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ABSTRACT

Vector-borne infectious diseases present computational modelers with a unique challenge: finding the right
balance between model fidelity and simulation costs. In this work, we introduce a hybrid agent-based model
that achieves a balance that readily scales to problem sizes of millions of human agents and mosquitoes.
Macroscopically, our model results agree with those from a low-cost compartmental model; microscopically,
like agent-based models, it provides details at the individual level. We apply this model to a synthetic
human population of 1.2 million individuals from Miami, Florida in the United States to model the Zika
outbreak in the Fall of 2016. We identify two high-risk locations within this region, a detail which cannot
be revealed by traditional compartmental models. The principles-based mathematical derivation of the
hybrid agent-based model can be adapted to other scenarios facing similar tradeoffs.

1 INTRODUCTION

1.1 Background and Motivation

Vector-borne diseases account for one sixth of all cases of infectious human diseases. Throughout history,
the control of some of these diseases has been among the greatest public health successes (e.g. malaria
elimination in the US, yellow fever elimination in the Americas). However, as the world has become
increasingly more interconnected and urbanized, and as the impact of climate change becomes more
apparent, the threat of these diseases will become more pronounced.

Mosquito-borne diseases can spread rapidly, with chikungunya reaching 75% of the population of Lamu,
Kenya, Africa in 2004 (Sergon et al. 2009). In Summer 2014, Zika was detected in Brazil and spread
through Latin America at startling speed, sweeping across the South American continent in two years,
causing significant morbidity and mortality. During 2016 alone, Zika spread through some 47 countries
and territories (Zhang et al. 2017), and was declared a public health emergency by the World Health
Organization. The first known cases of Zika transmission from mosquitoes to humans in the U. S. occurred
in Miami, Florida in the Fall of 2016. Although Zika can spread human-to-human through sexual contact and
to a baby in the womb, Zika spreads primarily through contact with infected mosquitoes (Chouin-Carneiro
et al. 2016). Consequently, much work has been devoted to understanding Zika, including its transmission
using agent-based modeling (Gu and Novak 2009), compartmental models (Gu and Novak 2009), and other
approaches (Perkins et al. 2016).

Ordinary differential equation (ODE)-based and agent-based models (ABM) are commonly used to
simulate the spread of infectious diseases. ODE or compartmental models run relatively quickly but are not
informative at the individual level; ABMs provide individual level granularity, but simulations are expensive
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to run. Vector-borne infectious diseases, such as Zika, present a unique challenge for simulation. High
fidelity models (ABMs) enable more realistic policy planning; however, simulating each mosquito as an
agent is computationally challenging. Agent-based simulations (ABSs) that incorporate individual mosquito
behavior have typically been limited to a couple of thousand mosquitoes (e.g., Jindal and Rao (2017)),
which is not suitable for large populations over large geographic regions. To address these competing
considerations, we introduce a hybrid ABM (HABM) in which an ABM captures individual human behavior
and gridcells contain ODE models that capture mosquito behavior. Our model provides a desirable balance
between computational cost and model fidelity. This approach also enables the incorporation of high fidelity
mobility of agents.

1.2 Contributions

Our central focus is a process of converting a compartmental model to an HABM, and comparison of
results between the two models. However, we also illustrate its use and value by modeling an actual Zika
outbreak in the United States. The major contributions of this work follow.

1. Principled method for converting a compartmental model to a hybrid agent-based model (HABM).
Our starting point is the compartmental model of (Manore et al. 2014), in which there is one compartment
for humans and one for a gridcell that contains mosquitoes. Disease transition is mosquito-to-human and
human-to-mosquito. We provide a principled process, in the form of model equations, to convert from
a compartmental model to a HABM. We use a conversion process based on the harmonic mean of the
forces of infection from Manore et al. (2014), which is essentially a transmission kernel. While we apply
this model to Zika, we expect the HABM to have wider applicability, to other vector- and mosquito-borne
diseases such as Dengue and Chikungunya.

2. Comparison of HABM and compartmental model results. HABM results are compared against
compartmental model results from (Manore et al. 2014), where each simulation spans eight years of system
(disease) dynamics for a 100,000-member human population and 200,000 mosquitoes. We provide results
for Denge [DENV (Aedes aegypti)] and Chikungunya [CHIK-R (Aedes albopictus)].

3. Application of the HABM to realistic scenarios of Zika outbreaks in Miami, Florida. In the late
Summer/early Fall of 2016, the first instance of autochthonous transmission of Zika virus via mosquitoes
in the United States was observed in Miami, Florida. From the initial seed of a returning international
traveler, mosquitoes in Miami became infected, and from there transmission continued for several months,
before eventually being brought under control. Ultimately, among more than one million residents, over
200 instances of transmission occurred in Miami via mosquitoes. We calibrate our model to these data and
then perform additional simulations to understand Zika dynamics.

Paper organization. Section 2 contains related work. Section 3 on modeling contains an overview of
the compartmental model (Manore et al. 2014) that is the starting point for our work; an overview of
our HABM; comparisons of results between our HABM and the compartmental model (Manore et al.
2014); and a short description of the Miami population. Section 4 contains results from simulations of
Zika outbreaks in Miami. The paper concludes with Section 5, including limitations of this work.

2 RELATED WORK

Viana (2014) states that hybrid simulation is typically the combination of discrete event simulation (DES),
systems dynamics (SD), and agent-based models (ABM). SD methods include compartmental models and
ODE-based models. DES is the control methodology (based on events) for invoking ABMs. Consequently,
often DES and ABM are combined in that DES is one approach for scheduling execution of ABMs (another
being discrete time simulation). Here, we combine discrete time simulation (DTS) and agent models, and
refer to this as agent-based simulation (ABS) and ABM. Hybrid simulation is used in many domains such
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as construction, energy systems, chemical engineering, social modeling, healthcare, and biology (Viana
2014).

There are two dimensions along which to combine ABM and DS: (i) level of aggregation/disaggregation,
and (ii) time evolution. DS typically involves aggregated models and continuous time. ABM typically
involves disaggregated models and discrete time or events.

Three modes of DES and DS interactions are cited in Chahal and Eldabi (2008): (i) hierarchical
where two distinct models pass data to one another, (ii) process environment where a DES models sits
within an SD model and interacts with it cyclically, and (iii) integrated where there is one model with
no clear distinction between the discrete and continuous parts. This breakdown is somewhat difficult to
operationalize because it includes particular uses of the SD and ABM models. For example, the first class is
for the case where SD models are used at the strategic level, while ABM (or DES) is used at the operational
level, which specifies the use of each paradigm.

Brailsford et al. (2010) states that a “genuinely hybrid model switches back and forth between continuous
and discrete models.” We use hybrid modeling in the sense of Brailsford et al. (2010): we execute a
discretized version of a continuous compartmental model and discrete ABMs simultaneously within a
distributed, parallel simulation system. There are many other hybrid approaches; see Chahal and Eldabi
(2008), Schweitzera and Garcia (2010), Viana (2014), Schwarz and Pruyt (2016). In the healthcare model
of Mielczarek and Zabawa (2016), an SD scheme is used to age a population. An ABM is used to spread
a disease through the aged population to estimate human loads on hospitals. Information flow is one-way,
from SD to ABM as people age, but this data movement occurs a multitude of times. In some hybrid
models, interactions between entities may take place in only one type of model; e.g., only in the ABM
(Mielczarek and Zabawa 2016)or only in the SD model (Viana 2014). In contrast, our HABM has entity
interactions in both the ABM [humans] and the SD (i.e., ODE) model [mosquitoes], and between entities
across the model types so that information flows in both directions.

There are works that compare SD and ABM results for the same phenomena. However, most are like
Figueredo et al. (2014) in that the two models (SD and ABM) are developed independently, and results
are compared. Here, we are doing something different: we are converting an SD model to a HABM to
achieve greater granularity in model outputs.

The work closest to ours is that of Manore et al. (2015). They also use individual agents to represent
humans and compartments to represent collections of mosquitoes for vector-borne diseases. However, there
are many differences. Our population is orders of magnitude larger (1.2 million vs. 1,500 people and
10,000 vs. 3 compartments for mosquitoes). Our population is a synthetic representation of the Miami-Dade
County area of FL vs. limited realistic data. Our resulting network is a bipartite graph of people visiting
locations/gridcells (more in Section 3.4) based upon the aforementioned synthetic population, whereas
theirs is an Erdos-Renyi random network. We provide a much more realistic case study: the Fall 2016
Zika outbreak in Miami, FL. We describe how the compartmental model is converted to an HABM. We
perform computations with our HABM and compare results with those from the ODE model.

3 METHODS

This section consists of a description of the compartmental model (3.1), a description of the HABM (3.2),
comparisons of results from the two models (3.3), and an overview of the population model that is used
in the simulations (3.4).

Two views of the high level model setups are shown in Figure 1. At the top of Figure 1a is the
compartmental model with two compartments, all humans and all mosquitoes, per Manore et al. (2014).
This model is converted, in this work, to an HABM as described in the lower portion of Figure 1a. In
Figure 1b, the states and transitions of mosquitoes and humans are provided. Note that humans only
get infected from interactions with mosquitoes, and vice versa. That is, there is no human-to-human
transmission in this model.
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Figure 1: (a) [top] Compartmental (or patch or ODE) model view of Manore et al. (2014), and [bottom]
the hybrid ABM view used here. In the compartmental view, there are two compartments: one for humans
and one for mosquitoes. States are counts of agents in each state (S, E, I, R for humans) and (S, E, I for
mosquitoes). In the HABM, each human is an individual agent, so the state of an agent is one of (S, E, I,
R). Also in the HABM, each gridcell is an agent. Each gridcell agent contains a collection of mosquitoes,
as in the compartmental model. This means that states for a gridcell remain counts of mosquitoes in states
(S, E, I). (b) The state machines for each of mosquitoes and humans. The state sets of mosquito and human
agents both include S, E, and I, and the human agent also includes R. Humans and mosquitoes transfer
virus when each is infectious (dashed blue lines), causing the recipient to transition to the E state (i.e.,
infected, but not yet infectious). In particular note that humans do not infect each other in this model.

3.1 Compartmental Model

Time-dependent ODEs are used to describe the evolution of a dynamical system. Individuals are grouped
into compartments based on their states. For example, the SEIR epidemic model for humans in the Zika
model contains four compartments: susceptible, exposed, infectious, and recovered. The numbers of
individuals in different compartments are defined as time-dependent macroscopic variables, vector vvv, i.e.
vvv = {S,E, I,R}. Therefore, ODE models in epidemiology are also known as compartmental models. To
capture the temporal evolution of the dynamical system, ODE models also define a set of parameters ai j as
the rate of change from state j to state i (ai j could be zero). Then, the dynamical system can be expressed
as a system of ODEs: v̇vv = AAAvvv(t), with ai j ∈ AAA.

There are many ways of extending ODE models. If individuals in a dynamical system form distinctive
groups (i.e. vector-host or male-female), we can subdivide the SEIR compartments into finer compartments.
For example, in the study of vector-borne infectious disease modeling (Manore et al. 2014), human (subscript
h) and mosquito (subscript v as in vector-borne) naturally form two different groups. The compartments
of the dynamical system are then vvv = {Sh,Eh, Ih,Rh,Sv,Ev, Iv}.

Due to space limitations, we focus on two ODEs of most interest—those involving interactions between
humans and mosquitoes, depicted as blue dashed lines in Figure 1b:

dEh

dt
= λh(t)Sh−νhEh−µhEh and

dEv

dt
= λv(t)Sv−νvEv−µvEv , (1)
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where ν is the rate of transition to the infectious state I; µ is the death rate; and λh (and λv) is called the
force of infection, describing the rate of change of human (mosquitoes) from S to E due to contact with
infectious mosquitoes (humans). Explicitly, λh and λv are written as follows:

λh =
1

Nh
bβhv

Iv

Nv
, λv =

1
Nv

bβvh
Ih

Nh
, and b≡ σvNvσhNh

σvNv +σhNh
, (2)

where βhv is the probability of transmission per bite from v to h; σv is the maximum number of times one
mosquito bites a human per unit time; and σh is the maximum number of mosquito bites a human can
sustain per unit time. Nv(t) is the number of mosquitoes in a compartment at time t; and Nh(t) is the number
of humans in a location compartment at time t. Note that the value b in (2), the total contacts between
humans and mosquitoes, is a harmonic mean of the contributions from mosquito and human compartments.
Force of infection λ is proportional to b and infectious fraction I/N, with a unit of per unit time per capita.

3.2 Hybrid Agent-Based Model

In our HABM, an individual human is represented as an agent in an ABM; mosquitoes are confined to
regions that are represented as compartments; see the lower part of Figure 1a. Since our compartments
will represent geospatial regions of a grid, we call the compartments gridcells. (This will be described in
Section 3.4.) Each individual human follows a travel schedule, presenting herself at a particular gridcell
during a certain time interval. The variable subscript h now indicates a particular human individual, instead
of a human compartment. As there are multiple gridcells, we change the variable subscript of mosquito
compartment from v to g (for gridcell); e.g., Ig represents the total number of infectious mosquitoes in
gridcell g. We also introduce a binary indicator N̂hg(t) ∈ {0,1}: 1 if human h is at gridcell g at time t; 0
otherwise.

The main issue in developing the HABM from the compartmental model is to convert the mathematical
expressions of compartment-compartment interactions to agent-compartment interactions; in particular, the
forces of infection in (2). The total number of contacts b at gridcell g depends on the set of individuals
visiting gridcell g at time t and σh (maximum bites sustained per unit time) of each particular individual
in g at t. We can express the total number of contacts b at gridcell g at time t as:

bg(t) =
σgNg(∑

Nh
h=1 σhN̂hg(t))

σgNg +∑
Nh
h=1 σhN̂hg(t)

, (3)

where the summands in each summation are individual human attributes. Compare this result to that in
(2). Therefore, the forces of infection λh(t,g) (from mosquitoes at gridcell g to a human h) and λg(t) are:

λh(t,g) =
1

Nhg(t)
bg(t)βhg

Ig(t)
Ng(t)

and λg(t) =
1

Ng(t)
bg(t)β̄gh

Ihg(t)
Nhg(t)

, (4)

where Nhg(t) = ∑
Nh
h=1 N̂hg is the total number of humans at gridcell g; and Ihg(t) = ∑

Nh
h=1 ÎhN̂hg is the

total number of infectious humans at gridcell g and Îh = 1 if human h is infectious. βhg has the same
meaning as βhv except it is regarding a particular human agent instead of a human compartment. β̄gh
is the average transmission rate of all human agents at gridcell g weighted by their individual σh; i.e.,
β̄gh = ∑

Nh
h=1 σhβghN̂hg(t)/∑

Nh
h=1 σhN̂hg(t). These summations are over individuals that can be assigned

individual properties. Moreover, if the number of humans in a gridcell changes per time unit, for example,
then parameters like β̄gh will change in time.

We can express our model explicitly as two parts: ABM for humans and (discrete-time) ODE for
gridcells of mosquito (compartments). For a human agent, as with a conventional ABM, to determine
whether it changes from one state to another, we generate a random number q ∈ [0,1], and compare it with
the corresponding state transmission rate. The rate from S to E depends on the time and gridcell, whereas
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other rates are constant. We have

Pr(Sh→ Eh|g, t) ={
1, q < λh(t,g)
0, otherwise ,

(5)

Pr(Eh→ Ih) ={
1, q < νh
0, otherwise ,

(6)

and Pr(Ih→ Rh) ={
1, q < γh
0, otherwise .

(7)

For a gridcell (mosquito compartment), we use a system of ODEs given by

Sg(t) = Sg(t−1)−λg(t)Sg(t−1)︸ ︷︷ ︸
trans. to E

−µgSg(t−1)︸ ︷︷ ︸
deaths

+hg(Ng)Ng︸ ︷︷ ︸
births

, (8)

Eg(t) = Eg(t−1)+λg(t)Sg(t−1)︸ ︷︷ ︸
trans. from S

−νgEg(t−1)︸ ︷︷ ︸
trans. to I

−µgEg(t−1)︸ ︷︷ ︸
deaths

, and (9)

Ig(t) = Ig(t−1)+νgEg(t−1)︸ ︷︷ ︸
trans. from E

−µgIg(t−1)︸ ︷︷ ︸
deaths

, (10)

where Sg, Eg, and Ig are the counts of susceptible, exposed, and infectious mosquitoes in gridcell g. Our
model does not take into account mosquito mobility from one gridcell to another; this is part of our future
work.

3.3 Comparisons of Results Between the Compartmental Model and the HABM

Each compartmental model-based simulation in Manore et al. (2014) consists of one compartment containing
200,000 mosquitoes and one compartment with 100,000 humans. In each case, one human is prescribed
as initially infected; all other humans are initially in the susceptible state S and all mosquitoes are also
initially in the susceptible state. We simulate the same scenarios using the HABM, with 100,000 individual
human agents and one gridcell with 200,000 mosquitoes. For each HABM simulation, we ran 30 runs or
instances, where a simulation instance consists of specifying initial conditions at time t = 0 and running
the simulation in discrete time, by day, to time tmax = 8 years, consistent with Manore et al. (2014). For
each run, one human agent was selected uniformly at random to be the seed; i.e., the agent that is initially
infected. The HABM simulations compute all agents states at the end of each day over the eight years.
All property values used in Manore et al. (2014) were also used in the HABM; properties are the variables
in Section 3.2. Figure 2 shows good agreement in results for the two types of models.

3.4 Synthetic Population of Central Miami, FL

A synthetic population and social network of Miami, Florida in the United States were constructed. The
population generation process creates a population of representative human agents and assigns attributes to
them (e.g., age, gender, household structure, home location) (Barrett et al. 2009, Bisset et al. 2016). Each
person is assigned a daily activity pattern, consisting of two or more activities. Locations of the person’s
activities are assigned based on her home location and based on land use surveys for building types. We
restrict the population model to the urban downtown region of Miami that includes the Atlantic Coast and
Miami Beach, and we call this Central Miami. There are 1,246,818 people that live or have activities in
Central Miami. Each person can have activities within the six categories of home, work, school (for youth),
college (for older students), shopping, and other. This population has 1,817,966 daily home activities and
2,306,586 daily activities outside of the home—this is a normative day. A person visits locations that
correspond to their daily activities.

Central Miami area is divided into a 100× 100 grid (for a total of 104 gridcells). Each gridcell is
labeled with its latitude-longitude coordinate and is assigned a number of mosquitoes. Locations (for
human activities) are situated within gridcells. Thus, when a person visits a location, she is also visiting a
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(a) (b)

Figure 2: Comparison of HABM results (solid curves) and compartmental model results (dashed curves)
for (a) a dengue DENV (Aedes aegypti) outbreak, and (b) a chungunya (CHIK-R) (Aedes albopictus)
outbreak, each on a 100,000-person and 200,000-mosquito population. Each human is an individual agent
in the HABM and, for this comparison, each simulation uses only one compartment for the mosquito
populations. Computations are of human and mosquito disease states on a daily basis for eight years. Each
plot shows the cumulative fraction of humans that have been infected, in time. The peak values in the
curves, time-to-peak, and shape of the curves are in good agreement with those from the compartmental
model of Manore et al. (2014); the peak values from the compartmental models are shown as horizontal
dashed lines.

gridcell. Figure 3a is a heatmap of human-day density within the gridcells of Central Miami, and gives an
indication of the amount of human traffic in each cell: the greater the intensity, the more human-days are
spent in the region. Figure 3b shows that the population within the gridcells is approximately lognormally
distributed.

4 SIMULATIONS AND RESULTS

4.1 Simulation Description

A series of simulations of Zika transmission in Central Miami, Florida have been performed to evaluate
our HABM. Inputs to a simulation consist of the 1.25M individual human agents; the 100×100 gridcells
containing mosquito populations and the locations that humans visit during their normative days; and the
property values of the parameters in the model of Section 3.2. We used in our HABM all of the property
values used in (Manore et al. 2014), in their Table 3, for DENV (Aedes aegypti), except that in (Manore
et al. 2014), βgh = βhg = 0.33 (labelled βvh and βhv, respectively, in that work). Here, we calibrate βgh = βhg
as described below, but we keep these two parameter values the same, following (Manore et al. 2014).
We assume that there are initially two mosquitoes for every human that visits or resides in a building
within that gridcell, also following Manore et al. (2014). If an infectious human is bitten by a susceptible
mosquito and the mosquito contracts Zika, then it can transfer the virus to other humans that visit the
same or other locations within that gridcell if it bites them. There is no human-to-human transmission;
only human-to-mosquito and mosquito-to-human. The latter transmission types are the dominant ones;
human-to-human transmission is comparatively small (Chouin-Carneiro et al. 2016). Each visit to a location
within a gridcell has begin and end times, and these visit durations are accounted for in the HABM of
Section 3.2, so that visits of humans to locations in gridcells are specified in granularity of seconds.

A simulation instance or run begins at time t = 0 with a number ns of initially infected humans,
selected uniformly at random from the Wynwood area of Central Miami, where the actual outbreak started.
We focus on ns = 1 and 10. There are no infected mosquitoes initially; all are susceptible. From the initial
human infection(s), either mosquitoes in some gridcells are infected when they bite the initially infected

1091



Kuhlman, Ren, Lewis, and Schlitt

La
tid

ud
e

Longitude

(a)

log(p)

ρ
(l
og
(p
))

(b)

Figure 3: (a) The spatial distribution of total human time spent in the gridcells of the urban downtown area
of Miami, FL near the coast, which we call Central Miami. The data are the number of human-days spent
in each gridcell, on a normative day. For example, if two people each spend 6 hours in one gridcell on a
normative day, this is 12 hours or 0.5 human-days. (b) The histogram of the logarithm of the human-days
p at each gridcell of Central Miami.

people, or no mosquitoes are infected. In the latter case, the virus transmission terminates. Each human
makes daily visits to its assigned locations (and gridcells) at the prescribed times, and states are updated
according to Section 3.2. At the end of each day, the state of each human agent (S, E, I, or R) is recorded, as
are the numbers of mosquitoes in states S, E, and I in each gridcell. In all cases, we simulate for tmax = 60
days of the Zika outbreak in Central Miami in the Fall of 2016. A simulation is a set of 50 simulation
instances, whose runs differ in the randomly selected seed nodes.
Simulation studies overview. The sections on results below are organized as follows. First, results from a
calibration exercise are provided, where we use all Zika model properties from Manore et al. (2014) except
that we calibrate βgh and βhg to reproduce the number of observed Zika infections in Central Miami in Fall
2016. Second, the results of spatial spreading of Zika are presented. Third, we compare spatial spreading
of Zika for more aggressive human-mosquito transmission. We also illustrate how these results provide
additional insights over compartmental models. Finally, we provide results for illustrative interventions.

4.2 Calibration and Time Histories for Central Miami Outbreak in Fall 2016

We performed a calibration exercise where we systematically varied βgh = βhg from 0.20 to 0.36 to reproduce
the number of infected in an actual outbreak: 120 infected humans in Central Miami over a 2-month period
in Fall 2016. These infections emanated from one initially infected individual in the Wynwood area of
Central Miami. We found that βgh = βhg = 0.274 produced 120 infected people, on average, over 50 runs.

Figure 4 contains results for the baseline Central Miami simulation of this outbreak. Figure 4a contains
the so-called epi-curves for 50 instances in black, with the average curve in magenta. Figure 4b contains
the cumulative fraction of infected humans over this same time, with individual instances in black and the
average curve again in magenta (note that the y-axis here is an order of magnitude greater than that in
Figure 4a).

4.3 Spatial Evolution of Outbreaks in Central Miami in Fall 2016

Figure 5 contains spatial outbreak data for a representative simulation instance of Figure 4. There is ns = 1
seed node or index case chosen from the Central Miami population (shown in yellow). Data are shown at
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Figure 4: Simulation data over the first two months of the Fall 2016, Central Miami Zika outbreak for
a single index case (chosen uniformly at random) in each of 50 simulation instances. Seed nodes are
selected from individuals in the Wynwood residential area of Central Miami, consistent with the actual
outbreak. (a) Number of newly infected humans on each day. (b) Cumulative number of infected humans
as a function of time. In both (a) and (b), the black curves are individual diffusion runs and the magenta
curves are the time point-wise averages. After 60 days, the model predicts an average of 120 human cases
of Zika, compared to the observed number of 120 cases.

t = 20, 40, and 60 days, respectively, for the three plots. The red dots indicate home locations of individuals
that are, or have been, infected, and blue dots indicate their activity locations. Importantly, the right-most
plot, corresponding to the spatial outbreak at t = 60 days, does not show a homogeneous distribution of
infections. It shows significant numbers of infections for people living in Miami Beach (the peninsula on
the far right). Fewer infections are predicted in the south-western region of the plots. These data (and
data below) illustrate one difference between compartmental models and our HABM model: ODE models
cannot provide this type of spatial detail in computed results.
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(c) t = 60 days.

Figure 5: Spatial distributions of home locations (red dots) and activity locations (blue dots) of all people
infected with Zika by times t = 20, 40, and 60 days. This run produces 110 infections at 60 days, from
one randomly chosen index case (in yellow) from the Wynwood area of Central Miami. The geographic
region shown in these plots is Central Miami. Here, βgh = βhg = 0.274 and ns = 1.
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(b) t = 40 days.
80.325 80.300 80.275 80.250 80.225 80.200 80.175 80.150 80.125

25.700

25.725

25.750

25.775

25.800

25.825

25.850

(c) t = 60 days.

Figure 6: Data for one randomly selected index case (yellow), chosen from the Wynwood area of Central
Miami population, for more aggressive human-mosquito transmission. Red dots in the plots are home
locations of people that get infected with Zika. Blue dots indicate locations that infected individuals visit.
The geographic region shown in these plots is Central Miami. Here, βgh = βhg = 0.36, which is greater
than the calibration value of 0.274, but still well within the range of values in Manore et al. (2014), and
ns = 1. The average outbreak size over all 50 runs is 709 people, which is greater than the 120 cases
observed in Central Miami in Fall 2016. In this particular run, 746 people are infected in the first 60 days.

4.4 Spatial Spread of More Aggressive Zika With Larger β = βgh = βhg

Figure 6 provides an additional illustration of the types of benefits that an HABM affords over a compartmental
model. These data are generated just as in the preceding figure, except that now β = βgh = βhg = 0.36> 0.274.
Each of the three plots shows the home locations of infected people (in red) and the other activity locations
of these infected people (in blue), at t = 20, 40, and 60 days. At day-20, the home locations (red) and
activity locations (blue) of infected individuals are scattered across the urban area of Central Miami. Then,
at day-40, although the residential locations of infected individuals are still scattered across Central Miami,
the activity locations cluster around the downtown area (25.775N, 80.187W) and Carol Way neighborhood
(25.750N, 80.260W) as well as a couple of other regions. This clustering of activity locations implies that
it is highly likely that individuals are infected by visiting these two locations. At day-60, more people get
infected and the clustering phenomena of activity locations becomes even more apparent. Thus, HABM
results aid in understanding how and where people get infected. Note that these location-based observations
are not as apparent in Figure 5. This suggests, at least in some cases, that by increasing selected parameters
to make an outbreak more pronounced, patterns of behavior may be more readily identified.

4.5 Illustrative Interventions

Figure 7 provides data for illustrative intervention scenarios. Transmission rates (in different colors) vary
from 0.20 to 0.36, with solid curves corresponding to one index case and dashed curves corresponding to
10 initial cases. The results, while illustrative, nonetheless indicate the usefulness of models such as this
one to assess intervention strategies to promote the public good.

5 SUMMARY

We introduce a novel hybrid agent-based model (HABM) to simulate vector-borne infectious diseases, such
as Zika, by modeling each individual human as an agent and spatial regions of mosquitoes as compartments or
gridcells. The HABM and compartmental model produce similar results in terms of macroscopic variables,
such as the number infected individuals (epidemic curves). Due to the high resolution of our HABM, we
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Figure 7: Interventions. The solid curves are baseline results with one index case. The corresponding dashed
curve of the same color are for 10 index cases. All index cases are selected randomly from Wynwood.
Colors correspond to different β = βgh = βhg.

discovered the clustering of activity locations of infected individuals, which we believe is the main cause
of the spreading of the vector-borne infectious disease, for the conditions of the Miami outbreak.

There are several limitations of our work. The HABM does not account for seasonal variations in
temperature, since we are primarily modeling the Zika outbreak over a 2-month window in the Fall 2016 in
Miami. We also do not account for differences in other environmental factors (e.g., humidity and differential
mosquito breeding grounds among the gridcells of Miami), which are discussed in Manore et al. (2015).
However, such data can be included in the model, in the form of higher reproductive rates and mosquito
population sizes in different regions of Miami. Mosquito mobility between gridcells is lacking, as is the
use of measured numbers of mosquitoes. These are part of future work.
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