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ABSTRACT

Service systems are highly dependent on staffing decisions to provide satisfactory quality of service. This
paper tackles the problem of decision making under uncertainty pertaining to the source of demand.
Regardless of the distribution of the demand, the proposed staffing rule reacts to the requested quality of
service to determine the quality of the estimators of the unknown demand-process parameters, as well as
making optimal staffing decisions. Theoretical results on the consistency and optimality of the proposed
method is illustrated using sequential statistics approaches.

1 INTRODUCTION

Salary-related costs of staffing lead service-system managers to explore methods to guarantee pre-specified
Quality-of-Service (QoS) targets without excess staffing. A natural QoS target is to ensure a sufficiently
small likelihood of the demand exceeding supply so as to minimize customer abandonments before being
served (Whitt 1999). Such staffing problems often assume that beside the QoS constraints, the system
parameters such as arrival rate, service rate, and customers’ patience are known as well. In real-world
applications however, the workforce optimization problems are to be solved in the absence of full knowledge
on system parameters, particularly the arrival rates.

In some settings it is reasonable to assume that the stream of arrivals follows a non-homogenous Poisson
process. This assumption is advisable when the arrivals to the system act independently of each other,
but are functions of either the time-of-day or the day-of-week. When the rate of this process is known,
the steady-state fraction of abandonments can be formally calculated and set below the target to meet the
QoS constraint. Assuming an unknown arrival rate, forecasting procedures suggest a time-varying point
estimate for this rate which can be progressively updated in time. Depending on how volatile the system’s
environment and the customers’ profile are, the amount of error in the estimates would change. Hence in
case of such arrival-rate uncertainty, the steady-state fraction of abandonments becomes a random variable
and depending on the realization of the arrival rates, it takes different values. Different approaches are
presented in the literature to tackle the randomness of QoS constraint. Gurvich, Luedtke, and Tezcan 2010
suggests requiring QoS only for some pre-specified fraction of the arrival rate values, and that leads to a
chance-constrained formulation. There the problem of staffing with uncertain demand rates is reformulated
to that of finding a solution for a small set of staffing problems with known rates. An alternative formulation
is to average the fraction of abandonments over the demand-rate distribution and consider the QoS as to
keep its expected value sufficiently small (Bassamboo and Zeevi 2008). Knowledge of the distribution of
the forecasting error is also proved to be useful and it greatly simplifies the staffing problem under arrival
uncertainty (Chen and Henderson 2001; Whitt 1999; Deslauriers et al. 2007; Maman 2009; Mehrotra,
Ozlük, and Saltzman 2010.)
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In this paper we tackle the staffing problem assuming that both the arrival rate and the distribution of
the error pertaining to the corresponding uncertainty are unknown. In addition we approach this problem
in a more dynamic way in the sense that the quality of the point estimates and the amount of sampling
effort is determined based on the QoS target and the risk level.

The ensuing section presents motivation captured from methods in the literature. The sequential statistics
approach to dynamic staffing and the theoretical results on the consistency and efficiency of the method
are provided in Section 3. Section 5 concludes the paper with summary of observations of the proposed
method.

2 MOTIVATIONS AND METHODS

Consider the time-varying GIt/GIt/st/st system. Let the system run in [0,T ] and assume stationary in
Ir := [tr, tr+1], r = 0,1,2, · · · ,q−1, t0 = 0 and tq = T . This assumption implies that the arrival and service
rates are constant within each period. In addition we assume that the length of each period is long enough
for the processes to reach steady-state well within the period.
Remark 1 (1) It is beyond the purpose of this paper to determine the length of stationary periods,

although there are methods in the literature to tackle heteroskedasticity in staffing problems (e.g.
see Whitt 2007 and references therein.)

(2) Letting the service system be a call-center, the time interval [0,T ] in our setting could represent a
month over which the performance of center is being observed, and each period Ir may represent
a work day.

Suppose that the service processes follow a general distribution with known service rates {µ1,µ2, · · · ,µq}.
Also assume Poisson arrival processes for which the arrival rates λr (1≤ r ≤ q) are the unknown means
of another stochastic processes {Λr : 1≤ r ≤ q}.

In this setting, the goal of staffing problem is to set the staffing level for each stationary period, in
order to ensure QoS targets throughout the whole time interval [0,T ] except for the initial transient portion
of each period. Accordingly we consider to solve the staffing problem within each stationary period. For
ease of notation, dismiss the subscripts r, and let a(s,λ ) be the long run fraction of abandoning customers
for GI/GI/s/s system with arrival rate λ . When λ is fixed, letting R = λ

µ
denote the offered load to the

system, Erlang’s loss probability gives the steady-state fraction of abandoning customers as follows.

a(s,λ ) =
Rs/s!

∑
s
i=0 Ri/i!

.

Let the QoS target be α , and hence it is required to ensure a(s,λ )≤ α . With known λ , square-root staffing
rule (Tijms 2003) suggests that the optimal staffing level to guarantee this QoS target is R+ kα

√
R. Here

kα satisfies kα Φ(kα )
φ(kα )

= 1−α

α
, where Φ and φ are the cdf and pdf of standard normal distribution respectively.

When λ is random, different realization of this random variable, yields different abandonment fraction
a(s,λ ), and hence seeking to hold the constraint a(s,λ )≤ α means to hold the constraint for all realizations.
Depending on the distribution of λ this might be impossible or extremely costly. An alternative formulation
is to average a(s,λ ) over the λ -distribution and ensure that the expected value is small enough (Bassamboo
and Zeevi 2008). Such average constraint formulation is as follows

s∗ = min{s ∈ Z+ : Eλ [λa(s,λ )]≤ αEλ [λ ]}. (1)

Eλ in (1) denotes the expected value with respect to the distribution of λ , that is, letting Fλ (·) be the
cumulative distribution function of λ ,

Eλ [λa(s,λ )] =
∫

∞

0
λa(s,λ )dFλ . (2)
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In the chance-constrained formulation proposed in (Gurvich, Luedtke, and Tezcan 2010) , given a
pre-specified risk level δ for the probability that the constraint a(s,λ )≤ α is violated, we set

s∗ = min{s ∈ Z+ : Pλ ({a(s,λ )≤ α})≥ 1−δ}, (3)

where Pλ ({a(s,λ )≤ α}) =
∫

∞

0 I{a(s,λ )≤ α}dFλ . Letting λ ∗ = inf{x ∈ Z+ : P{λ ≤ x} ≥ 1−δ}, and

s(λ ∗) = min{s ∈ Z+ : a(s,λ ∗)≤ α}, (4)

be the minimal staffing level required to satisfy the abandonment constraint when the arrival rate is λ ∗.
(Gurvich, Luedtke, and Tezcan 2010) show that s(λ ∗) is the optimal solution for the chance-constrained
formulation (3).

Note that in order to calculate (2) for the formulation (1), and (4) for that of (3), the knowledge of
Fλ is required. In real-world applications however, this knowledge is often not provided to us. Within
forecasting methods, Fλ can only be estimated using historical data, and the “estimated” Fλ , is usually
deemed to be the “true” distribution, hence the error corresponding to the estimation of Fλ is not tackled
in proof of optimality of staffing rules (see for example Whitt 1999). In the next section we propose a
dynamic routine for setting the staffing level that guarantees (3) with unknown Fλ .

3 DYNAMIC STAFFING RULE VIA SEQUENTIAL STATISTICS

Sequential statistics propose methods to estimate the mean of a population with unknown variance (Nádas
1969; Anscombe 1952; Chow and Yu 1981; Starr and Woodroofe 1969). Recently these methods have
found great applications in popular stochastic optimization, sample average approximation, and stochastic
trust-region schemes (see for example Byrd et al. 2012; Bayraksan and Pierre-Louis 2012; Hashemi,
Ghosh, and Pasupathy 2014; Hashemi 2015). In this paper, we employ sequential statistics in a rather
different search for optimality, namely for optimizing the staffing level in service systems. We would see
in this paper that the power of parameter free analysis in sequential statistics method is a crucial factor
for attaining staffing level optimality in the absence of the most common structural assumptions. In what
follows we first rigorously layout the proposed method and then discuss “consistency” and “efficiency”
throughout the Sections 3.2 and 3.3.

3.1 Algorithm Listing

For each i = 0,1,2, · · · let {Λn(i)}n≥1 be a sequence of independent and identically distributed random
variables. Assume for any u and v (u 6= v), {Λn(u)}n≥1 and {Λn(v)}n≥1 be iid realizations of Λ with
unknown mean λ , unknown variance σ2, and having moment generating function ψ(·), which is assumed
to be finite at c0 < ∞. For each i let Sn(i) be the partial sum of Λn(i)s, and set

Ni(α) = min{n : n < α
2S2

n(i)}. (5)

Define the following estimators for λ :

Λ̄Ni(α) =
SNi(α)(i)
Ni(α)

, i = 0,1,2, · · · ,

and consider the staffing rule as follows:

S∗ = min{s : α
−1 <

∑
s
i=0 Zi

Zs
| N1(α),N2(α), · · · ,Ns(α)}, (6)

where Zi =
Λ̄i

Ni(α)

µ ii! .
The algorithm listing is as follows:

958



Hashemi and Taaffe

Algorithm 1 Dynamic Staffing Algorithm Listing
Given: kα , α , µ , and number of replications m.

Dynamic Staffing Rule
1: Set ES = 0 . Initialize average staffing size.
2: Set i = 1. . Initialize iteration number.
3: while i < m do
4: Set s = 1 . Initialize service size.
5: Set Λ̄ = ADAPTIVESAMPLING(α) . Derive the sampled estimator for s = 1.
6: Set Z = Λ̄s

µss!

7: Set sum = 1+Z . Initialize a−1(s,Λ)
8: while α−1 ≥ sum/Z do
9: Set s = s+1 . Update service size

10: Set Λ̄ = ADAPTIVESAMPLESIZE(α);
11: Set Z = Λ̄s

µss!
12: Set sum = sum+Z
13: end while
14: Set s∗ = s
15: Set ES = i−1

i ES+ 1
i s∗

16: Set i = i+1
17: end while
18: Return ES

Algorithm 2 Adaptive Sampling Algorithm Listing
Given: Data population Ξ = {ξ1,ξ2, · · ·} (representing iid observations from Λ)

1: function ADAPTIVESAMPLING(α).
2: Set n = 1
3: Set Sn = ξ1
4: while n≥ α2S2

n do
5: Set n = n+1
6: Set Sn = Sn +ξn

7: end while
8: Return Λ̄ = Sn/n
9: end function

3.2 Consistency

Consistency of the method is to be illustrated through the analysis of both the adaptive sampling part as
well as the dynamic staffing portion of Algorithm 1. Therefore we first prove the following lemma that
decomposes the behavior of the sample size (5) for estimating λ , in terms of the QoS target α .
Lemma 1 (i) For any i, given α > 0, Ni(α) is well-defined, that is P(Ni(α)< ∞) = 1;
(ii) For any i, with probability one we have limα→0 α2λ 2Ni(α) = 1;

(iii) For any i, limα→0 α2λ 2E[Ni(α)] = 1;
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Proof. Part (i), suppose for given α , (5) is not satisfied as n→ ∞. Then (5) implies that 0 > α2µ2,
which is a contradiction.

Part (ii), by (5), as α → 0, Ni(α)→ ∞ wp1. In addition we have almost surely

N−1
i (α)< α

2(
SNi(α)

Ni(α)
)2. (7)

Also since (5) is not satisfied with Ni(α)−1 we get

N−1
i (α)(

Ni(α)

Ni(α)−1
≥ α

2(
SNi(α)−1

Ni(α)−1
)2. (8)

So part (ii) is concluded from (7) and (8). Part (iii) follows directly by (Nádas 1969).

Part (i) of Lemma 1 shows that the sample size resulting from (5) is well-defined, meaning that the
point-estimate for λ is always computed with finite sample size when α is bounded away from zero. As
α approaches zero, part (ii) and (iii) show the growth rate of Ni(α) and its expected value, respectively, in
terms of α . These illustrate that the amount of effort to compute the point estimate depends on the required
QoS. This is intuitive as with weak quality of service, and hence large value of α , only a course estimate
of λ would most likely suffice to find an appropriate staffing level. However when α is close to zero, we
must be extremely conservative in order to lower the chance of error pertained to the demand uncertainty.

We now proceed to study the behavior of the algorithm with respect to choosing the optimal staffing
level. Noting that Zs

∑
s
i=0 Zi

is the stochastic analogue of a(s,λ ) defined in Section 2, we consider the notation
of optimality as introduced in (Gurvich, Luedtke, and Tezcan 2010):
Definition 1 Given positive risk level δ , the optimal staffing rule denoted by S∗ is the one that satisfies

P(a(S∗,Λ)< α)> 1−δ . (9)

The condition (9) implies that in order for S∗ to be an optimal staffing rule, the stochastic analogue of
the QoS in terms of the steady-state fraction of abandoning arrivals is “allowed to be violated” in at most
a fraction δ of the arrival-rate realizations.

Given this definition of optimality, we also define “consistent staffing rules” as follows.
Definition 2 Under the risk-level δ , a candidate staffing rule S∗ is called “consistent” if as α → 0, (9)
holds true.

Definition 2 simply states that a “consistent” staffing rule would ensure a sufficiently large staffing
level when an extremely high quality of service is required.

In what follows we prove the consistency of the method proposed in this section.
The next theorem shows that using this quality of point estimate, the staffing rule (6) is consistent,

where consistency is defined in Definition 2.
Theorem 1 (i) For any 0 < α < 1, P(S∗ < ∞) = 1.
(ii) Consider a risk level δ , and λ > λ ∗ = inf{s∈Z+ : Φ(s)≥ 1−δ}, where Φ denotes the cdf function

of a normal random variable. Then as α → 0, (6) is consistent.

Proof. For part (i), suppose for given 0 < α < 1, S∗→ ∞. This means that almost surely we have

α
−1Z∞ ≥

∞

∑
i=0

Zi. (10)

Since Zi > 0 for all is, ∑
∞
i=0 Zi can’t be finite unless we have a convergent sum with the limit a > 0, and

limi→∞ Zi = 0 almost surely. By (10), that means that we must have a≤ 0, which is a contradiction to the
assumption that Zis are positive.
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For part (ii), by part (ii) of Lemma 1, as α → 0, for given i, Ni(α)→ ∞. Since {ΛNi(α)(i)}i≥1 are iid
realizations of Λ, {Λ̄Ni(α)(i)}i≥1 are iid as well. Also for given i, by the CLT when Ni(α)→ ∞, Λ̄Ni is
normally distributed. So for small enough α we can consider {Λ̄Ni(α)}i≥1 as iid observations of a normal

random variable Λ̄. Recall the notation a(s, Λ̄) = Zs
∑

s
i=0 Zi

. As Ni(α)→ ∞, a(s, Λ̄)→ Rs/s!
∑

s
i=0 Ri/i! almost surely.

This abandonment rate is increasing in the arrival rate, and by λ > λ ∗, a(s,λ ∗) ≤ α . Hence for small
enough α we get

PΛ̄({a(S∗, Λ̄)≤ α}) =
∫

∞

0
I{a(S∗, Λ̄)≤ α}dFΛ̄,

≥ 1−δ .

where the last inequality follows by definition of λ ∗. Hence the result follows by Definition 2.

3.3 Efficiency

In this section we provide an upperbound on the rate at which the expected value of S∗ in (6) grows when
α → 0.
Theorem 2 Given N1(α), let α < µc0 and x0 = min{x : ( µ

λ
)xx! > µ

√
N1}. Then

ES∗ ≤ x0 +(ψ(c0))
α−2

(
eµ√

α
). (11)

Proof.

ES∗ =
∞

∑
x=0

P(S > x) =
∞

∑
x=0

P(α−1Zx >
x

∑
i=0

Zi).

We have

P(α−1Zx >
x

∑
i=0

Zi) ≤ P(α−1Zx > Z1),

= P(α−1(
Λ̄x

Nx

µxx!
)> (

Λ̄N1

µ
)),

≤ P(α−1(
Λ̄x

Nx

µxx!
)> (αµ

√
N1)
−1,

= P(Λ̄Nx > (
µx−1x!√

N1
)

1
x ), (12)

For all x > x0, ( µ

λ
)xx! > µ

√
N1, and letting ax := ( µx−1x!√

N1
)

1
x , ax > λ . Therefore by the large deviation

bound (Bucklew 1990) we get

P(Λ̄Nx > a)≤ (φx(c0))
Nx exp(−c0axNx). (13)

Also by Lemma 1 we have limsupx Nx = liminfx Nx = α−1. Hence by (12) and (13) we get
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P(α−1Zx >
x

∑
i=0

Zi)≤ P(Λ̄Nx > a) ≤ (ψ(c0))
Nx(c0axNx)

−x,

= (ψ(c0))
Nx(c0Nx)

−x(

√
N1

µx−1x!
),

= (ψ(c0))
Nx(

µ
√

N1

(c0Nxµ)xx!
),

≤ (ψ(c0))
α−2

(
µα−1

(c0α−1µ)xx!
).

Now we have

ES∗ =
∞

∑
x=0

P(S > x),

=
x0

∑
x=0

P(α−1Zx >
x

∑
i=0

Zi)+
∞

∑
x=x0+1

P(α−1Zx >
x

∑
i=0

Zi),

Therefore, by α < µc0

ES∗ ≤ x0 +
∞

∑
x=x0+1

(ψ(c0))
α−2

(
µα−1

(c0α−1µ)xx!
),

≤ x0 +
∞

∑
x=0

(ψ(c0))
α−2

(
µα−1

x!
),

= x0 +(ψ(c0))
α−2

(
eµ√

α
).

Theorem 2 provides a crude upper bound on the growth rate of the expected value of S∗ in terms of
α−1. This upper bound is achieved with only assuming that the moment generating function of Λ is finite
at c0. We expect that we can get much tighter upper bounds in the presence of stronger conditions on the
distribution of Λ, so as to get ES∗ growing more slowly than geometric in α−1. In particular, we expect that
for staffing rules under demand uncertainty, similar to the algorithm proposed in this paper, the efficiency
criteria can be identified when compared with best available approximations using known arrival rates. As
such, it is appealing to obtain comparable results to that of Square Root Staffing Rules (henceforth SRSR)
discussed in Section 2. In the following section we implement Algorithm 1 and in comparison with SRSR,
we study the optimality of our method in various settings.

4 Numerical Study

As the algorithm consists of two separate modules for calculating the sample size in terms of QoS and
the staffing level, we are interested in analyzing the behavior of the algorithm in each module. Let
f (α) = α2λ 2Ni(α) denote the limiting factor in Lemma 1. As depicted in Figure 1, the deviation of f (α)
observations from one, as well as the estimated variance of f (α) approaches zero as α gets close to zero.
The mathematical interpretation of such behavior is that limα→0 f (α) = 1, almost surely, as is also proved
rigorously within Lemma 1.
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Figure 1: Convergence Illustration for f (α): f (α) goes to one almost surely, as α goes to zero.

Augmented with this sampling behavior, the algorithm computes the sampled estimators for λ and
uses it to obtain the staffing level. Accordingly it is appealing to see how close the resulted staffing level
is to that of methods under complete information on λ , e.g. SRSR.

Given known arrival and service rates λ and µ , SRSR suggests s∗ = R+kα

√
R. For fixed R, the third

column in Table 1 lists the SRSR outputs for s∗ across different values of α . As observed in this table,
lower values of α require higher staffing level as they dictate higher QoS to the system. Assuming unknown
λ , the fourth column of Table 1 shows the resulting values for estimated ES∗ in Theorem 2. Similar to
SRSR, the required staffing level grows higher as α decreases. In addition this growth in the values of
ES∗ seems to be very slow, and as mentioned in Section 3.3, much tighter upper bounds on the rate of
increase is expected than that of (11).

Given the observed deviation between values in the third and fourth columns, the proposed algorithm
is shown to perform very close to the optimal s∗ (SRSR staffing level solution), while the arrival rate
remains unknown. We further support this observation by tracking the deviation between ES∗ and s∗, across
different values of R. For λ = 3 and µ ranges from 0.5 to 2.4, the x-axis in Figure 2 represents R = λ

µ
.

Over different values of R we observe that ES∗ does not deviate from s∗ by more than 2.5 while the optimal
staffing size stands above 10. Hence we conclude that while the algorithm tends to increase staffing size
for small values of α , this increase is not dramatic and the algorithm stays very close to optimal.

Figure 2: ES∗− s∗ vs the offered load R.

Table 1: ES∗ vs s∗

across different values of α .

QoS Parameters
kα α s∗ ES∗

3 0.0015 13.35 15
2.7 0.0039 12.61 13.98
2.5 0.007 12.12 13.11
2.2 0.0161 11.39 11.91
2 0.0269 10.89 10.79
1.8 0.043 10.4 9.33
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5 CONCLUSIONS

This paper introduces a two stage sequential stopping rule to return the number of servers that would satisfy
specific QoS target (α) under appropriate risk level (δ ). Under the proposed staffing rule, demand rate is
estimated “perfectly” only when a high QoS is required; the algorithm accepts coarse estimates only when
α is large. This is reached by dynamically balancing the quality of the sampled estimator with the quality
of service, and the standard deviation of the estimates go to zero when a high QoS is required. We have
shown that when α → 0 the staffing rule remains consistent, by which we mean that the QoS is satisfied
with high probability. We have also shown that the upper bound on the expected service size goes to infinity
as α→ 0, which means that the staffing rule algorithm allows for a large enough number of servers when
high quality of service is required. Throughout the results on consistency and efficiency, distribution of the
demand need not be known which makes the algorithm a good fit for real-world applications. Empirical
simulation studies show that the deviation of the staffing level computed by our method from that of
best available method with known arrival rate (square-root staffing rule) is small. For future research we
will further explore the efficiency of our method by theoretically deriving the exact rate (rather than an
upper-bound) of the expected staffing level in terms of the QoS target, and compare it to the best results
in deterministic settings.
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