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ABSTRACT

Driven by the needs to monitor, detect, and prevent catastrophic failures for complex information systems in
real-time, we develop in this paper a discrete-time queuing network simulator. The dynamic model for the
simulator abstracts network dynamics by taking an aggregated and layered structure. Comparative studies
verify capabilities of the simulator in terms of accuracy and computational efficiency. We illustrate the model
structure, flow processing mechanisms, and simulator implementation. We also illustrate the use of this
simulator to detect distributed denial-of-service (DDoS) flooding attacks, based on a cross-correlation-based
measure. Finally, we show that the layered structure provides new insights on the spatiotemporal spread
patterns of cascading failure, by revealing spreads both horizontally within a sub-network and vertically
across sub-networks.

1 INTRODUCTION

Malicious attacks or router failures may lead to catastrophic performance degradation in complex information
systems (e.g. the Internet, computing grids, and information clouds) (Dabrowski and Hunt 2011, Yuan
and Mills 2005b). The prevention of network failures requires a computationally effective simulator that
can monitor (or measure) system dynamics, detect abnormal events, and predict catastrophic performance
degradation, all in real time. This can be a challenging task for large-scale networks, considering uncertain
varying traffic demands, complicated data flow interactions, and unexpected resource reductions. The
purpose of this paper is to develop a network simulator that is realistic enough to capture complicated flow
dynamics and interactions, and is also simple and abstract enough to facilitate fast detection of network
abnormalities, as a step toward the prediction and prevention of network failures.

In existing network studies for complex information systems, packet-oriented discrete-event simulators
(DES) have typically been used (Yuan and Mills 2006, Garetto et al. 2001). These simulators can truthfully
capture network behaviors, as they simulate the processing of each data packet triggered by events such as
the arrivals of packets, time-outs and receipts of acknowledgment signals, using if-then-types of operations
on state automata. These simulators are typically not used for real-time prediction and prevention studies
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for two reasons: i) the computational load for simulating packet-level traffic can be large for networks of
high packet volume, ii) detailed knowledge of packet-level traffic for future planning is not necessarily
known.

Continuous-time and fluid-based DES (Nicol and Yan 2004, Gu et al. 2004) have been investigated
to address the computational issue of packet-oriented DES. They track the rate changes of packet flows
instead of the processing of individual packets. These discrete-event models suffer from the ”ripple effects”
with growth of network size and complexity (Liu et al. 1999). To address this issue, discrete-time fluid
models have then been exploited (Yan and Gong 1999, Yan 1998, Zheng et al. 2007). Distinct from
DES which are triggered by events, discrete-time fluid models are triggered by clock clicks, and abstract
both packet flows and processing times. These models are more suitable for time-critical decision-making
applications, due to the reduced-order representation and theoretical queuing system analyses which can be
brought to reduce evaluation and simulation time (Misra et al. 1999, Misra et al. 2000). However, existing
discrete-time fluid models typically consider simplified network topologies and flow processing schemes,
and are not developed for real-time detection and autonomous prevention of network abnormalities. Also
related, hybrid models, which equip time-driven dynamics with jump conditions, bring extra flexibility to
capture complicated packet processing protocols (Yi and Shakkottai 2007, Lee et al. 2007).

In this paper, we develop a network simulator based on an aggregated discrete-time fluid-based queuing
network model to facilitate quick detection of network abnormalities, as a step toward on-line failure
prediction and prevention. The network model adopts a layered network structure, each layer of which
constitutes a sub-network of an aggregated source-destination (S-D) pair. Packets are aggregated into flows,
and packet processing procedures (such as rerouting and packet drops) at a flow level are triggered at
aggregated time instances. Uncertain demands, attacks, and router failures can all be naturally captured. This
aggregated abstraction of packets, S-D pairs, and time resolutions, improves the computational efficiency
for real-time monitoring, detection, prediction, and prevention tasks, and makes the network model scale
well with demand volume and network size. Simulators are prototyped using Matlab and then implemented
using SLX (Henriksen 2000). To understand performance of this queuing network model and simulator,
we conduct a series of comparative studies with a packet-oriented DES baseline model. Simulation studies
demonstrate promising performance in terms of accuracy and efficiency, especially for networks of large
size and heavy demand volumes. These comparative studies also reveal the trade-off between accuracy
and efficiency, which help users to choose appropriate aggregation resolutions for their studies.

We also study using the layered discrete-time aggregated queuing network simulator to detect abnor-
malities including both distributed denial-of-service (DDoS) flooding attacks and cascading failures as
examples. DDoS flooding attack is a malicious attack difficult to detect due to the distributed sources where
attacks are initiated. DDoS attacks quickly consume resources and induce overload at the target under attack.
We show in this paper that our simulator can detect DDoS attacks using the cross-correlation-based method
(Yuan and Mills 2005b), despite the aggregation and abstraction adopted in our modeling framework. A
variety of common DDoS attack behaviors are also studied.

Another major concern for complex information systems is cascading failure, which is caused by
complicated nonlinear network interactions (Coffman et al. 2002, Liao et al. 2004). Such failures may
initiate locally, and trigger a series of flow re-distributions that cause many routers to fail. In this paper, we
use our layered and aggregated queuing network simulator to characterize cascading failures. The layered
structure allows the structural analyses of flow re-distribution patterns horizontally within a layer and also
vertically across layers. Two failure scenarios, including a single router failure and excessive demands, are
studied to demonstrate capabilities of the simulator.

In the remainder of this paper, we first describe the layered and aggregated queuing network model and
its simulator implementation in Section 2. We then analyze the accuracy and efficiency of the simulator
in Section 3, through a comparative study with a packet-oriented DES. In Section 4, we investigate the
feasibility of using our simulator and the cross-correlation-based method to detect DDoS attacks. In
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Section 5, we study the capability of our simulator in capturing and analyzing cascading failures. Section
6 concludes the paper.

2 LAYERED AND AGGREGATED DISCRETE-TIME QUEUING NETWORK MODEL

The queuing network model has several features that make it suitable for real-time detection of abnormalities,
as a step toward the prediction and prevention of network failures. First, the aggregated model is a reduced
order representation of the original network dynamics, and thus consumes less computational time for
real-time operations. Second, the queuing network representation captures complicated spatiotemporal
network interactions and transient impacts of attacks and resource reductions. This feature permits the
implementation and evaluation of failure prevention solutions. Third, the layered model tracks the sources
and destinations of flows. It also captures the spatiotemporal spread of network performance degradations
within a S-D sub-network and across sub-networks to permit early detection of network failures. Fourth,
uncertain demand models can be easily integrated into the model to predict and evaluate system performance
under uncertain future demands. In this section, we describe the model from several aspects: network
structure, flow rerouting, and flow processing at routing nodes.

2.1 Network Structure

The network is composed of three types of nodes: i) source nodes (denoted as s ∈ S, where S is the set
of source nodes) with data flows injected from the outside of the network, ii) destination nodes (denoted
as d ∈ D, where D is the set of destination nodes) with flows leaving the network, and iii) routing nodes
(denoted as i ∈R, where R is the set of routing nodes) which forward received data flows to neighboring
nodes according to specified routing rules (shortest path chosen in this study, but can be others). Without
loss of generality, we allow some routing nodes to also serve as source or destination nodes, i.e., S ⊆R
and D⊆R. is defined on a graph Γ. In particular, nodes i and j are considered as neighbors if a one-hop
link between i and j exists. The propagation delay from node i to j is described by ai j. If the one-hop link
from i to j does not exist, ai j is assigned ∞. The matrix A ∈ Rn×n captures network topology defined on
graph Γ, where n is the total number of nodes. ai j is the element at the ith row and jth column. We note
that the matrix A is updated on the occurrence of node failures to reflect the dynamic changes of network
topologies.

We emphasize that information systems are different from many other dynamical systems of interacting
network elements (e.g., power networks and epidemic spread networks) in that each departing flow has a
pre-determined destination. The model must be able to track flow destinations to facilitate failure prevention
strategies such as rerouting. Moreover, the capability of source tracking helps detection and prevention of
abnormalities such as DDoS attacks. To facilitate the tracking of source and destination, we decompose
the network into multiple layers indexed by S-D pairs (see Figure 1 for an example and also a related
development in (Wan et al. 2013) for a different application). We use L to denote the set of all valid S-D
sub-networks. The multiple sub-networks are stacked together to form the complete network.

2.2 Flow Rerouting

Within each S-D sub-network, we assume that a flow chooses the shortest path to the destination. Many
metrics can be used to determine the shortest path, and in our study the shortest path is defined on the
smallest total propagation delays, and is selected based on the matrix A according to the Floyd algorithm
(Floyd 1962). The routing information is saved in the routing table T , with the element Ti j in the ith row
and jth column representing the next hop of node i along the path to the destination node j.

When a node fails, flows are re-distributed, through updating the matrix A and routing table T . For
flows that have already entered a disconnected link (i, j) with either node on the ends fails, they will
continue to enter node j. If node j is functioning, the flow will be transmitted; otherwise the flow will
stay in the queue of node j. In case when packet dropping is considered, all packets in the queue of node
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(a) (b)

Figure 1: Illustration of the layered structure of the queuing network model, using a small-scale network
of 10 nodes and 3 S-D sub-networks. a) The network structure, where red numbers on links represent the
propagation delays ai j between two nodes. b) 3 network layers indexed by S-D pairs, where nodes and
links belonging to each sub-network are marked in red.

j will be dropped. In this study, we disable the packet dropping feature with the purpose to investigate
the capability of our model in capturing cascading failures of routers. Failed nodes will be restored after
certain waiting time Tr (Wang et al. 2008).

2.3 Flow Processing at Routing Nodes

The layered S-D sub-networks interact with each other at routing nodes. In particular, a routing node i
processes aggregated flows from all S-D sub-networks with its limited processing capabilities, denoted as
Ci volume of packets. Under the simple assumption that routing nodes with more connections have higher
processing capacities (Wang et al. 2008), we define Ci to be proportional to its node degree, i.e., Ci = α ·hi,
where hi is the degree of node i, and α is a scalar.

Routing nodes fairly process flows in multiple S-D sub-networks. Packets that exceed the processing
capability of each routing node are accumulated in the queue. The total queue length (i.e., the volume of
packets accumulated) at node i is called the total backlog and denoted as bi. If bi exceeds its buffer size
Li, the routing node fails. Here Li is assumed to be Ci + c, where c is a constant. Other ways of defining
Li can be found in the literature. For instance, Li = c′Ni reflects that the buffer size of a routing node is
proportional to its processing capacity (Wang et al. 2008), where c′ is a constant.

The flow processing and propagation dynamics in a S-D sub-network are mathematically described as
follows. At each time step k and each routing node in a S-D sub-network, the inflow (volume of packets
arriving at the routing node per time interval) usdi[k], backlog bsdi[k], and outflow (volume of packets
leaving the routing node per time interval) fsdi[k] are tracked.

1) The update of inflows usdi[k+1]. The inflow, usdi[k], is the accumulated outflow propagated from
all nodes one-hop prior to node i in the sub-network sd. If i is the source node, the inflow is 0.

usdi[k+1] =

{
0, i f i = s;
∑∀a ji 6=∞ fsd j[k−a ji], else. (1)

2) The update of outflows fsdi[k+1] and backlogs bsdi[k+1]. The update of outflows and backlogs at the
routing nodes follows the first-in-first-out rule and the fairness principle for multiple arriving flows. Denote
the total inflow to node i as ui[k] =∑∀(s,d)∈L usdi[k], and the total backlog at node i as bi[k] =∑∀(s,d)∈L bsdi[k].
The following cases are considered when node i does not fail. If bi[k]≤Ci−ui[k+1], all current backlogs
and new arriving flows can be processed. If Ci−ui[k+1]< bi[k]≤Ci, all current backlogs can be processed,
and new arriving flows in each sub-network at time k+ 1 are processed proportional to the fraction of
arriving flows in each sub-network. If bi[k]>Ci, only a portion of current backlogs in each sub-network
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can be processed proportional to the relative fraction. Remaining backlogs and the new arrival flows will
form the new backlogs at time k+1.

fsdi[k+1] =


bsdi[k]+usdi[k+1], i f bi[k]≤Ci−ui[k+1];
bsdi[k], i f Ci−ui[k+1]< bi[k]≤Ci and ui[k+1] = 0;
usdi[k+1]
ui[k+1] (Ci−bi[k])+bsdi[k], i f Ci−ui[k+1]< bi[k]≤Ci and ui[k+1] 6= 0;

bsdi[k]
bi[k]

Ci, else;

bsdi[k+1] = bsdi[k]+usdi[k+1]− fsdi[k+1]. (2)

In cases when node i fails, no flows are allowed to pass, i.e., fsdi[k+ 1] = 0. If packet dropping is
considered, we also set bsdi[k+1] = 0.

At each source, the backlog is 0, and the outflow is the total flow injected from this source to the
destination, denoted as usd [k]. At each destination, arriving packets are accumulated in the destination
queue of infinite buffer size. Specifically,

fsdi[k+1] =

{
usd [k+1], i f i = s;
0, i f i = d;

bsdi[k+1] =

{
0, i f i = s;
bsdi[k]+usdi[k+1], i f i = d. (3)

2.4 Simulator Implementation

We prototyped the layered and aggregated discrete-time queuing network model using Matlab first and
then built the simulator using SLX for computational efficiency (Henriksen 2000). Both simulators require
two input files, network topology matrix A and the demand file which stores data demands injected
to each S-D sub-network at each time step k, i.e., usd [k]. The simulation terminates either when a
predefined timeout occurs or when no path exists between any S-D pair. The output file, storing the state
Ssdi[k] = [usdi[k] fsdi[k] bsdi[k]]

T of each node i in each sub-network sd at each time step k, is generated
for visualization and analysis, where T denotes the transposition.

2.4.1 Matlab-based Simulator

In the Matlab-based simulator, the processing of flows is achieved through storing and updating the state
table S = {Ssdi[k]} according to Equations 1-3. Active flow routes are maintained by a link status table
Gsd , which stores the active link information for each sub-network sd. In particular, each element in Gsd
is a three-tuple (i, j, f ), where i is the current node, j is the next hop, and f indicates the status of the link
and nodes at the ends. Specifically, f = 0 means that the link (i, j) belongs to the shortest path from s to
d; f = 1 indicates that both nodes at the ends of the link (i, j) are functioning, however the link does not
belong to the shortest path from s to d; and f = 2 denotes that either i ∈ F or j ∈ F , where F is the set
of failed nodes. When a routing node i fails, set F , matrix A and the link status table Gsd are updated to
capture the rerouting of flows. When updating Gsd , the f entries for existing links are updated, and new
links along alternative rerouted paths are also added to Gsd with f = 1.

2.4.2 SLX-based Simulator

The SLX-based simulator improves computational efficiency by leveraging several features of SLX, such
as objective-oriented design, capability for expressing parallelism, and the ability to suspend and resume
system states (Henriksen 2000). We define four classes of objects, including source, destination, routing
node and data flow, each of which has associated attributes and/or operations. For instance, each flow is
tagged with attributes including source, destination, creation time, flow size, current node it resides and
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the next hop determined by the routing table T . The processing of flows at routing nodes is achieved by
maintaining three local queues (i.e., inflow, outflow and backlog) at time instance-triggered events. Each
flow exported by a node will arrive at its next hop after a propagation delay determined by matrix A. The
SLX-based simulator outperforms the Matlab-based simulator in computational efficiency. In particular,
the object-oriented design avoids the use of cumbersome tables S and Gsd to track flows with expensive
computation. The intra-object parallelism feature of SLX simplifies the description of parallel operations
of complex objects. A comparison study between the two simulators is provided in Section 3.2.

3 COMPARATIVE SIMULATION STUDIES

In this section, we investigate performance of the SLX-based queuing network simulator through comparative
simulation studies. We first evaluate the trade-off between error rate and computational time with different
aggregation levels along the time scale. We then evaluate the computational efficiency of the SLX-based
queuing network simulator with the increase of demand volume and network size.

3.1 Impact Analysis of Aggregation on Error Rate and Computational Efficiency

As packet-oriented DES is considered as truthful for complex information systems, we here build such
a model using SLX as the benchmark to evaluate the error rate of our SLX-based discrete-time queuing
network simulator.

The major difference between our queuing network simulator and packet-oriented DES is the aggregation
of packets and processing times. In particular, packets generated within each time interval are aggregated
into flows at source nodes, which are then processed at routing nodes at each time step. We here use the
10-node network shown in Figure 1(a) to study the impact of an aggregation indicator, time interval ∆t, on
the performance in terms of accuracy and computational efficiency. Each node in the network functions
as source, destination, and router. A total of 90 S-D sub-networks are considered. Flows injected into
the network from each source are generated from a Poisson distribution with mean λ , which controls the
demand volume in the network. Node capacity and buffer size parameters are set to large values to capture
normal flows without node failures. Figures 2(a)-2(b) show the accuracy and efficiency of our simulator
under different time intervals and demand volumes. Accuracy is measured using error rate defined as

error rate =

√
∑

n
i=1 ∑

N
k=1(Psi[k]−P′si[k])2 +(Pri[k]−P′ri[k])2 +(Pdi[k]−P′di[k])

2

nN
, (4)

where Psi[k] and P′si[k] represent the volume of packets sent within the k-th time interval by node i
which functions as a source node, using our SLX-based queuing network simulator and packet-oriented
DES, respectively. Similarly, Pri[k] and P′ri[k] are for data sent by routing node i; and Pdi[k] and P′di[k] are
for data received by node i which functions as a destination node. N is the total number of time steps,
500 in this study. Figures 2(a)-2(b) show that the increase of time interval leads to lower accuracy (larger
error rate) but higher efficiency (smaller computational time). The selection of time interval needs to
balance between accuracy and efficiency. ∆t = 1 is selected for the rest of our simulation studies. Another
observation from the two figures is that the increase of Poisson mean λ decreases accuracy, but does not
impact computational efficiency much due to the aggregated processing of all packets in the time interval
as a whole, which indicates the scalability of our model to demand volume.

3.2 Analysis of Computational Efficiency

We investigate the computational efficiency of our model with increase of demand volume and network
size. In the first experiment, we study the impact of demand volume on computational efficiency for the
10-node network (see Figure 1(a)), by varying the Poisson mean λ . Figure 3(a) indicates that our model
(implemented using SLX) is more efficient than the packet-oriented DES, and the SLX-based simulator
is more efficient than the Matlab-based simulator. Another observation is that while the computational
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Figure 2: a) Accuracy and b) efficiency of our model under various time intervals and data demands.

time required by packet-oriented DES increases linearly with increase of λ , the computational time for
our model (implemented using both Matlab and SLX) remains almost constant, as is also shown in Figure
2(b). This further illustrates the nice scalability of our model to demand volume.

In the second experiment, we study the impact of network size on efficiency, by varying the number of
nodes n. In particular, we apply the Erdős Rényi (ER) model (Bollobás 1998) to generate random networks
of different sizes. We also fix the total demand volume injected into each network. Figure 3(b) shows the
comparison results for a particular demand volume. Clearly, the computational time for the packet-oriented
DES increases much faster than our model with growth in network size, indicating better scalability of our
model to network size compared to packet-oriented models.
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Figure 3: Comparison of our model with the packet-oriented DES model in terms of computational efficiency
under various a) demand volumes with fixed network size, and b) network sizes with fixed total demand.

4 CROSS-CORRELATION-BASED METHOD TO DETECT DDoS ATTACKS

DDoS flooding attack is difficult to detect, as attack packets originate from a large number of attack sources,
each of which is disguised to behave normally. The widely applied congestion control strategy, TCP, is
incapable of detecting DDoS attacks (Yuan and Mills 2005b). In this section, we show that the SLX-based
discrete-time queuing network simulator can detect DDoS attacks using the cross-correlation-based method
introduced in (Yuan and Mills 2005b, Yuan and Mills 2005a). Despite the aggregation of packets and
processing times and hence the reduced computational load, the method can still analyze collective effects
of network traffic and detect DDoS attacks.
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4.1 Cross-Correlation-based Method using the Random Matrix Theory

The cross-correlation-based method was developed based on the random matrix theory (Barthélemy et al.
2002), which defines a weight vector to quantify spatial-temporal correlations among different routing
domains. DDoS flooding attacks can be detected as they cause higher spatial-temporal correlations. The
procedures to calculate the weight vector are briefly summarized as follows.

Step 1: Calculate the cross-correlation matrix. For a network of n routing nodes, no (no < n) nodes
are selected to measure flow information. Let xi j denotes the flow volume coming from node i to node
j. The cross-correlation matrix, C ∈ RK×K , K = non, can be calculated by C(i j)(kl) =< x̃i jx̃kl >tw , where
x̃i j =

xi j−x̄i j
σi j

. x̄i j and σi j are the mean and variance of xi j. < ·>tw is a mean operator over a measurement
interval tw.

Step 2: Find the eigenvector corresponding to the largest eigenvalue of the cross-correlation matrix.
This eigenvector, denoted as wmax ∈ RK , can be computed by C w = λww, where λw is the largest eigenvalue.

Step 3: Calculate the weight vector. Decompose eigenvector wmax into n sub-vectors, i.e., wmax =
[wmax

1 ,wmax
2 , ...,wmax

n ]T , where wmax
i ∈ Rno corresponds to the ith routing node. The jth element of sub-vector

wmax
i , denoted as wmax

i j (i ≤ n and j ≤ no), indicates the contribution of the jth measurement node to the

ith routing node. The weight Wi for each routing node i is then computed by Wi =
no

∑
j=1

(wmax
i j )2, which

informs the contribution of flows from all measurement nodes to the ith routing node. The weight vector
W = [W1,W2, ...,Wn]

T is used to draw a spatial-temporal map for detecting DDoS attacks.

4.2 Early Detection of DDoS Attacks

We use the 10-node network of 90 S-D pairs shown in Figure 1(a) as an illustrative example to conduct
this cross-correlation analysis. Larger-scale networks have also been investigated, which lead to similar
results and thus are eliminated here due to the page limit. The flows injected into the network from each
node follow a uniform distribution U(120,160). α = 2000 and c = 60 so that no nodes fail. Four nodes
(3, 5, 8, 9) are randomly picked as the measurement nodes. N = 1000, ∆t = 1 and τw = 400. The time
series of W are obtained by moving the time window τw ahead every 20 time units. We now consider four
typical DDoS bandwidth attack modes: constant-rate, increasing-rate, pulsing, and subgroup (see (Yuan
and Mills 2005b) and Figure 4 for an illustration). Node 6 is selected as the target under attack. In each
sub-network with destination node 6, an extra small amount of attack packets are generated, denoted as p
volume of packets per time interval. Let us next describe each attack mode and show the corresponding
detection results.

(a) (b) (c) (d)

Figure 4: DDoS flooding attack modes: a) constant-rate, b) increasing-rate, c) pulsing, and d) subgroup.

1) Constant-Rate Attack Each attack source generates a constant volume of attack packets over time.
Figure 5(a) shows the spatial-temporal map of the attack starting at t0 = 500 with p = 10. Similar to the
results obtained in (Yuan and Mills 2005b), the target under attack (node 6) and start time of attack can be
detected. Of interest, DDoS attacks cannot be detected by directly measuring the demand volume injected
into the network as indicated in Figure 5(c). Figure 5(b) shows a weaker spatial-temporal map with p
reduced to 5, indicating limited capability of the cross-correlation-based method in detecting weak attacks.
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Figure 5: Spatial-temporal maps of constant-rate attack with a) p = 10 and b) p = 5. c) Data volume
injected into each S-D sub-network at time t = 800 with attacked S-D sub-networks highlighted in red.

2) Increasing-Rate Attack The increasing-rate attack consumes network resources gradually to delay
the time to be detected. In this study, we initiate increasing-rate attacks at t0 = 500 with p = 1, and gradually
increase p until it reaches 10 at t1 = 80. The attack rate p then keeps constant. The spatial-temporal map
shown in Figure 6(a) detects the victim at around t = 700.

3) Pulsing Attack Periodic attacks are launched to avoid detection, which however can still be detected
by the spatial-temporal map shown in Figure 6(b), where t0 = 500, l = 60, Tp = 300 and p = 10. The
TCP-targeted attack is a special case of the pulsing attack with shorter period and higher attack rate, so
as to suppress TCP flows by locking them in the time-out states. Such DDoS attack can also be detected
using the cross-correlation analysis as shown in Figure 6(c), where l = 1, Tp = 2, and p = 80.

1000

900

800

Time 

700
0

1 6002

0.5

3

w
e
ig

h
t 
v
e
c
to

r

4
5 5006

7

1

8
9 40010

(a)

1000

900

800
0

Time 

700
1
2 6003

0.5

4

w
e
ig

h
t 
v
e
c
to

r

5
6 5007

8
9

1

40010

(b)

1000

900

800

Time 

0
700

1
2 6003

0.5

4

w
e
ig

h
t 
v
e
c
to

r

5
5006

7
8

1

9 40010

(c)

Figure 6: Spatial-temporal maps of a) increasing-rate attack with p increasing from 1 to 10 from t0 = 500
to t1 = 800, b) pulsing attack with l = 60, Tp = 300, and p = 10, and c) TCP-targeted attack with l = 1,
Tp = 2, and p = 80.

4) Subgroup Attack The subgroup attack initiates attacks at different groups of attack sources during
different time periods, so that other groups can resume the attack if one of the groups is detected. Similar
to the setup in (Yuan and Mills 2005b), we divide attack sources into 3 groups. The first group launches
attacks at t0 = 500. The second group continues attacks from t1 = 680 to t2 = 860, from which moment
the third group starts to make attacks. The attack rate p is set to 15 for all three groups. Note that the
total volume of attacks generated in this case is only half of that for the constant-rate attack. This explains
the weak visibility of the attack in the spatial-temporal map (Figure 7(a)) at the beginning of the attack.
Similar patterns can also be captured by measuring at fewer nodes (see Figure 7(b)).
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Figure 7: Spatial-temporal maps of subgroup attack measured at a) all 10 nodes, and b) nodes 4, 5, 6, 7.

5 UNDERSTANDING AND VISUALIZING CASCADING FAILURES

The layered network model provides additional information to capture cascading failures. We continue to
use the 10-node network as the example. For better illustration, we consider three S-D sub-networks as
illustrated in Figure 1(b). Flows injected into each sub-network are generated from a Poisson distribution
with mean of 50, which is typically not sufficient to trigger node failures. α = 20, c = 60, and the waiting
time for a failed node to recover is set to Tr = ∞. We consider the following two scenarios.

1) Scenario 1: single node failure. We manually fail node 2 at t = 200. As shown in Figure 8(a), another
two nodes fail at time t = 211 and t = 308, respectively. To find out the cause of these additional two node
failures, we measure the inflows to each node in all three S-D sub-networks. For better demonstration,
we aggregate inflows at a time interval of 10 time units, normalize them to the range of (0,1) with 1
corresponding to the largest inflow over all sub-networks, and visualize the results with darker colors
indicating higher inflows (see Figures 8(b)-8(d)). Figure 8(b) shows that the failure of node 2 causes flows
in sub-network 1-3 to be rerouted to node 5. These rerouted flows compete for resources with flows in
the sub-network 5-6 (see Figure 8(c)), leading to failure of node 5 at time t = 211, as indicated in Figures
8(b) and 8(d). Upon the failure of node 5, flows in sub-network 1-3 are then rerouted to an alternative
path consisting of nodes 6, 8, and 9, as indicated in Figure 8(b). These flows increase the burden of node
8, which also processes flows in the 9-7 sub-network, and finally causes this node to fail at time t = 308.
The failure of node 8 then triggers another round of flow re-distributions, as shown in Figures 8(b)-8(c).
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Figure 8: a) Number of functioning nodes versus time after one router is failed manually. Visualization of
inflows to each node in the sub-networks b) 1-3, c) 9-7, and d) 5-6.

2) Scenario 2: excessive demand. We increase the mean of the Poisson flow injected to the sub-network
1-3 to 110 from t = 200. Figure 9(a) shows that the first node failure occurs at t = 216. Within an additional
41 time units, another 4 nodes fail, which causes the breakdown of the whole network. Figure 9(b) shows
that the increase of demands in the 1-3 sub-network starts from t = 200, which first causes node 2 to fail.
The failure of node 2 then leads to a series of flow re-distributions and the spread of node failures to
sub-networks 9-7 and 5-6.

1082



Xie, He, Wan, Mills, and Dabrowski

0 100 200 300 400 500

Time

5

6

7

8

9

10

N
u
m

b
e
r 

o
f 
n
o
d
e
s
 a

v
a
il
a
b
le

(a)

0 100 200 300 400 500

Time

1

2

3

4

5

6

7

8

9

10

N
o
d
e
 I
D

(b)

0 100 200 300 400 500

Time

1

2

3

4

5

6

7

8

9

10

N
o
d
e
 I
D

(c)

0 100 200 300 400 500

Time

1

2

3

4

5

6

7

8

9

10

N
o
d
e
 I
D

(d)

Figure 9: a) Number of functioning nodes versus time after an introduction of excessive demand. Visualization
of inflows to each node in the sub-networks b) 1-3, c) 9-7, and d) 5-6.

6 CONCLUSIONS

We develop in this paper a layered and aggregated discrete-time queuing network simulator to detect
abnormalities, as a step toward real-time failure prediction and prevention. Comprehensive comparative
studies are conducted to demonstrate the realism and efficiency of the simulator. This simulator allows an
effective detection of DDoS attacks of various types, using a cross-correlation-based method. The spread
of cascading failures within and across sub-networks can also be easily captured and visualized using the
layered network representation. In the future, we will model TCP protocols and investigate behaviors of
TCP traffics with packet dropouts under attacks and node failures.
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