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ABSTRACT

This paper summarizes the profile data captured from 22 discrete-event simulation models captured from
4 different simulators. The profile data is captured by instrumenting the simulation engine and does not
require any modification to the models. The profile data reported focuses on the communication properties
of events exchanged between the various processes (LPs) in the model. The data suggests that some models
share common behaviors and this work summaries their general characteristics. This permits a presentation
of the principle characteristics using only six of the studied models. This resulting information can be used
to: (i) provide configuration data for synthetic model generation, (ii) provide direction for configuring and
optimizing parallel and distributed simulation engines, and (iii) provide insights into model correctness.
The focus of this specific study is to determine regularities among LP event communications that can be
exploited for model partitioning and event scheduling in parallel simulation.

1 INTRODUCTION

The quantitative analysis of program structures and execution profiles has been successfully exploited by
the computer architecture community to develop and deploy highly effective optimizations to processor
implementations for several decades (Hennessy and Patterson 2012). Most likely, the application of
quantitative profiles of simulation models can likewise be exploited to enhance and optimize tools and
techniques for the simulation community. In particular, within the field of simulation, quantitative measures
from existing simulation models could potentially be applied in multiple ways. For example, quantitative
data can be used to (i) optimize simulation kernel algorithms (Gupta and Wilsey 2017), (ii) provide model
profiles to help configure synthetic workload generators (Balakrishnan et al. 2001, Ferscha and Johnson
1996, Fujimoto 1990, Park et al. 2015), and (iii) (potentially) aid in the verification and validation of
simulation models; by providing, for example, observable profiles of event processing and communication
behaviors that can help verify the model structure against expectations for the constructed model.

This paper explores that quantitative profiling and analysis of event communication behaviors in Discrete
Event Simulation (DES) models. Early work has already emerged to develop quantitative profiling tools
(Wilsey 2016) for DES models. Furthermore, some preliminary work to optimize the event scheduling
algorithms for parallel simulation has also been performed (Gupta and Wilsey 2017). While the earlier
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works were focused on event execution behaviors, this paper will examine the characteristics of event
exchanges between the processing objects (LPs) of six representative DES models. These six models
were selected from a total of 22 different simulation models that were analyzed as a part of this study.
Fortunately, the profile characteristics of all 22 models reflect common structures that make presentation
of results from six of the models meaningfully demonstrative of the general characteristics observed. The
model data was captured from four different simulation kernels, namely: ROSS (Carothers et al. 2000),
NS-3 (Henderson et al. 2008, Riley and Henderson 2010), Simian (Santhi et al. 2015), and WARPED2
(Weber 2016). These simulators have all been instrumented to capture profile data from any simulation
model executed by these kernels. The specific models used are models taken from the repositories of those
simulation environments and they were not developed specifically for this study.

The remainder of this paper is organized as follows. Section 2 contains some background information
and discusses related work. Section 3 provides a high level overview of profiling DES models in the
DESMetrics project. Section 4 presents the simulation kernels and simulation models studied and reported
herein. Section 5 presents the quantitative data captured from these simulation models. Finally, Section 6
contains some concluding remarks.

2 BACKGROUND AND RELATED WORK

Studying the properties of DES models can aid researchers and model developers in a variety of ways.
For example, developers of high-performance parallel simulation engines can use profile data to improve
simulation kernel performance. Likewise, tool builders and modelers alike can use profile data to construct
and configure synthetic model generators (Balakrishnan et al. 2001, Ferscha and Johnson 1996, Fujimoto
1990, Park et al. 2015). Such generators are often useful to derive larger models of problems for study
that would otherwise be unavailable or, at least, very difficult to build. While such model generators
have been widely used for many years, the capture of profile data from smaller hand built models can
provide valuable information that can be used to configure more accurate model generation. Profile data
can also be used to help setup and configure simulation and analysis tools for more effective execution. For
example, profile data on events exchanged between LPs from a pre-simulation run can be used to guide
profile guided partitioning tools (Alt and Wilsey 2014). While profile guided partitioning is already widely
used, more extensive profiling results can also be used more extensively to tune model analysis tools. A
demonstration of this can be seen in (Gupta and Wilsey 2017). Finally, the use of profile data can be used
to aid in the validation and verification of simulation models. In fact, during this study of simulation model
characteristics, the authors discovered a model that did not correctly implement the desired features. As a
result, the model was flagged and removed from this study.

Early work analyzing properties of DES models was directed toward the analysis of the amount of
parallelism available or the lookahead properties of the simulation. More specifically a technique called
critical path analysis (Berry and Jefferson 1985, Jefferson and Reiher 1991, Livny 1985, Lin 1992) is a
computation to locate the shortest path through the collection of events in a DES. Lookahead analysis is a
method to relax the causal time chain between a source and destination LP in a conservatively synchronized
parallel simulation (Fujimoto 1989). A generalized approach to capture, analysis, and visualize profile data
from DES models was developed in a project called DESMetrics (Wilsey 2016). The the application of
information gleaned from the DESMetrics project to optimize a parallel simulation kernel is reported in
(Gupta and Wilsey 2017). This paper continues and extends the visualization tools within the DESMetrics
project to expand the study of event communication properties of DES models. The next section presents
a brief overview of the DESMetrics project. Readers interested in a more detailed presentation of the
techniques and tools of the DESMetrics project will find them here (Wilsey 2016).
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Figure 1: The DESMetrics tool flow.

3 PROFILING DES MODELS

The DESMetrics project contains analysis tools and visualization tools that process event trace data from
DES models (Wilsey 2016). The trace (profile) data is captured separately by external methods. Although
it is possible to add output commands to the simulation models to capture this data, the recommended
method is to add instrumentation to the simulation engines that execute the simulation models. This is the
approach used to capture profile data for all of the simulation models that are studied in this paper.

The general tool flow for the DESMetrics project tools is illustrated in Figure 1. A json file format is
used for the event profile data. Once profile data is captured, this data is processed by a go program named
desAnalysis. The desAnalysis program analyzes the profile data for a variety of different attributes
and produces a collection of csv files that are processed by a Python script using the matplotlib
library to produce various visual representations of the analysis findings. Some of the properties analyzed
and visualized include: the number of events available for parallel execution, the number of source and
destination LPs that each LP sends and receives event information, the number and type (self-generated or
remotely generated) events that each LP processes, the number of events in each LP at each (simulated)
timestep that could be processed as a block, the amount of lookahead (smallest, average, largest) that
each LP has at each simulated execution cycle, and so on. The anlysis of this paper will focus on the
results characterizing events exchanged by the LPs and the couplings among the LPs that results from
these exchanges. Additional details on the DESMetrics tool flow can be found at (Wilsey 2016) and at the
project webpages at github.com/wilseypa/desMetrics. All of the tools in the DESMetrics project are open
sourced and freely available for use.

4 THE STUDIED DES MODELS

This study has examined the profile results of 22 simulation models from 4 different discrete event simulation
engines. The discrete event simulation engines are: NS-3 (Henderson et al. 2008, Riley and Henderson
2010), ROSS (Carothers et al. 2000), WARPED2 (Weber 2016), and Simian (Santhi et al. 2015). NS-3
is a highly-popular, widely used general purpose network simulation engine. It supports either sequential
simulation or conservatively synchronized parallel simulation capabilities. ROSS is a general purpose
simulation engine supporting sequential and parallel execution using either conservative or optimistic
synchronization. It supports process level execution and has been developed and used with extreme scale
parallel processing hardware. WARPED2 is a general purpose simulator that supports either sequential
or optimistically synchronized parallel simulation. It is tuned for parallel execution on clusters of multi-
core processors and contains both threaded and process-based parallelism. Finally, Simian is minimalist,
sequential and conservatively synchronized, parallel discrete simulation engine implemented entirely in
interpreted languages. A Lua Simian version is the standard reference, however, a functionally equivalent
Python version called SimianPie is also available. Used with Just-In-Time compilation mode (LuaJIT or
Pypy), Simian’s performance matches or exceeds C-based engines, while offering the fast prototyping that
interpreted languages allow. All of these simulation engines are open source software and freely available
for use. The ROSS simulator is available at https://github.com/carothersc/ROSS and the ROSS Models
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Name Engine Num of LPs Total Events
CSMA System NS-3 107 110,184

Lena Dual stripe NS-3 259 101,649

Multirate NS-3 101 71,803

Market ROSS 207 77,850,502

NeMo ROSS 65,664 121,372,541

PCS ROSS 1,048,576 159,088,718

9D Torus ROSS 1024 11,442,461

Traffic ROSS 1,048,576 392,808,018

Viral ROSS 18 10,242,359

IMC V4 444 Simian 5 43,029

IMC V4 888 Simian 50 518,379

IMC V4 8816 Simian 84 1,344,039

IMC V4 81616 Simian 152 3,454,656

IMC Bypass 161616 Simian 256 573,347

IMC Crossbar 161616 Simian 257 8,532,306

IMC Edison 161616 Simian 320 5,380,791

IMC Hopper 161616 Simian 422 9,292,890

IMC Moonlight 161616 Simian 288 6,403,616

Epidemic WARPED2 10,000 253,895,687

PCS WARPED2 10,000 135,724,327

Traffic WARPED2 10,000 61,523,815

Volcano WARPED2 125,000 125,605,980

Figure 2: Names and characteristics of simulation models studied.

are available at https://github.com/carothersc/ROSS-Models. ROSS has builtin event capture capabilities
that dump all of the data required for the DESMetrics analysis. The WARPED2 simulation engine is
available at https://github.com/wilseypa/warped2 and the WARPED2 models are available at https://github.
com/wilseypa/warped2-models. The Simian simulator is available at https://pujyam.github.io/simian/ and
the NS-3 simulator and models are available at https://www.nsnam.org/. The ROSS, WARPED2, and NS-3
simulation engines all contain builtin event capture capabilities that dump all of the data required for the
DESMetrics analysis tools. The Simian simulation engine had to be instrumented for this study to capture
the event data needed for the DESMetrics analysis tools. A summary presentation of all of the studied
simulation models is given in Figure 2.

Unfortunately space considerations prevent a detailed reporting of data from all of the simulation models.
However, after examining the data from all of the simulation models, there are some key characteristics
that are common to various subsets of the the simulation models. These shared characteristics permit
the grouping of the models together to be represented by one of a set of a base case simulation models.
Therefore, this paper presents the results from six different models to highlight the principle features
observed by these 22 models. These results are presented in Section 5. The remainder of this section
presents a brief description of the six simulation models that are examined in detail in Section 5.

A brief description of each of the models from which detailed data is presented in this paper are:

warped2 Traffic Model: This model represents a traffic simulation where cars move through and between
four-way intersections with three lanes in each direction. On arriving at an intersection, a car attempts to
go in the direction that would get it closer to its target. The flow of cars going through an intersection is
regulated using thresholds to limit congestion and spread out the traffic.

1028



Crawford, Eidenbenz, Barnes, and Wilsey

ROSS 9D Torus Model: This model represents the simulation of a torus network of 9 dimensions. Traffic
is synthetically generated into the model with a uniform random destination routing.

ROSS PCS Model: This simulation model simulates the circuit-switched network on a cellular grid. Each
cell is a simulation object which has a fixed place on a cellular grid. Portables can move from one cell to
the other; this is simulated via event diffusion from one simulation object to the other on the cellular grid
(Carothers et al. 1994).

warped2 Epidemic Model: This simulation model simulates the epidemic outbreak phenomena following
the model description in (Barrett et al. 2008). The epidemic is modeled using a combination of reaction
and diffusion processes. The reaction is defined as a result of inter-entity interactions, (e.g., influenza or
physical proximity).

IMC Hopper 161616: This is a synthetic model that comes from runs of a computational performance
application of the Performance Prediction Toolkit (PPT) (Ahmed et al. 2016). PPT applications mimic
the loop structure and behavior of computational physics codes on modeled hardware architectures. The
application model (IMCSim) used is an Implicit Monte Carlo (IMC) method for radiative transport simulation
of a hot box physical system, which is a standard scenario for (IMC) codes. In the Hopper (16,16,16)
scenario, IMCSim predicted performance of a 163 = 4096 simulated MPI rank run on a hardware model
of a 6,384 compute nodes, 153,216 cores, 1.28 PF system named Hopper at NERSC. IMCSim generates
events for all simulated MPI packets as well as computational kernel phases and interrupts.

NS-3 Lena Dual Stripe Model: This is a model of LTE wireless network traffic among apartments in two
10-unit apartment building on each side of a street. The appartments, 10m X 10m each, contain a total
9 femto-cells, and there is one outdoor macro-cell. The model configuration studied here is the default
configuration that is contained in the stanadard NS-3 code base.

Except for IMC Hopper, the remaining models are all analyzed using their default confgurations that are
set by the corresponding simulator development teams. These models cover a broad range of model sizes
and number of total events processed. The size an total events processed for each are given in Figure 2.

5 COMMUNICATION PROPERTIES OF THE STUDIED MODELS

The communication properties being observed for the studied models are LP connectivity, Betweeness
Centrality, and Modularity. The idea behind this is to recognize patterns in LP by LP communication for
models from different simulators. These properties and the results are described in more detail below.

5.1 LP Connectivity

LP connectivity is determined by the number of LPs any given LP is sending events to (known as out-degree),
and the number of LPs any given LP is receiving events from (known as in-degree). Thus, if an LP sends
events to 3 different other LPs, its out-degree is 3 and if it receives events from 5 different LPs, its in-degree
is 5. Events that an LP sends to itself are not counted in the in-/out-degree computation. From this, it
can be determined whether a simulation model has LPs that are processing many events from numerous
LPs, or if the number of LPs that are communicating with one another are relatively distributed. Beyond
showing the degree of connectivity between the LPs, this graph is also valuable in documenting to the
model developer something about the structure of communications between the LPs. We have already
successfully used data from these graphs to highlight a problem with one of the simulation models that
have previously been developed and used erroneously. The reminder of this section describes the principle
structures observed in these graphs and highlights the behaviors that are shared with some of the other 22
studied models.

Figure 3 shows this connectivity. The x-axis records the in-/out-degree value and the y-axis shows
the number of LPs with that degree of connectivity. The in-degree is shown in red and the out-degree is
shown in blue. While some of the graphs have equal in-/out-degree, this does not mean that each LP has
the same in-/out-degree value. In fact, examining (especially) the NS-3 model, we can see a large degree
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(b) ROSS 9D Torus Model
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(c) ROSS PCS Model
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(d) warped2 Epidemic Model
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(e) Simian 161616, Hopper Network
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(f) ns-3 Lena Dual Stripe

Figure 3: In/Out degree and average communicated events by LP.
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of asymmetry in the values. Finally, these graphs show the average number of events sent by the LPs at
the corresponding out-degree count.

The data shows three broad classes of in-/out-degree connectivity. The top two WARPED2 Traffic and
ROSS 9D Torus show LPs that fall into one or two broad classes of connectivity. This type of connectivity
is shared with the following models: ROSS Viral, WARPED2 traffic model, IMC V4 444, IMC V4 888,
IMC V4 8161, IMC Moonlight, and IMC Crossbar models. This makes sense as all of these models have
regular low-degree underlying network structures. The average events processed are also instructive as
it tells us that the generated events tend to be dominated by one of the specific (generally the highest)
out-degree connected LPs. The single exception to this is the (not shown) ROSS Viral model where the
LPs with the lowest out-degree connectivity dominate.

The second broad class of LP connectivity is demonstrated by the ROSS PCS and WARPED2 Epidemic
Model and the IMC Hopper 161616 Model. These models show a range of small and nearby connectivity
values ranging from 0 to 10. Again the average out-events occur with the larger out-degree values. Other
models that exhibit similar connectivity graphs are: IMC Bypass 161616, and IMC Edison 161616.

The third broad class of LP connectivity is illustrated by the NS-3 models. These models show much
less regularity and a broad range of connectivity values up to a few hundred connections for some LPs
with many large gaps in unfilled spatial connectivity values. Likewise, the average events generated are
much more chaotic and unpredictable. Other models that exhibit this type of connectivity behavior are:
ROSS Market, ROSS Neuromorphic (but only weakly).

From a usage standpoint, this data is quite useful to evaluate model correctness and, as previously stated,
we successfully used it to help identify a model that was not properly constructed. From the standpoint
of synthetic model generation, it definitely indicates that there are connectivity properties that a generator
should subscribe to replicate a specific model type. From the standpoint of optimizing the underlying
algorithms of a simulation execution engine, the implications are far less clear. Perhaps the connectivity
could implicate the difficulty of partitioning or event scheduling, especially if the more diverse range of
connectivity structures imply a more unbalanced distribution of centrality of an LP. This question is most
likely related to the Betweeness Centrality described in the next section.

5.2 Betweenness Centrality

Betweenness Centrality is one measure of centrality in a network, where it values a node by how often it
lies on the shortest path between every pair of nodes (Anthonisse 1971, Freeman 1977). The algorithm
used is fairly efficient for relatively large networks, for up to tens of thousands of nodes (Brandes 2001).
However, when a network contains millions of nodes, approximate calculations were needed using n nodes
to estimate the betweeness values (Brandes and Pich 2007), in order to reduce the computation time.
Fortunately, for the models studied, approximate calculations were not required.

Figure 4 shows the Betweeness Centrality of the studied models. The x-axis displays the betweeness
value, normalized between zero and one. The y-axis shows the number of LPs with that value of
betweeness. A low betweeness value indicates that the node is not central to the network. Coupling this
with LP connectivity, a network with a high degrees and low centrality indicates that the node is well
connected. Conversely, a high value indicates the network is highly central to the network, meaning that a
network with a low number of degrees and high centrality is not well connected. The y-axis of the figures
show the frequency, or number of LPs.

From the data, we see that nearly all of the models exhibit fairly low values for Betweeness Centrality.
This is good as it documents that those models will not have many LPs that are highly connected across
the entirety of the simulation and that effective partitioning should, in general, be successful in distributing
a simulation workload across a collection of parallel processing nodes. While the worst case Betweeness
Centrality of the highlighted models is .25 in the WARPED2 Epidemic Model, two of the overall models
(IMC V4 444 and NS-3 CSMA) have some small number of LPs with betweenness values of 0.8-1.0.
These values indicate that these models may have structure that would make them difficult to parallelize.
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Figure 4: Betweeness Centrality.
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5.3 Modularity

Modularity describes the structure networks, and measures how well sub-networks (communities) a large
network is decomposed into. Communities are sets of highly inter-connected nodes (Blondel et al. 2008).
A network with a high modularity have dense connections within its communities, but sparse connections
among different communities. In other words, LPs that belong to the same community are sending and
receiving a large portion of their events with LPs in the same community. Recognizing tightly coupled LPs
and grouping them into communities may be beneficial for partitioning and group/block event scheduling
policies (Gupta and Wilsey 2017). Models with few communities would be challenging to partition and
group/block events for scheduling.

Figure 5 shows these communities. The x-axis are the different communities, Modularity class. The
range of values on this axis are not significant other than they enumerate the different communities. The
y-axis are the number of LPs belonging to each community. The green and blue lines represent, respectively
the mean and standard deviation of the number of LPs about the mean.

The data from these plots are generally very encouraging for parallel execution. The WARPED2 Traffic,
ROSS 9D Torus, IMC Hopper 161616, and WARPED2 Epidemic models contain rich sets of communities
all with a fairly large number of LP populations in each. These number of communities and their relatively
large populations of LPs (in the hundreds each) should partition well. Traffic and Epidemic should easily
support parallelism to 10s of processing nodes. Other models with similarly available communities with
notable populations of LPs include: ROSS Neuromorphic, WARPED2 PCS, IMC Edison, IMC V4 81616,
IMC Bypass, IMC Moonlight, and (although it is a small model) NS-3 CSMA. The ROSS PCS Model
is interesting in that it has a rich set of communities each with a large number of LPs. However, it also
contains a number of communities (approximately 125) with only a few LPs. Fortunately, given the large
number of sizable communities (approximately 250), these small communities should not negatively impact
partitioning and lead to successful parallelization. However, from a group/block scheduling perspective
(Gupta and Wilsey 2017), these small communities may present challenges.

Finally, the NS-3 Lena Dual Stripe Model contain only two communities. While this is indicative of
poorer partitioning possibilities, this model is actually quite small and they would not be good candidates
for parallelism anyway. So the challenges are less concerning in these cases. Overall, the overall Modularity
results are encouraging for parallelism. All of the sizable simulation models exhibit a good degree of
Modularity that should provide ample opportunities for parallelism and parallel speedup.

6 CONCLUSIONS

This paper explores the event communication properties of the LPs in 22 discrete-event simulation models
captured from simulation runs on one of 4 different simulators. The independently developed models come
from a variety of domains and were not developed for this study. The DES model properties are computed
using profile data that characterizes the events generated and processed in these simulation models. The
analysis results reported in this paper are: (i) the in-/out-degree connectivity of the LPs, (ii) the Betweenness
Centrality of the LPs, and (iii) the Modularity of the LPs. Results from these analyses show that, in general,
LPs tend to communicate with only a few other LPs, that the LPs are not tightly coupled and the models
should therefore be good candidates for parallel execution. Finally, the Modularity studies show that most
of the models also have numerous and sizable sub-communities of more frequently communicating LPs that
should form good partitions for distribution to a parallel processing platform (of limited size). That said,
the IMC V4 444 and NS-3 CSMA models both contained some LPs with high values to their Betweenness
Centrality which indicates that they may present challenges for parallel execution. Overall, however, the
data shows that the simulation models tend to fall into categories with shared properties that should provide
indicators for model types and behaviors that tool builders can target for optimization and improved analysis
support.
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Figure 5: Subnetwork Communities of tightly coupled LPs.
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