The optical flow is the two dimensional apparent motion of pixels in the image between two frames of a 

video. It is often used to examine the apparent movement of objects in the image. The Lucas-Kaneda 

(Lucas and Kanade 1981) method is one method to compute optical flow and is pervasively adapted in 

estimating crowd motion flow (Hu et al. 2008). For each of the pixel location given, the output would be 

a two dimensional vector representing the displacement of the underlying object, frame by frame. In this 

paper, the output displacement vector would be used for estimating the movement of each particle.  

The performance of the Lucas-Kanade method optical flow algorithm for one point takes constant 

amount of time (much less than one milliseconds on an average configured modern computer) to output 

disparity vector for each frame, in which case only trivial number of pixels around the tracking points 

have their color intensity calculated and the overall process could be viewed as near real time compared 

to the density map calculation. 

When tracking a crowd of people which contains N numbers of people, the performance of the optical 

flow tracking algorithm would then take O(N) time to compute disparity vectors for all the people in the 

scene. 
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3 OPTICAL FLOW BASED CROWD MOVEMENT SIMULATION 

3.1 Identifying Optical Flow Tracking Point 

To distinguish the video frame whose particle allocation map is available or not, we call the first frame 

with available particle allocation map as “Starting Frame” whose time stamp is 𝑡1, the next frame with 

available particle allocation map as “Destination Frame” 𝑡2, and all the other frames in between these two 

are called “Intermediate Frame”. To help explain the optical follow based crowd movement concept, each 

step of the process is illustrated in a simplified video frame with 3 particles (Figures 5 to 8) that will be 

tracked over time (𝑡1 to 𝑡2). To distinguish the video frame whose particle allocation map is available or 

not, they are marked with different colors. The initialized positions of particles in the Starting Frame are 

colored in blue, the particle positions in the Destination Frame are colored in green, and the estimated 

particle positions outputted from optical flow simulation are colored in grey. 

In order to track the movement of any given particle from Starting Frame to Destination Frame, the 

pixel where that particle sits in the Starting Frame is the tracking point. 

3.2 Computing Optical Flow Displacement 

Considering that noisy pixels in the original video could affect the accuracy of the displacement 

calculated, instead of using the optical flow displacement of one single pixel, we take the displacement of 

the neighboring pixels around the tracking point into consideration. A rectangular area centering at the 

tracking particle location, which occupies a one-pixel space and is initialized at the density map position 

given at the Starting Frame, is used for optical flow displacement sampling. A visual illustration of the 

tracking area, is shown in Figure 3, where each small square represents a pixel. The tracking particle 

position is marked in red, and all 4 paddings are 2-pixel wide. A magnified tracking area for video is 

shown in Figure 4. 

 

                                 

Figure 3: Displacement filter square.    Figure 4: Displacement filter square works in videos. 

 

The final displacement vector of the tracking point is calculated from the average displacement of the 

whole tracking area. With more pixel displacement around the tracking center being sampled, we hope to 

reduce the resulting inaccuracy caused by noisy pixels. Also, as the position of a particle “p” can be given 

at a sub-pixel level (not on the Starting Frame but certainly on any Intermediate Frame), its associated 

motion vector is computed by bilinear interpolation of the motion vectors given by the optical flow on the 

nearest pixels and using the fourth-order Runge-Kutta method (Tanand and Chen 2012).  

3.3 Aggregation of Optical Flow Displacement 

After obtaining the average optical flow displacement of the tracking area, the displacement is aggregated 

onto the tracking center pixel for every consecutive Intermediate Frame. For instance, at frame k, the 

tracking area is centered at position 𝑷𝒌, where 𝑷𝒌 is a 2-d vector indicating a location in a frame image. 
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Between frame 𝑘 and 𝑘 + 1 we would obtain an 2-d optical flow displacement vector 𝑽𝒌 calculated from 

position 𝑷𝒌. By adding 𝑽𝒌  and 𝑷𝒌, we obtain 𝑷𝒌+𝟏, which is the tracking center for frame 𝑘 + 1. And 

the next iteration of calculating optical flow displacement vector will be calculated with regards to 𝑷𝒌+𝟏. 

The aggregation is performed until the Destination Frame, whose particle allocation map is made 

available. An illustration of displacement vector aggregation is shown in Figure 5, where grey arrows 

represent the optical flow displacement vector calculated from frames in between Starting Frame and 

Destination Frame, orange arrows indicate the overall displacement happens in optical flow simulation for 

each of the particle. 

3.4 Matching Simulated Location with Particle Allocation Map for the Destination Frame 

After getting the simulated location of each particle at the Destination Frame, a matching algorithm is 

used to associate simulated particles location obtained from optical flow with the particles location 

directly calculated from density map as shown in Figure 6, where orange arrows indicate the association 

relationship between estimated position and density map positions at Destination Frame. The goal of the 

“Association Algorithm” is to find the most possible matching pair between optical flow based simulated 

position with density map based particle allocation. 

 

                      

Figure 5: Aggregation of optical flow displacement.    Figure 6: The association problem. 

4 CORRECTNESS 

The purpose of running optical flow based simulation is to approximate human moving pattern when 

accurate human position information calculated by density map is not available. Therefore, it is critical to 

guarantee the approximated movement obtained by the optical flow is able to reflect the overall 

movement of the crowd with an acceptable level of accuracy. 

4.1 Problem Definition 

A challenging problem to associate each individual person between Starting Frame and Destination 

Frame occurs at the “matching phase”, where we reach the end of optical flow simulation and the particle 

allocation map of Destination Frame becomes available. On one hand we have simulated particle 

positions obtained through the optical flow; on the other hand we have particle positions directly 

calculated from the density map. The problem left here would be to match each of the optical flow 

particle positions to their corresponding density map particle position. There are three basic cases of the 

problem regarding the status of people being tracked.  

 

1. The person never left the scene and appears in both Starting Frame and Destination Frame. 

2. The person leaves the scene. The person only appears in Starting Frame but not Destination 

Frame. 
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3. The person enters the scene. The person does not appear in Starting Frame but appears in 

Destination Frame. 

4. The person enters the scene during the intermedia frame and leaves before the algorithm reaches 

Destination Frame. The person never appears in either Starting Frame or Ending Frame but still 

enters the scene for some time. 

 

The four cases above describe all fundamental cases that could occur regarding people appearing or 

disappeared in either Starting Frame or Destination Frame. Different combinations of these cases could 

emulate all possible moving patterns regarding the crowd. 

4.2 Matching Algorithm for Optical Flow Simulated Position and Density Map Position 

The basic ideology behind the matching algorithm is to reduce the case of having abnormally long 

association, shown in Figure 7. In the scene pictured in Figure 7, as the grey point (m2) in the middle 

picks a nearby association point (in green), it results in the bottom grey points (m3) no choice but finding 

a point far away. Reducing long association is established on the heuristics that humans are unlikely to 

perform extremely long and abnormal displacement comparing to the rest of the crowd, the movement of 

each individual in a crowd tends to be alike and regular. 

4.2.1 Priority Points 

As shown in Figure 8. a “Scanning Range” is added around each of the optical flow approximation points. 

The size/width of the range is determined by the average displacement error throughout the optical flow 

aggregation process.   

We want to give some points priority when they are pairing, meaning that they have the priority to 

choose their association points first, the purpose of which is to reduce long distance associations. 

For points that does not have any potential association points in their Scanning Range, they tend to 

pick long association, therefore they are count as one category of “Priority Points”. 

Furthermore, we also want to give priority for particles that are off-crowd. Meaning that they are far 

from the massive crowd and only one association point appears nearby. The rationale behind assigning 

such priority is because once mismatch off-crowd points, they also tend to form long associations. Here, 

“off-crowd” points are defined as having only one association point within one radius of “Scanning 

Range” and no extra association point within twice the radius of “Scanning range”. 

 

                       

  Figure 7: A failed matching case.     Figure 8: Scanning Range Algorithm. 
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4.2.2 Priority Matching 

For the set of priority points, each of them will find their nearest points within their “Scanning Range”. In 

Figure 12, since point P(c) does not have any potential matching candidates in its scanning range, 

therefore it has the priority to choose a nearest point first. In this case, point P(c) would pair a candidate 

point P(r) and form an association. Once all the priority points finish their choosing process, it is 

considered one iteration. 

 After one iteration of “priority matching”, some of the density map particles are taken from the scene, 

this could probably result in generating new empty scanning range points. The priority matching 

algorithm will stop when no empty scanning range points are left. And will be reactivated once new 

empty scanning range points occur. By doing so, points that tend to have long association will be reduced. 

 A pseudo code of the matching algorithm is stated as below: 

 
 priority_set = generate_priority_set(optical_flow_set, density_map_set) 

 while priority_set not empty: 

  match(priority_set, density_map_set) 

  optical_flow_set.update() 

  density_map_set.update() 

  priority_set = generate_priority_set(optical_flow_set, density_map_set) 

 match(optical_flow_set, density_map_set) 

4.3 Four Cases on People Status in the Scene 

Case 1: The person never left the scene and appears in both Starting Frame and Destination Frame. 

 In this case, we can apply the matching algorithm directly on the set of optical flow simulated points 

and density map generated location points. 

 

Case 2: The person leaves the scene. The person only appears in Starting Frame but not Destination 

Frame. 

 In this case, the point representation of the person needs to be removed from the set of optical flow 

simulated points at the Destination Frame. 

 In order to detect the occurrence of these points, during the running stage of optical flow simulation, 

when the algorithm detects a point moving out of the scene after several displacement vector 

accumulations, it should stop tracking the point and remove it from the set of simulation points used for 

matching algorithm. 

 

Case 3: The person enters the scene. The person does not appear in Starting Frame but appears in 

Destination Frame. 

In this case, the point representation of the person needs to be removed from the set of density map 

generated points at the Destination Frame. 

 In order to detect the occurrence of these points, we can run the simulation algorithm in a reversed 

way. Since the newly added people never appears in the Starting Frame, we would not know their 

existence when running the simulation algorithm from the Starting Frame. However, when running the 

simulation algorithm reversely back from ending to start, we can treat these points as Case 2. Once we 

detect a particle “leaves” the scene, in reality they start to enters the scene, we would stop tracking them 

and remove them from the density map set used for matching algorithm. 

 

Case 4: The person enters the scene during the intermedia frame and leaves before the algorithm reaches 

Destination Frame. The person never appears in either Starting Frame or Ending Frame. 
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 In this case, the algorithm would not know the existence of these people and would treat them as 

environmental noise. 

4.4 Evaluation 

The limitation of the proposed algorithm is that it may still fail, as illustrated in Figure 9. When the grey 

point in at the left most side pair its association point first, followed by the grey point in the middle, it 

would result in the grey point at the right side no choice but to pick up the leftmost candidate point. 

However, the failed case would occur only when points are chained and they are picked up from a single 

direction. 

 

 

Figure 9: Failed case for inappropriate pick up sequence for non-empty scanning range points. 

5 IMPLEMENTATION AND EXPERIMENTS 

In this section, the proposed optical flow based crowd movement simulation is implemented with Python 

and the OpenCV library, and evaluated to simulate a fire drill gathering scenario. This section focuses on 

the accuracy of the simulation and overall performance of matching algorithm. 

5.1 Testbed 

The test video resolution is at 800 pixels width by 600 pixels height, the video frame rate is at 30 frames 

per second. The total number of frames running under optical flow movement simulation is 2222 frames. 

The optical flow tracking is simulated on a CPU platform. The CPU platform includes a 3.1 GHz 

Intel Core i7, with 6 GB 1867 MHz DDR3 as main memory and an 512GB PCIe SSD. The source code is 

implemented using Python 2.7 on Mac OS X 10.12.3 with Open CV 2.4.13.1.  

5.2 Exploring Effects of Different Shapes of Optical Flow Displacement Filter 

The person being tracked has his position in the Starting Frame at (215, 300), and position in Destination 

Frame at (599, 357). The initial tracking centre locates the person’s head, which has 4-pixel width and 4-

pixel height. 

 The experiment results are shown in Table 1. The displacement error column shows the displacement 

error of the 4 different measurements of each configuration. The displacement error is calculated by 

optical flow simulated position minus the position provided by density map. In the first configuration, the 

optical flow filter has no padding, and use only the centre tracking point’s optical flow displacement 

vector throughout the simulation. In the second configuration, the optical flow filter has a 1-pixel wide 

margin around the centre tracking point and take the average of 9 pixels’ optical flow displacement vector 

throughout the simulation. In the third configuration, the padding area only covers the top, left and right 

side of the tracking centre. The third setup takes the consideration that the bottom side tend to include 

human body, which usually has complex internal movement (e.g. hand shaking) and does not contribute 
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to accurately describe overall body movement. The fourth configuration take an optical flow filter with 2-

pixel wide margin around tracking centre.  

Table 1: Optical Flow Simulation Result.  

 Final position Difference 

All 0px (602.492, 365.389) (+3.492, +8.389) 

All 1px (602.786, 365.389) (+3.786, +8.389) 

Left, Right, Bottom: 

1px; Top: 0px 

(603.055, 364.674) (+4.055, +7.674) 

All 2px (602.368, 365.166) (+3.368, +8.166) 

 

 From the tracking experiment, we see that the shape or size of optical flow filter does not to have 

significant effect on reducing the overall simulation error. Considering that each human in the scene is 

around 50 pixels long, the error generated by optical flow is only at around 12% of a human’s height.  

5.3 Estimating Displacement Error During Optical Flow Simulation 

In order to estimate the displacement error accumulated during the optical flow simulation, we selected a 

sample set of 13 from the Starting Frame particles. The sample set are randomly selected but with an even 

distribution on the whole crowd so as to get an approximation that is close to the actual status of the 

crowd. A visualization of the particles being selected can be viewed in Figure 10, where particles colored 

in green are the samples. The distribution of the sample particles can be seen in Figure 11.  

 

     

    Figure 10: Sample particle locations at Starting.  Figure 11: Sample particle locations at Ending.  

  

 The average displacement error of the sample set is at 18.3 pixels, which is equal to 27% of human 

body length in the scene. However, for each frame, the optical flow tracking only runs for around 130 

milliseconds, which is much faster than generating a density map. 

5.4 Explore Optimal Scanning Range for Matching Algorithm 

The radius of scanning range is first chosen from the set of Fibonacci number so as to display distinct 

comparison between the effect of different radius. A visualization of the matching algorithm can be seen 

in Figures 12 to 15. Red points indicate optical flow simulated particles, blue points indicate density map 

generated particles, green lines indicate a pair of associations. 
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Figure 12. 1-Pixel radius. 

     

Figure 13. 5-Pixel radius. 

 

 

Figure 14. 8-Pixel radius. 

     

Figure 15. 34-Pixel radius. 

 

 As it can be seen from the visualization results, initially, when the scanning radius is at only 1 pixel, 

association tends to be long and extending across the scene. Reasons being that when scanning range is 

small, all points are then categorized into priority points and thus is equally to “no priority”. As the radius 

grows, for instance at 5 pixels, the total sum of associations and average associations tends to shrink and 

eventually converges to the lowest at around 8 pixels. The standard derivation of overall association of 

the crowd at around 8 pixels tends to be low as well. Besides, off-crowd particles all achieve optimal 

associations. When the scanning range radius increases over 8 pixels, the average association and the 

longest association start to grow again and eventually converge to the highest level, making it to be the 

same as radius at 1 pixel. 

 In order to explore radius at around 8 pixels and thus obtain a better result, the matching algorithm is 

further run at radius set of 5 to 12 pixels. Results can be viewed in Table 2 below. From the Table 2 

results, we can see that the lowest point of all three indexes (i.e. average, longest association and standard 

derivation) stays at around 8-pixel level.  The result we obtain is that 85% of the associations are below 

40 pixels (60% human body length).   

 Notice that in Section 5.3, we try to produce one-to-one association between simulated particle with 

their actual density map position in order to evaluate tracking accuracy. However, since we are only 

interested in the overall distribution of the crowd, here the matching algorithm does not guarantee a one-

to-one matching, but rather produces a matching of distribution from a holistic perspective. 

Table 2: Matching results, radius [5, 12]. 

Radius (px) Total 

Association (px) 

Average 

Association (px) 

Longest 

Association  (px) 

Standard 

derivation 

5 2520.64 18.00 125.60 20.38 
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6 2793.73 19.95 181.83 24.08 

7 2721.57 19.43 142.05 22.20 

8 2676.32 19.11 97.04 17.61 

9 2762.11 19.72 83.54 17.09 

10 2872.20 20.51 155.56 19.355 

11 3069.81 21.92 222.27 25.35 

12 3150.72 22.50 222.27 25.78 

6 CONCLUSION 

Optical flow and density map based simulation is crucial for enabling real time simulation. In this paper, 

we proposed a comprehensive framework for effectively retrieving and simulating human movement 

from video data. Then we implemented the framework with runnable programs. The implemented 

framework is then evaluated to simulate a real scenario human movement and we achieve with decent 

simulation accuracy, where average displacement error is at 1/3 of human body length in the scene. We 

also explore the performance of the matching algorithm, where we obtained a matching result with 

acceptable error that is suitable for analysing the crowd distribution status in a holistic approach. 

 There are two limitations of the work. The first limitation comes from the case mentioned in Section 

4.4, where long associations may be caused by inappropriate matching sequence. The second limitation 

exists at finding the optimal scanning range. In this paper, while we discover that there exists an optimal 

scanning range for matching algorithm, we are unable to calculate the optimal scanning range directly 

from video data such as level of noise, frame rate or resolution. In other words, we would only know the 

optimal scanning range of the video by exhaustively exploring the global minimal point of the 

convergence after one round of simulation completes. 

 Several improvements can be made to the algorithm. Firstly, the matching algorithm can be further 

improved. For instance we can divide the whole scene into sub-areas only perform only points within 

each sub-area to further reduce long associations. Secondly, as a continuation of the What If Scenario 

Exploration (WISE) project, with more crowd data being retrieved and collected, machine learning 

frameworks can be used to build more accurate crowd moving pattern and behaviour models, which can 

further facilitate the risk analysis process and provide a better support in decision making. 
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