
Proceedings of the 2017 Winter Simulation Conference

W. K. V. Chan, A. D'Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

DATA ASSIMILATION WITH SENSOR-INFORMED RESAMPLING FOR BUILDING

OCCUPANCY SIMULATION

Sanish Rai Xiaolin Hu

Department of Computer Science and

Information Systems

Department of Computer Science

West Virginia University Institute of Technology Georgia State University

410 Neville Street 25 Park Place

Beckley, WV 25801, USA Atlanta, GA 30303, USA

ABSTRACT

A building occupancy simulation and estimation simulates the dynamics of occupants and estimates the

real time spatial distribution of occupants in a building. It needs a simulation model and a data assimilation

algorithm that assimilates real-time sensor data into the simulation model. In our previous works, we

presented a graph-based agent-oriented simulation model, and a data assimilation framework based on

Sequential Monte Carlo (SMC) methods for efficient real time occupancy estimation involving a large

number of occupants. As the occupancy and the building environment size increases, there is a major

problem with data assimilation caused by the high dimensional system states. To address this issue, this

paper presents a new sensor-informed resampling method which utilizes sensor data to improve resampling

of particles. Experiment results show the new method was able to provide better estimation of the system

state with a limited number of particles compared to the standard bootstrap filter.

1 INTRODUCTION

A building occupancy simulation is used to study the dynamic spatial-temporal behavior and activities of

occupants in buildings. It provides information like the number of occupants in an area, spatial distribution

of occupants, activities happening in a space, and occupancy behavior during a certain period (Feng et al.

2015). Understanding the occupancy dynamics of a building is useful for various applications, including

better evacuation for buildings with a large number of occupants, providing occupancy monitored energy

service, design and control of smart environments, and crowd management in places such as airports and

train stations. With the recent advances in sensor technology, most buildings are equipped with various

kinds of sensors. They provide environment data and can be incorporated into simulation models for

improved building occupancy simulation. This leads to more accurate simulation results and is especially

useful for supporting real time decision-making tasks. Incorporating sensor data is achieved through data

assimilation, which is the process of integrating observation data from the real world into a simulation

model to produce accurate estimates of the system states. The estimated system state can then be used by

simulation to generate improved simulation results. To implement data assimilation, both a simulation

model that captures the state transition of the system and a data assimilation method that assimilates real

time data into the model are needed.

 To support data assimilation for building occupancy simulation, in previous work we developed a

graph-based agent-oriented simulation model (Rai et al. 2015), and a data assimilation framework (Rai

2016) based on Sequential Monte Carlo (SMC) methods, also known as particle filters (Doucet et al. 2001).

1145978-1-5386-3428-8/17/$31.00 ©2017 IEEE

Rai and Hu

The graph-based agent-oriented model combines the property of both graph based (Franz et al. 2005) and

agent based models (Macal et al. 2009) to obtain their key advantages i.e. scalability and diversity. In this

model, the graph-based feature means occupants’ movement is modeled as flows from one node to another

through a graph representing the building environment, and the agent-oriented feature refers to the model’s

capacity to consider agents as individual entities with unique features and decision making capabilities. The

model has the advantage that it can capture the heterogeneity of individual occupants while in the meantime

can simulate thousands of occupants in an efficient manner. This advantage is critical for supporting data

assimilation for buildings with a large number of people like the game stadium and shopping malls. While

the graph based agent-oriented model was able to model behaviors of building occupants, it lacks the

analytic structures like those in equation-based numerical models. This makes it difficult to apply

conventional estimation techniques such as Kalman filter and its variations. On the other hand, SMC

methods are non-parametric filters are effective state estimation methods for systems with nonlinear non-

Gaussian behavior. Thus we choose SMC methods to carry out data assimilation in our work. In SMC

methods, the system state under estimation is represented by a large set of random samples, named particles,

and their associated weights. These particles are propagated over time using importance sampling and

resampling mechanisms.

 While SMC methods enable data assimilation for building occupancy simulation using the graph-based

agent-oriented model, several challenges exist for achieving an accurate estimation of the system state. A

major challenge is caused by the high dimensional system states. As the size of the building structure

increases, the number of nodes in the graph model increases. This increases the dimension of the system

state, and thus require more particles in order to accurately estimate the system states. Hence the

effectiveness of the data assimilation to represent the real states correctly decreases. And thus due to a large

number of states, the SMC method suffers from the problems of sample impoverishment and particle

deprivation. In sequential importance sampling, to avoid degeneration of particles, re-sampling is used to

eliminate particles with lower weights and multiplying particles with higher weights. However, through re-

sampling it is possible that after some runs of the data assimilation, all particles become identical. Thus

there is sample impoverishment and the particle filter cannot represent all the diverse states of the real

system. Particle deprivation happens when there is no particle near the true state. Consequently, it is

impossible for particle filter algorithm to converge to the true posterior distribution of the target system.

Particle deprivation problem can happen due to many reasons. One reason is the loss of diversity. Another

reason is the increase of the dimension of the system states. The number of particles required to cover the

state space grows exponentially with respect to the number of the dimensions of the system. Thus, if the

dimension of the state space is highly complex, the limited number of particles cannot represent the true

state and result in particle deprivation.

 One way to improve the effectiveness of particle filtering is to develop more advanced sampling and/or

resampling methods. In this paper, we focus on the resampling step of particle filtering and develop a new

resampling named as sensor-informed resampling. The basic idea is to utilize sensor data to inform

resampling of particles so that the resampled particles can better represent the true system state. The sensor

data, although noisy, contains useful information about the true system state. As such, in cases where

particles lack diversity and move further away from the true state, we can utilize the sensor data to improve

the set of particles. In the standard particle filter resampling procedure, the entire system state is treated as

a whole when being resampled. For data assimilation in building occupancy simulation, sensors are

spatially located and each sensor reflects the state of its local region only. Thus we break the system state

into smaller sub-states and carry out resampling at the sub-state level. We use the sensor data to generate

sensor-informed sub-states, which are then used together with the particle filter sub-states during

resampling. The resampled particles go through the sampling and weight calculation procedures in the same

way as in the standard bootstrap filter. Using the sensor-informed resampling, it is possible to get better

estimates of the occupancy than the standard bootstrap resampling only.

1146

Rai and Hu

 The remainder of this paper is organized as follows. Section 2 presents the related works. Section 3

briefly describes the graph based agent oriented model and the data assimilation framework that we

developed and are used in this work. Section 4 presents the data assimilation based on the new sensor-

informed resampling, and section 5 show some experiment results. Section 6 concludes this work and

discusses future work.

2 RELATED WORKS

Building occupancy simulation is concerned with modeling and analysis of occupant property and

behaviors. (Feng et al. 2015) have defined occupancy at four levels varying with time: the number of

occupants in buildings, the occupancy status of space, the number of occupants in space and, the space

location of occupants. Building occupancy finds its wide use in conserving resources such as (Maasoumy

2009) has developed a framework known as sensor utility network which uses information from various

sensors to dynamically estimate the occupancy and conserve resources. Building occupancy provides a

basis for a smart environment where we can simulate our test beds with various sensors and actuators. In

their work (Cook et al. 2004) discuss the latest research in smart environment, philosophical and

computational architecture considerations, network protocols, intelligent sensor networks and powerline

control of devices, and action prediction and identification for the smart environment. A grid graph-based

model known as ESM (Evacuation Simulation Model) is proposed by (Shen 2005) which considers the

structural and spatial properties of the indoor space and shows advantages for indoor route analysis in

evacuation simulation. The work builds a graph with each vertex representing a room, a segment of corridor

or hallways and each edge representing a pipeline that occupant can transport on. The transportation of

occupants on the edge of the graph is determined by factors such as social affiliation, access visibility,

tenable time, speed, flow rate and the distance between rooms. (Tomastik et al. 2008)'s approach is based

on three different models: an agent-based model, which includes the detailed description of each individual

occupant’s velocity, behavior and trajectory; a graph model, which represents the building structure and

traffic dynamics using a graph, and a kinetic model, which models the congested areas of the building as

queues to simulate the situation of congestion in the building.

 The data assimilation algorithm used in this research is Particle Filters (PF). A framework of dynamic

data driven simulation based on PF is presented by (Xue et al. 2012) for the forest fire spread simulation.

In another research by (Gustafsson 2002), PF is used to develop a framework and algorithms to solve the

problems of positioning, navigation, and tracking. The author presents a general algorithm based on

marginalization enabling a Kalman filter to estimate all position derivatives. PF finds use in other fields

like biology and chemistry as well. (Zhang et al. 2003) have used PF to create populations of compact long

chain polymers and the relationships between packing density and chain length. PF are used by (Chen et al.

2008) to set up a probabilistic framework providing a basic for process fault diagnosis for the dynamic data

rectification. (Wang et al. 2013) have presented a data assimilation framework for estimating movement

patterns of about six occupants in an office environment. In our previous work (Rai et al. 2013), we

developed a framework for using data assimilation for binary sensor data to predict occupancy behaviors

in smart environments.

 In our work, we modify the existing standard particle filter for improving the estimation of the states.

In literature, we can find many variations of the particle filter to solve its two major problems, sample

impoverishment, and particle deprivation. (Gilks et al. 2001) proposes a method to increase the diversity of

the sample space by moving the particle around its original position. A re-sample move step is introduced

at each iteration of the algorithm. It first samples new particles according to the weight of each of the

particles and then moves the particles to some new positions in state space. () proposes a method by

adjusting the size of particles utilized for estimation dynamically per Kullback-Leibler distance between

the distribution estimated and the true distribution. The state space is divided into multiple bins and the

1147

Rai and Hu

particles that fall into a bin make it non-empty. After counting how many non-empty bins are there during

estimation procedure, the number of the non-empty bin is used to calculate the desired number of samples

using equation derived from Kullback-Leibler distance. (Doucet et al. 2000, Särkkä et al. 2007) have used

Rao-Blackwellized particle filter to deal with the high dimensional state space of the target system. The

state of each particle is divided into root nodes and leaf nodes which are linked using a dynamic Bayesian

network. By doing this, the dimension of the system needs to be estimated reduces. (Kwok et al. 2005)

proposes a new method based on Genetic Algorithm by treating each particle as chromosome and apply

crossover and mutation operators. The crossover operation generates new chromosomes from existing

chromosomes to increase the diversity of the sample space. (Bugallo et al. 2007) propose a method to deal

with the high dimensionality of the state space by dividing the state space into subdimensions and apply a

particle filter on each subdimension.

3 GRAPH BASED AGENT ORIENTED MODEL AND THE PF-BASED DATA

ASSIMILATION FRAMEWORK

The graph based agent oriented model (Rai et al. 2015) is a low-resolution simulation model which

describes the dynamics of the agents at a higher abstraction level. In the model, the structure of the building

is represented using nodes and edges, and occupants are represented as agents with basic properties required

for the movement. The movement of the occupants is modeled as a flow across the nodes through the links

using queuing and flow theory. Since movements of occupants in the network are more orderly organized,

occupant behaviors at higher resolution are not necessarily required for the simulation. The occupancy

behaviors in situations like crowd and congestion can be well represented by lower resolution models like

graph models. This significantly reduces the computational complexity of the simulation without losing the

overall property of the occupancy behavior. Figure 1a represents the framework for a graph based agent

oriented model which show the agents and graph model. The graph model consists of the queues and the

building structure is managed by nodes and links. The agents are provided with decision making capabilities

which are governed by the rule engine maintained by the user. We also provide a GUI based interface where

the occupant’s behavior can be observed in a building environment.

 More specifically, the building environment is represented using vertex for nodes and connecting

structures like doors, stairs by links. The occupant in the model is represented using a variable o having

state s, where

and,













inqueue

moving

staying

s

slgidvpho fromidposition ,,,,,

 Here, ph represents the phase of the occupant which represents the environment condition of the

building, vposition represents the current vertex the occupant reside in, id represents the identification of the

occupant, lfrom represents the link that the occupant come from, s represents the state of the occupants and

has three different values, staying, moving and inqueue. The occupant has three basic states, staying to

represent that the occupant is staying in a node, moving to represent that the occupant is moving across the

node and inqueue to represent that the occupant is waiting to enter a node. To enter a node, the occupants

follow the basic queue behavior. Each link has a flow rate and occupants enter based on the flow rate. If

the node is full or the flow rate is low due to high density at the queue, occupants will wait in the queue to

enter the node.

1148

Rai and Hu

Figure 1: a) Graph based agent oriented framework b) PF-based data assimilation framework

 To support data assimilation of the graph-based agent-oriented model, we used the basic bootstrap filter

as the algorithm for the data assimilation (Rai 2016). The observations are the occupancy information which

is collected by various sensors installed in the rooms. In our framework, we consider only the node

information as the state which reduces the size and complexity of the state for data assimilation. Each of

the particles goes through the system transition function which evolves the system from the current system

to a new state St+1 = G (St) + Qt. Here, G represents the state transition function based on graph based agent

oriented model and Qt is the system processing noise. The observation data for the particle filter is

represented as On = Obs(n)+ mt. Here, Obs(n) is the observation at room n and mt is the measurement noise

for the observation. Figure 1b represents the PF based data assimilation framework in which St-1 is the

previous state of the system which is evolved by the state transition function to new state S't which provides

its observation (sensor data). This observation is compared with the real observation and weight

computation and normalization are done in the importance sampling step. In the resampling step, particles

are resampled based on the weights and the new state is estimated which is closer to the real system state.

After that, there is a model regeneration step, which generates the required necessary properties of the

system from the resampled state like agent and queue properties. The algorithmic structure of the standard

particle filter with resampling is as follows:

Sequential importance resampling PF

Input: Occupancy states and corresponding importance weights at step t {Si
t, w

i
t}

Output: Occupancy states and corresponding importance weights at step t+1 {Si
t+1, w

i
t+1}

1. Sampling

For each state Si
t, draw a sample Si

t+1 from p(Si
t | S

i
t+1) using G(Si

t)+Qt

2. Weight Updating

For each state, update the weights wi
t+1 =wi

t  p(Ot+1|S
i
t+1)

Normalize wi
t+1 =

𝑤𝑡+1
𝑖

∑ 𝑤𝑡+1
𝑖𝑁

𝑖=1

3. Resampling

Draw N particles from Si
t+1 based on wi

t+1

4 DATA ASSIMILATION USING SENSOR -INFORMED RESAMPLING

The high dimensionality of the system increases the challenges of sample impoverishment and particle

deprivation in the PF based data assimilation framework. The building occupancy simulation consists of a

multidimensional state space where the nodes and the agent properties represent dimensions of the system.

As such, when the state of the system increases, the number of particles required to estimate true states

GUI

Agents

Decision
making

Rule
Engine

Building
Structure

Queues

Graph model

1149

Rai and Hu

grows exponentially. This leads to a higher computation cost for simulating building occupancy for a large

number of occupants in big environments. We present a new resampling method to utilize the available

sensor data to deal with the issues introduced by the high dimensionality of the system.

 The goal of sensor-informed resampling is to utilize sensor information to generate samples that are

closer to the real system state. To achieve this we modify the standard resampling step, which generates a

new set of particles according to the importance weights of particles, by incorporating information from

sensors. The basic idea is that if a sensor data has a high value in terms of a number of occupants, then the

real system is likely to have a large number of occupants in the node where the sensor locates, and this

information can be used to adjust the particles generated from the standard resampling step. To do this in a

systematic way, there are two issues that need to be resolved: 1) how to extract the most information from

a sensor data in order to support data assimilation; 2) how to incorporate the sensor information into the

standard resampling step. The first issue is important because typically there are a limited number of sensor

data points, i.e., sensors are sparsely deployed in the building. Nevertheless, the rooms in a building are

related to each other due to their spatial locations. When one room is congested, there is high chance that

its neighboring rooms also have a high number of occupants. Thus the sensor data collected from one room

can also provide information about its neighboring rooms, and this information can be used to improve the

resampling step of the particle filter. Below we describe more details regarding how we address these two

issues.

4.1 Extract information from sensor data

We can use sensor data to obtain information not only for the nodes where there are sensors but also for the

neighboring nodes. This is because, in a building, the occupancy flow is directly related to the connectivity

of the nodes. An occupant can move only to a connected node and to reach a destination, they need to move

through the connected nodes from a source to destination (Hallways, passages, stairs, elevators etc. are also

represented as nodes). As such, based on the occupancy of a node, we can get an idea of the occupancy in

its neighboring nodes. To give an example, in Figure 2: , if Node 13 and Node 15 has high occupancy, then

most probably Node 14 has high occupancy. But if Node 13 has high occupancy and Node 15 has few, two

cases may arise: first Node 14 may be the main destination and have high occupancy; second, Node 13 may

be main destination and Node 14 may not have high occupancy. For the total occupants, if there are few

occupants in other sensors, Node 14 is the main destination, otherwise, if other sensors have a significant

number of occupants, Node 13 is the main destination. Here, we narrowed down our estimation to two

possible cases, after which we can use the data assimilation framework to help estimate one of the cases.

Figure 2: Issue caused by placement of sensors

There can be various methods for generating estimates for nodes based on sensor data from some

neighboring nodes. Here we describe one basic approach for layout in which nodes are connected in a single

direction. We illustrate this approach using the example shown in Figure 3. In Figure 3a, let us assume that

G, F, E, X, A, B, C are six connecting nodes and only node X has a sensor. Based on the location of the

1150

Rai and Hu

nodes, we can use the sensor from node X to get an estimate of nearby nodes. During the movement of

occupants, when node X has a high occupancy, the occupancy will decrease as the distance of nodes

increase from node X. Thus, we can assume that the occupancy will be somewhat distributed following

spatial Gaussian distribution across the nodes. The distribution is centered at node X, and spreads to farther

nodes. In figure 3b, we can see an example of the distribution where X-axis represents the nodes based on

their id and Y-axis represents the occupancy which follows the spatial Gaussian distribution. Here, X0

represents the sensor data in node X. From the distribution, we can get an estimate of occupancy for node

B and E to use in resampling by randomly taking a normal distribution between X0 and X1. Similarly, for

node C and F between X1 and X2 and for node D and G between X2 and X3. In some cases, the nearby nodes

may have higher occupancy as well. To consider for such cases, for each node we will add noise to the

estimated occupancy.

Figure 3: a) Layout of connecting nodes b) spatial Gaussian distribution

𝑓(𝑥|𝜇, 𝜎2) =
1

√2𝜎2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2 (1)

 The probability density of the spatial Gaussian distributions is represented by (1). Here,  represents

the node with the sensor data and X represents the neighboring nodes.  represents the location of the

neighboring nodes based on their location from . Here we observe that when  is 0, it represents the sensor

data for the node with the sensor. If  is 1, we can obtain information for two neighboring nodes E and B

with a high probability density. However as we increase , the probability density is lower and so the

estimation may not be very accurate. Thus we observe that in this method, we can obtain information about

the adjacent neighboring node with higher confidence than others. We will use information about only the

adjacent nodes in this work. In case there is a node which has two adjacent nodes with the sensor, using

information from all the nodes will help get a better estimate of occupancy in the node. In such case, we

can use some method of combining both information to get a better estimate. In this work, we will use the

average of the estimates to use as an occupancy in the node and then will use it in the resampling method.

4.2 Sensor-informed resampling

To use sensor data for improving the convergence of the particles, we will generate estimates of some of

the sub-states from the sensor data and then combine them with the existing particles of the standard particle

filter. In the standard particle filter resampling, we treat the entire system state as one system and so, in

building occupancy a particle consists of various nodes with occupancy information. We can divide the

whole system state into a set of sub-states where each sub-state is for a subgraph of the overall graph model

(i.e., the overall building layout). These sub-states, when brought together, represents the overall state of

the system. Each sub-states consists of individual nodes with state variables like occupancy count,

occupancy behavior, and other node properties. Since we can use sensor data to generate estimates of the

node with the sensor and other adjacent nodes without the sensor, we can create sub-state estimates of these

nodes. This sub-state estimates can now be placed in the particle and this new sensor-informed particle will

be able to estimate the real system with improved accuracy. To consider the noise in the sensor, we will

replace only a randomly selected subset of the particles and the randomly selected sub-states in each

1151

Rai and Hu

particle. Thus, the process will impact only some of the particles to improve the diversity of the system

state that the particles represent. Since we will not modify all of the particles, some of the good original

particles are preserved. And also if the sensor data is faulty, it will get filtered out during the next iteration

of data assimilation along with the particle.

 Using the real sensor data, we will compute the sub-state for nodes with and without sensors using the

spatial Gaussian distribution described in Section 4.1. The sub-states consists of the number of occupants

in the node and their direction. We will compute more than one set of sub-states to provide multiple

estimates from a sensor data for the same node. During the resampling step of the particle filter, after

resampling we select a few of the standard particles and mix sub-states generated from sensor data. We

follow rest of the standard resampling procedure from the bootstrap filter. We will set the number of

occupants in each node as the sub-state and we will generate other properties of the nodes using the data

assimilation model. Formally, let us have a set St of n particles randomly selected from the original set of

particles. Here each particle has m sub-states,

Sn = <D1, D2,…..Dn> and

Dn = <N1, N2….Nm>

where Dn represents a particle and Nm represents a sub-state. Let X represent the set representing p sets of

estimates from sensor data. Each set of estimate will contain q sub-states,

X = < I'1, I'2,…. I'p >, and

I'p = <N'1, N'2,…. N'q >

 Here, q depends on the number of nodes with sensor since we can get information only for the adjacent

nodes. With these set of particles and sub-state estimates, a new particle is constructed as

𝑫̃ =< 𝑵𝟏,̃ 𝑵𝟐̃ … … 𝑵𝒎̃ >

where 𝑁𝑚̃ represents the sub-state selected randomly from one of X. For each particle , we first randomly

select a set of sub-state from X and then replace sub-states from I'p . We will use a probability for replacing

a sub-state so that all of the sub-states are not replaced.

Figure 5: Example of sensor-informed resampling

 Figure 5 gives an example of sensor-informed resampling for a particle. In this example, the particle

has seven sub-states. We use a set of sub-state generated from available sensor data which has information

for node 3, 4, 5 and 6 only. After replacing the sub-states we observe that only sub-state information from

node 3 and 5 is replaced in the original particle. Similarly, a different replacement will occur for another

particle in which the sub-states from the sensor data will be another value from state Gaussian distribution.

These sensor-informed particles now go through the steps of resampling and have a better probability of

representing the real system. We can define the algorithm for resampling using the new method as below.

Algorithm for sensor-informed resampling

Resampling step:

Input: The set of N particles with associated weights

Set I with sub-states generated from sensor data

1152

Rai and Hu

Output: A new set of sensor-informed N particles

Perform the standard resampling for particles

Select k particles from original particle

For each selected particle

 For every sub-state from I,

 Incorporate sub-state with particle

 End for

End for

5 EXPERIMENT

In this section, we conduct an experiment using particles from sensor data and compare the results with the

standard resampling. We want to experiment using a large number of occupants but without increasing the

number of particles highly. Thus, we want to maintain the computational cost of the simulation for large

occupancy. To verify it, we set the capacity of the room to 200, the length of the edge to 35m and the

number of occupants to about 16,000 so that the complexity of the model is high and it becomes difficult

for the general data assimilation to detect the occupancy behavior. The task of estimating an exact number

of occupants is highly difficult at such complex system state hence we focus on detecting congestion i.e.

when there are a very high number of occupants in a node. For this, we can define a threshold value which

defines the minimum number of occupants to create a congestion situation. When a node contains more

than that number of occupants, it is in a congestion state. Figure 6 shows the building structure for the

simulation. There are 79 nodes and the structure mimics an airport/train terminal type of environment where

people enter the system through one or more entrances (Node 0 and 29); then they move to one of the

terminals for boarding. There is only one door connecting two nodes and occupants will need to choose

that door to go to the connecting node. We set up sensors by placing one node without sensor between two

nodes with the sensor. Using the identical twin experiment, we create a real system with congestion in two

nodes (Node 113 and 195) for some period and observe the congestion which propagates across the

neighboring nodes.

Figure 6: Building structure for simulation

 Figure 7 shows the result of comparison where blue graph represents the occupancy from a real system,

orange graph from the bootstrap PF (standard resampling) and red graph from the resampling using sensor-

informed PF. For convenience, we compare the results of the main destination nodes and their neighboring

nodes. The peak of the blue graph shows the maximum capacity of the node and we try to compare how

quickly and closely the data assimilation can estimate it. We observe that the bootstrap particle filter is not

able to detect congestion in real time compared with the sensor-informed PF. We create a 1/5th of the total

standard particles as a set of particles using sensor data and randomly select the sub-states from both sets

1153

Rai and Hu

of particles. We see that the bootstrap PF is quite slow to detect congestion in the neighboring nodes.

However, the sensor-informed particle filter can predict congestion (occupants more than half the capacity)

at the same time as the real system. In node 114 we observe that the standard PF estimates the peak

occupancy around timestep 120. It is due to the reason that the occupants keep accumulating in the room

and do not leave due to limitations in estimating by the bootstrap PF.

Figure 7: Comparison using sensor-informed PF with 200 particles

Figure 8: Comparison using sensor-informed PF with 100 particles

 In the second experiment, we increase the size of the room to 400, edge size to 35 and use about 9500

agents for a congestion simulation. Congestion is created in nodes 113 and 195 in two stages and we use

only 100 particles to detect the occupancy. Since the number of particles is quite a few, the occupancy is

1154

Rai and Hu

difficult to estimate using the standard bootstrap particle filter. However, using our new algorithm we are

able to estimate the occupancy pattern for the congestion with the limited number of particles. Figure 8

shows the result of the comparison, here also blue graph is the occupancy from real simulation, the orange

graph is the simulation using the bootstrap PF and red graph is the result of sensor-informed PF. We observe

the result of sensor-informed PF is much better than bootstrap PF. The bootstrap PF is able to make some

estimation for the main destination nodes but is not able to estimate the occupancy for the neighboring

nodes. However, the sensor-informed PF can make a good estimation for neighboring nodes as well. As

such, we see that the new algorithm makes good predictions utilizing the sensor data and use fewer particles

compared with the standard bootstrap particle filter.

6 CONCLUSION

In this paper, we presented a new resampling named as sensor-informed resampling which can estimate the

occupancy better than the standard resampling method. The method utilizes sensor data to inform

resampling of particles so that the particles can better represent the true system state. The improved

resampling helps in solving the major issues caused due to increase in complexity of system state when

occupancy and environment size increase. From the experiments, we observed that the sensor-informed

resampling is better in estimating congestions than the standard particle filter when there is high occupancy.

In future, we plan to work on analyzing the output of the algorithm when we introduce more noise. We also

plan to implement other advanced methods of utilizing sensor data during the resampling step.

REFERENCES

Feng, X., Yan, D. and Hong, T. 2015. “Simulation of occupancy in buildings”. Energy and Buildings, 87,

pp.348-359.

Rai, S., Wang, M., and Hu, X. 2015. “A graph-based agent-oriented model for building occupancy

simulation”. In Proceedings of the Symposium on Agent-Directed Simulation, pp. 76-83. Society for

Computer Simulation International.

Rai, S. 2016. “Building occupancy simulation and data assimilation using a graph based agent oriented

model”. Dissertation, Georgia State University, 2016. http://scholarworks.gsu.edu/cs_diss/114

Doucet, A., De Freitas, N. and Gordon, N. 2001. “An introduction to sequential Monte Carlo methods.”

In Sequential Monte Carlo methods in practice (pp. 3-14). Springer New York.

Franz, G., Mallot, H., Wiener, J. and Neurowissenschaft, K. 2005. “Graph-based models of space in

architecture and cognitive science-a comparative analysis”. In Proceedings of the 17th International

Conference on Systems Research, Informatics and Cybernetics (Vol. 3038).

Macal, C.M. and North, M.J. 2013. “Agent-based modeling and simulation: introductory tutorial”.

In Proceedings of the 2013 Winter Simulation Conference: Simulation: Making Decisions in a Complex

World (pp. 362-376). IEEE Press.

Rai, S. and Hu, X. 2013. “Behavior pattern detection for data assimilation in the agent-based simulation of

smart environments”. In Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on

Web Intelligence (WI) and Intelligent Agent Technologies (IAT)-Volume 02 (pp. 171-178).

Maasoumy, M. 2009. “Estimation of Occupancy Distribution in Buildings”. Univ. Calif. Berkeley.

Cook, D. and Das, S.K., 2004. Smart environments: Technology, protocols, and applications (Vol. 43).

John Wiley & Sons.

Shen, T.S. 2005. “ESM: a building evacuation simulation model”. Building and Environment, 40(5),

pp.671-680.

Tomastik, R., Narayanan, S., Banaszuk, A. and Meyn, S. 2010. “Model-based real-time estimation of

building occupancy during emergency egress”. In Pedestrian and Evacuation Dynamics 2008 (pp. 215-

224). Springer Berlin Heidelberg.

1155

Rai and Hu

Xue, H., Gu, F. and Hu, X. 2012. “Data assimilation using sequential monte carlo methods in wildfire

spread simulation”. ACM Transactions on Modeling and Computer Simulation (TOMACS), 22(4),

p.23.

Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R. and Nordlund, P.J.

2002. “Particle filters for positioning, navigation, and tracking”. IEEE Transactions on signal

processing, 50(2), pp.425-437.

Zhang, J., Chen, R., Tang, C. and Liang, J. 2003. “Origin of scaling behavior of protein packing density: A

sequential Monte Carlo study of compact long chain polymers”. The Journal of chemical

physics, 118(13), pp.6102-6109.

Chen, T., Morris, J. and Martin, E. 2008. “Dynamic data rectification using particle filters”. Computers &

Chemical Engineering, 32(3), pp.451-462.

Wang, M. and Hu, X. 2013. “Data assimilation in agent based simulation of smart environment”.

In Proceedings of the 1st ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (pp.

379-384). ACM.

Gilks, W.R., and Berzuini, C. 2001. “Following a moving target—Monte Carlo inference for dynamic

Bayesian models”. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(1),

pp.127-146.

Fox, D. 2001. “KLD-sampling: Adaptive particle filters and mobile robot localization.” Advances in Neural

Information Processing Systems (NIPS) 14.1, 26-32.

Särkkä, S., Vehtari, A. and Lampinen, J. 2007. “Rao-Blackwellized particle filter for multiple target

tracking”. Information Fusion, 8(1), pp.2-15.

Doucet, A., De Freitas, N., Murphy, K. and Russell, S. 2000. “Rao-Blackwellised particle filtering for

dynamic Bayesian networks”. In Proceedings of the Sixteenth conference on Uncertainty in artificial

intelligence (pp. 176-183). Morgan Kaufmann Publishers Inc..

Kwok, N.M., Fang, G. and Zhou, W. 2005. “Evolutionary particle filter: re-sampling from the genetic

algorithm perspective”. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ

International Conference on (pp. 2935-2940). IEEE.

Bugallo, M.F.; Ting Lu; Djuric, P.M. 2007. "Target Tracking by Multiple Particle Filtering," Aerospace

Conference, IEEE, pp.1,7.

AUTHOR BIOGRAPHIES

SANISH RAI is an Assistant Professor in the Department of Computer Science and Information Systems

at West Virginia University Institute of Technology, Beckley, WV. He received his Ph.D. degree from

Georgia State University in 2016. His research interests include simulation and modeling, agent and graph

based systems, and data assimilation. His email address is sanishrai@gmail.com.

XIAOLIN HU is an Associate Professor in the Department of Computer Science at Georgia State

University, Atlanta, Georgia. He received his Ph.D. degree from the University of Arizona in 2004. His

research interests include modeling and simulation theory and application, agent and multi-agent systems,

and complex systems science. His email address is xhu@cs.gsu.edu and his web page is

https://grid.cs.gsu.edu/xhu/.

1156

