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ABSTRACT

The paper presents a simulator designed specifically for evaluating job scheduling algorithms on large-scale
HPC systems. The simulator was developed based on the Performance Prediction Toolkit (PPT), which is
a parallel discrete-event simulator written in Python for rapid assessment and performance prediction of
large-scale scientific applications on supercomputers. The proposed job scheduler simulator incorporates
PPT’s application models, and when coupled with the sufficiently detailed architecture models, can represent
more realistic job runtime behaviors. Consequently, the simulator can evaluate different job scheduling
and task mapping algorithms on the specific target HPC platforms more accurately.

1 INTRODUCTION

The size of today’s high-performance computing (HPC) systems increases with their complexity. New
architectural changes and new software capabilities have in general complicated the design of scientific
applications running on these systems in order to achieve their performance objectives. In the mean time,
the growth in resource demand (compute nodes, memory, power, etc.) for the new generation of HPC
systems needs to be justified by the capabilities of running more and larger applications with improved
performance. Many job scheduling and resource management algorithms have been proposed that aim to
improve both the resource utilization and the job turnaround time for HPC systems.

Simulation plays an important role in evaluating the performance of these algorithms. Many simulators
have been developed to study HPC job scheduling and resource management. Simple job scheduler
simulators often provide a detail model of the queueing behavior of the jobs as they arrive at the system
upon submission, wait for available resources as they compete with other jobs in the system, deploy for
execution when scheduled, and eventually depart from the system upon job completion. For example,
PYSS is a trace-driven scheduler simulator developed in Python (Parallel Systems Lab 2017); the simulator
implements quite some scheduling algorithms, including several backfilling algorithms. The problem with
simple simulators is that they do not really model the target HPC system or the runtime behavior of the
applications. PYSS takes the job runtime directly from the job trace, although in reality a job’s runtime
should be affected by the specific resources allocated to the job and by the application’s runtime behavior,
which can be affected other simultaneously running jobs.

More sophisticated job scheduler simulators exist. For example, GridSim (Buyya and Murshed 2002)
is a simulator that can model a wide range of computing resources, including multiprocessors, distributed-
memory machines, and networks of different configurations. GridSim provides support for simulation of
job scheduling on different types of systems, including clusters, Grids, and P2P networks. Alea-2 (Klusacek
and Rudové 2010), for example, extends GridSim with several popular job scheduling algorithms. GridSim
provides a preliminary method to model applications. An application can be described as a number of tasks,
as in the task/channel model or as a direct acyclic graph (DAG). Each task corresponds with a “gridlet”,
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which contains the information pertaining to its execution: the length (in the number of instructions),
disk I/O operations, and the size of the input and output data. These parameters can help determine the
job’s execution time as the tasks are run on the given resources. Although the gridlet approach does
provide a rough estimate of the application’s runtime (such as the differences between CPU-intensive and
I/O-intensive applications), and thus can be used to simulate resource contentions on target HPC systems
for job scheduling and task mapping algorithms, the task-level description may not be sufficient to capture
detailed application behavior, such as the cost of specific numeric kernels, nested loop structures in the
program, or the communication overhead, for example, resulted from particular use of MPI functions.

The most ambitious approach is to add job scheduling capabilities to detailed HPC simulators.
TraceR (Acun et al. 2015) is a trace replay and parallel workload modeling tool built on CODES (Cope et al.
2011). CODES provides several detailed interconnection network models. TraceR can take a large execution
trace generated by the BigSim’s emulation framework (Zheng et al. 2005) and run it on the simulated
interconnection networks in CODES to assess the application’s communication behavior. Unfortunately,
TraceR and CODES do not support full-fledged job scheduling.

The Structured Simulation Toolkit, or SST (Rodrigues et al. 2011), has added a scheduling component
to simulate job scheduling and placement on target HPC platforms (Rodrigues et al. 2012). The simulator
can also replay job traces from the parallel workload archives. However, the scheduling component has
not been validated in studies; and we found that it only uses the fixed runtime from the job trace. That is,
the scheduling module has not been incorporated with the SST’s rich architecture and application models.
SST/macro (Janssen et al. 2012) is a separate effort of SST, which focuses on coarse-grained modeling of
HPC applications; however, it cannot dynamically launch and terminate applications, which would make
it difficult to add a job scheduler module.

In this paper, we present our job scheduler simulator, which has been seamlessly incorporated with
our full-scale HPC system simulator, called the Performance Prediction Toolkit (PPT). PPT supports rapid
assessment and performance prediction of large-scale scientific applications on HPC architectures (Ahmed
etal. 2016). We extended the simulator with various job scheduling and task mapping algorithms, and with
trace-driven simulation capabilities using large-scale job traces from real parallel workload archives. PPT
is a full-scale HPC simulator, which provides models for various applications (e.g., computational physics
code), middleware (MPI and threads), and hardware (compute nodes, interconnection networks) of various
HPC architectures. In particular, the simulator can capture a job’s high-level runtime behavior using stylized
pseudo-code (with preserved control branches, loops, and communication routines). Consequently, our job
scheduler simulator can be used to study the performance of various job scheduling and resource provisioning
algorithms with sufficiently detailed models for resource contention, job interaction and interference on
specific target HPC systems.

2 SIMULATOR DESIGN

The overall design of the proposed simulator for HPC job scheduling and parallel workloads is illustrated
in Fig. 1. Upon arrival, all jobs are first placed into the waiting job queues. There could be more than one
such queues, depending on the scheduling algorithm which we choose to study. The job scheduler selects
a job from one of the waiting queues, one job at a time, according to the specified scheduling algorithm,
and then allocates the corresponding resources from the target HPC system (i.e., the compute nodes and
processors), in accordance with the specific job placement policy (also called tasking mapping). The job is
then executed at the target HPC system: the simulator models the job’s execution on the designated compute
nodes by running the job’s application model with the requested number of simulated MPI processes. The
job’s application describes the job’s execution behavior, which can be modeled at various level of details;
for example, a scientific application can describe the runtime for each iteration through its computation
kernel, as well as the specific functions used for communicating with other MPI processes. Once the job
has completed execution, it is placed among all finished jobs, for statistics collection and inspection.
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Our simulator consists of three modules, which correspond to the three stages of an HPC job: job
submission, job scheduling, and job execution. The job submission module describes the arrival process
for the HPC jobs. Depending on the purpose of the study, one can either use synthetic workload models
or adopt job traces from existing HPC workload archives. Each job presented to the system needs to be
associated with an application model, which describes the runtime behavior of the job as it is scheduled
to run on the target HPC platform. The application model can be as simple as containing only a single
value of time for which the job is expected run on the target machine, or it can be more sophisticated in
describing the skeleton code, including the communication logic, of the application. Our simulator has
dedicated a repository for the HPC application models, so that in time, the modelers are given the capability
to evaluate job scheduling and tasking mapping algorithms using a wide variety of existing models for
common parallel applications. We discuss the details on the creation of the job traces in section 2.1 and
describe the application models in section 2.3.

The job scheduling module manages job scheduling and task mapping. It keeps track of both the
machines and processors occupied by the running jobs and those available for new jobs. When a new job
is submitted or when the resources are returned to the system due to the completion of a running job, the
job scheduler is invoked. The job scheduling algorithm selects the best candidate among all jobs waiting
in the queues and, if enough resource is available, removes the candidate job from the queue and allocates
the requested number of machines and processors to run the job. To to that, the selected task mapping
algorithm determines the best placement for the job before launching the job’s application. We discuss the
details of the job scheduling module in section 2.2.

Finally, the job execution module is called for simulating the execution of the jobs on the target
machine. For this, we extend the Performance Prediction Toolkit (PPT), which is designed to model large-
scale scientific applications on current and future HPC architectures (Ahmed, Liu, Eidenbenz, and Zerr
2016). PPT is a Python library of models for applications (e.g., computational physics code), middleware
(MPI and threads), and hardware (compute nodes, interconnection networks). The jobs are associated
with the applications models, which describe the applications runtime behavior (e.g., branches and loops,
communications, and I/O) as stylized pseudo-code. PPT is a full-scale system simulator, which allows us
to study the interaction and interference of the running jobs on the target HPC architecture. The details on
the job execution module are described in section 2.3.

2.1 Job Submission

All job submitted to the system must be described properly. The required attributes of a job are shown in
Table 1. Each submitted job is given a unique identifier (job_id) in the system. Each job must also specify
the number of processes (i.e., MPI ranks) to run the job (job_size). In the current implementation, the
processes will be packed onto the compute nodes consecutively, one for each core, although alternative
methods for more sophisticated mapping can be added later. Each time a job is scheduled to run, a unique
set of unoccupied compute nodes will be allocated, which is determined by the chosen task mapping
algorithm. We discuss job placement and task mapping in the next section.
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The required job attributes also include the job’s submission time (submit_t ime), which is the time
at which the job enters the waiting queue, and the requested runtime (request_time), which is the
maximum time allowed for the job to run on the designated nodes. A job (with all the processes) will be be
terminated if the job runs longer than the specified time. Each submitted job also needs to specify the name
of the job waiting queue (queue_name). The waiting queues depend on the scheduling algorithms (also
known as scheduling policies), which may require additional arguments (sched_args). For example, the
score-based priority scheduling algorithm would require an integer value for the initial priority of the job.

The exact execution time of a job depends on the job’s application. Each job must be associated with
an application. In the simplest form, by default, the application is just a time keeper (if app_name is not
specified). When the time keeper application is launched on the designated nodes, each process will simply
wait for the given simulation time (run_t ime) before the job completes. To create a more realistic runtime
scenario, one can use detailed applications models to capture their runtime behavior on the target platform.
The application models can be included in the application repository retrievable by name (app_name).
An application may required additional parameters (such as the size of the matrices for multiplication);
they are provided through (app-args). We discuss the application models in section 2.3

The job trace needed to drive the simulator can be created with a synthetic workload model, for example,
using an exponential distribution for the inter-arrival time of the jobs, a normal distribution for the job
size, and yet another for the job’s runtime. For a more realistic setting, however, one can derive a job
trace from existing workload archives. For example, the Parallel Workloads Archive (PWA), by Feitelson
et al. (2014), contains a fairly large number of job-level logs collected for nearly two decades from 38
production systems. They include clusters, grids, and large-scale supercomputers, with job sizes ranging
from 64 to over 163,000 processes. PWA data has been widely used in many studies.

The job-level workload logs can be parsed and translated into the trace logs required by our simulator.
There are multiple ways to use the workload archive:

1. One can directly use the runtime information from the logs for the time keeper application described
above. In this case, we use fixed runtime from the logs and we do not model the detailed application
runtime behavior.

2. One can use workload models derived from analyzing the logs in the parallel workload archive,
for example, by estimating the distribution of job inter-arrival time, job runtime, job size, and so
on. Examples of existing workload models can be found at: http://www.cs.huji.ac.il/labs/parallel/
workload/models.html. In this case, we still use the time keeper application with the estimated
runtime as the argument. Again, this method does not include detailed application runtime behavior.

3. One can categorize and assign applications to jobs that appear in the parallel workload logs. The
accuracy of this method would certainly depend on whether the applications can be represented to
some extent using existing models from our application model repository. One possibility is to use
the runtime models derived from the real workload data as described in the previous method, and
combine with high-level traffic models (such as Roth, Meredith, and Vetter 2015) to capture the
statistical distribution of job workload. We have not fully investigated this approach and will do
so in the future.

Being able to capture the application runtime behavior will allow us to study the interaction or interference
of jobs on the target machine architecture. This can be achieved using either synthetic or real workload
data combined with detailed application models. For example, one can study the performance of a target
application for different runtime conditions of the target parallel system. To do that, the target application
(which we call the foreground application) must be mixed with other applications (which we call the
background applications). One possible method is to randomly associate the target application and a mix
of background applications with the jobs in the job trace. We conducted an experiment, which is described
in section 3.4, to show the feasibility of the approach.
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2.2 Job Scheduling

In this section, we describe the module that selects jobs in the waiting queues and allocates resources to
execute the jobs’ applications. The module contains two components: the job scheduling algorithms, which
select the jobs among the waiting candidates, and the task mapping algorithms, which determines the set
of compute nodes to run the selected job.

2.2.1 Job Scheduling Algorithms

The design of the job scheduling algorithms is driven by specific performance and optimization goals.
Since there are many job scheduling algorithms, it is infeasible to design a simulator to include them all.
A more attractive feature would be to have the simulator support most common scheduling algorithms
where new ones, possibly more sophisticated, can be developed by extending from the basic algorithms.
The same can be said about the job placement algorithms, which we discuss in the next section. In our
simulator, the existing job scheduling and task mapping modules can be replaced relatively easily, so that
one can evaluate and compare the performance of different algorithms, using either synthetic and real
parallel workload on different target HPC architectures.

In the simulator, the scheduling algorithms are run in a separate simulation process. When a job is
submitted, it enters one of the job queues and the scheduling process is notified so that it can select an
eligible job to run next. Similarly, when a job has completed its execution, the system reclaims the resources
and the scheduling process is notified for it to choose the next eligible job. A job is eligible to run if there
are sufficient resources (in the number of unoccupied compute nodes) to support the job’s execution. If
there are more than one eligible jobs, they will be selected one after another in the order stipulated by the
specific scheduling policy. Our simulator currently supports the following scheduling algorithms:

o First Come First Serve (FCFS): The waiting jobs are stored in FIFO (first-in-first-out) order; the
algorithm will not consider jobs other than the job at the head of the queue, even if there may be
sufficient resources to run the other jobs.

o First Come First Serve with Best Fit (FCFS/BF): The jobs are processed first come first serve in
general, but it is non-blocking. If the system does not have sufficient resources to run the oldest
waiting job, the algorithm will select the next eligible job, This algorithm is the default scheduling
algorithm used in the simulator.

o Shortest Job First (SJF): The waiting jobs are sorted according to their node-hours, which is the
product of the requested time (in hours) and the job size (in the number of requested compute
nodes). The algorithm selects the eligible job with the lowest node-hours. If multiple jobs have
the same lowest node-hours, the algorithm uses FCFS for tie-breaking.

e Longest Job First (LJF): The algorithm does the opposite of SJF. The algorithm selects the eligible
job with the highest node-hours. If multiple jobs have the same highest node-hours, the algorithm
selects the oldest waiting job.

e Score-Based Priority (SBP): Each job is initially assigned with a score, and the score may change
over time. The algorithm sorts the jobs according to their scores; a job with a higher score has
a higher priority to be selected for execution. The scores may change algorithmically in order to
achieve certain resource utilization or performance goals. For example, one can use SBP to achieve
fair share scheduling, where we prioritize jobs based on the user’s current “share”: a job’s score
can be adjusted based on the total number of compute nodes requested by the user, the wait time
of all user’s jobs, the number of running jobs, the fraction of completed jobs, and so on, in the
recent history.

e  Multi-Queue Priority (MPP): There are multiple waiting queues with distinct priorities. Jobs in a
higher priority queue are scheduled more preferably. The user can specify which queue to submit
jobs, as long as the jobs satisfy the specific conditions imposed for the queues. For example,
Mira is a 10-petaflops IBM Blue Gene/Q supercomputer at the Argonne Leadership Computing
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Facility. Mira has several job queues, e.g., prod—-capability, prod-long, prod-short, and
backfill, for high capacity, long running, and short running, and low priority jobs, respectively.
The prod-capability queue, for example, stores only jobs whose request size must make a
significant portion of the system (say, 10% or 20% of all compute nodes).

One of the common scheduling algorithms we have not included in our simulator is backfilling.
Backfilling is a technique of opportunistically running low-priority jobs when there are insufficient resources
to run high-priority jobs. If the remaining runtime of currently running jobs can be estimated with good
accuracy, a time window could be found for low-priority jobs on the available resources, such that it will not
negatively affect the launch of next high-priority job. Backfilling has been applied successfully to improve
system utilization and job turnaround time. An important aspect of backfilling is the ability to accurately
estimate the job’s runtime. EASY (Kifka 1995) uses user provided runtime estimation. EASY++ (Tsafrir
et al. 2007) also considers historic data for runtime prediction. Recently, machine learning techniques have
also been proposed for better predicting runtime (Gaussier et al. 2015). We plan to add these backfilling
algorithms in future work.

Once the scheduling algorithm finds the best candidate job, the scheduling process invokes the job
placement algorithm to determine the specific compute nodes to run the job.

2.2.2 Task Mapping Algorithms

Job placement (also known as task mapping) algorithms play a crucial role in determining the performance
of applications. Good task mapping algorithms can assign compute nodes to jobs so as to minimize the
communication overhead of the processes and reduce cross-job interference on the target machine. For this
reason, task mapping can be of great importance in improving both job turnaround time and throughput of
the system. Our simulator currently supports the following task mapping algorithms:

e Random: The algorithm chooses a random set of unoccupied compute nodes. The size of the set
is the number of requested compute nodes, which can be calculated from the requested job size
(i.e., the number of processes) divided by the number of cores at each compute node and take the
ceiling. (Currently, we assume a homogeneous architecture). For most interconnection networks,
such as torus, random task mapping may not be a good choice, since the parallel processes are
scattered throughout the entire system. In this case, the random task mapping can be used as a
worst-case scenario for applications. In the case of the dragonfly interconnection network, however,
the random task mapping, coupled with a proper routing algorithm, can indeed improve the overall
communication performance of applications (Jain 2016).

e Round-Robin: The system starts with an ordered list of all compute nodes. A job request is fulfilled
by taking out the nodes from the head of the list. When a job terminates, the reclaimed nodes are
appended at the tail of the list. Round-robin task mapping can be a good choice for a small set
of applications. However, when the system runs for a longer period of time, fragmentation may
become significant, the communication distance may increase, and consequently the communication
overhead may get worse.

o Dual-End: This task mapping algorithm was designed originally to improve communication per-
formance and resource utilization on the torus interconnection network (Zimmer et al. 2016). The
system starts with an ordered list of compute nodes, all marked as unoccupied. The jobs are
classified as either short jobs or long jobs, using a threshold value. The algorithm places the short
jobs and long jobs at the either ends of the ordered list. To place a short job, the algorithm will
search for unoccupied nodes from one end of the ordered list; a long job would go from the other
end. The selected compute nodes are then marked as occupied to run the job. When the job has
completed execution, the nodes are again marked as unoccupied. This task mapping strategy has
shown capable of achieving more balanced utilization of the system (Zimmer et al. 2016).
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There are several methods for deriving the ordered list used by either the round-robin or the dual-end
task mapping algorithms. A straightforward method is fopological ordering. For example, in a 3D torus
network, we can use the XYZ coordinates of the corresponding switch to sort the nodes: we order the
compute nodes attached to the same switch, and we order the switches, by going in the X dimension first,
and then Y and then Z; that is, in the XYZ ordering. Specifically for the torus network, it is possible
that the dimensions have different bandwidth and delay. For example, Cray’s Gemini interconnect, used
in the Titan supercomputer at ORNL, has double the number of connections in the X and Z dimensions
than in the Y dimension. In this case, one would prefer using XZY rather than XYZ topological ordering,
so that adjacent nodes in the ordered list would have better connectivity. There are similar ways to derive
topological ordering of the switches in a hierarchical network, such as the fat-tree or dragonfly network,
using the switch level in the network and the switch index within the level.

Another ordering method for the compute nodes is Cartesian splitting. This particularly applies for
torus networks. For example, one can split a 8 x 6 x 8 torus into 32 equal sized boxes with 2 x 3 X 2 in
dimension. It will allow neighbor nodes to be grouped together for better communication performance.

The simulator also supports virtual partitioning in addition to the two ordering methods above. Virtual
partitioning divides the ordered list into several blocks of consecutive nodes. A job is evenly straddled
across all partitions. Suppose p is the number of partitions and n is the number of nodes requested by
the job (job size). Assuming 7 is divisible by p, the tasking mapping algorithm would allocate n/p nodes
from each partition.

2.3 Job Execution

Once the job scheduler selects the next job to run, it will launch the job’s application on the designated
compute nodes. To make accurate performance prediction of a parallel application, it is necessary that
the simulator provide sufficiently accurate computation and communication models for potentially large
number of jobs with large job size. We chose to use the Performance Prediction Toolkit (PPT), which has
been designed for rapid assessment and performance prediction of large-scale scientific applications on
high-performance computing platforms (Ahmed et al. 2016).

Our decision is based on two main concerns. First, PPT uses interpreted languages (Python, LUA, or
Javascript). We chose Python, which would allow us to easily incorporate different scheduling and task
mapping algorithms. PPT is developed based on Simian, which is a process-oriented, parallel discrete-event
simulator (Santhi et al. 2015). The process-oriented world view is implemented using lightweight threads
(greenlets in Python), which makes it easy to implement the scheduling algorithms and simulating the MPI
processes for the applications. Simian also supports parallel simulation, and has shown capable of running
large-scale models on parallel platforms.

Second, PPT already has a library of models of hardware, middleware, and applications. The hardware
includes high-level models of different machine architectures and interconnection networks. Although
it does not yield cycle-accurate performance metrics, the hardware models is able to capture high-level
application runtime behavior with decent accuracy. The hardware node model uses information, such as the
number of (integer and floating-point) instructions, memory operations, and so on, to predict the execution
time of a specific code segment on the target machine architecture. The interconnect model includes most
interconnection networks, such as torus, fat-tree, and dragonfly, and its accuracy has been validated when
compared with empirical studies on production networks.

PPT middleware consists of MPI and multithread models. In particular, the MPI model include all
MPI functions that are commonly used in parallel applications (Ahmed et al. 2016), including point-
to-point functions (with both blocking and immediate send and receive versions), collective operations
(reduce, broadcast, gather, scatter, all-to-all, and their variants), and those related to process groups and
communicators (creating and splitting groups, and Cartesian communicators). A full-fledged MPI model
allows one to write application models as a stylized version of the actual application: the skeleton code
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Figure 2: Comparing between PYSS and our simulator.

can maintain the loop structures and conditional branches pertaining to important numerical calculations,
while preserving the detailed communication operations.

PPT already has a rich set of application models, mostly computational physics code, including both
benchmark applications and production applications, in fluid dynamics, radiative transport, molecular
dynamics, Monte Carlo methods, and so on. We only began to incorporate these application models into
our application model repository. We have also started to develop applications that can generate basic
traffic patterns, such as allreduce and other collective operations, random and neighbor communications
(such as 2D and 3D stencils), and so on. We also added basic numerical applications, such as matrix
multiplication, and plan to include other linear algebra solvers. The application model repository currently
is quite elementary, but we expect it to grow as we plan to focus more on modeling application behavior
in next phase when we study the performance of different scheduling algorithms.

3 EXPERIMENTS

We conducted some preliminary experiments to validate the basic functions of our simulator and to evaluate
the performance of job scheduling and task mapping algorithms.

3.1 Simple Validation

Our first experiment is designed to validate the basic functions of the job scheduler. To do that, we compare
the results against an existing well-established simulator running with real workload job traces. In particular,
we compare with the results from PYSS (Python Scheduler Simulator), which provides support for many
job scheduling algorithms (Parallel Systems Lab 2017). We use the SDSC SP2 log from the Parallel
Workloads Archive (Dror Feitelson 2017). The job trace was collected on a 128-node IBM SP2 system
between May 1998 and April 2000, and contains 73,496 jobs with information about the user, application,
and job size, as well as the submit, wait, and run times. Note that PYSS does not have application models
to capture the job’s runtime (including computation and communication) behavior. For this experiment,
we simply use the job run time provided in the job trace. We target an HPC system with 9,216 compute
nodes connected via a 3D torus interconnection network. Since we do not need to model the application
behavior (we use the default time keeper application), the particular choice of interconnection network
does not affect the results.

The results are shown in Fig. 2. In particular, the plot on the left of the figure shows the system’s
resources in terms of the number of unoccupied nodes in the system change over time as jobs are scheduled
to run. The plot on the right shows the total number of running jobs over time. For illustration, we only
show the results during an arbitrary time period. Our simulator was able to produce similar results as those
from PYSS. The figure shows the only results from using the FCFS scheduling algorithm, although other
scheduling algorithms can provide the same conclusion.
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Figure 3: Comparing scheduling algorithms on systems of different size.

3.2 Evaluating Scheduling Algorithms

Our next experiment compares the results from different scheduling algorithms. For this experiment we
choose to use the ANL Intrepid log from the Parallel Workloads Archive (Feitelson 2017). The job trace
was collected on a Blue Gene/P system called Intrepid at the Argonne National Laboratory. The system
is the largest one in the archive with 40,960 quad-core compute nodes, that is, 163,840 cores in total. The
logs contains 68,936 jobs submitted from January 2009 to September 2009, with job size ranging widely
from merely several cores up to 163K cores. The purpose of this experiment is to test whether our job
scheduler simulator is able to handle real job workload for large-scale HPC systems.

We run the job trace for three different scheduling algorithms (FCFS/BF, SJF, and LJF) on a target
system configured to represent three different clusters: a small-size cluster with 36, 864 cores, a medium-size
cluster with 73,728 cores, and a large-size cluster with 147,456 cores. Oversized jobs in the trace were
discarded accordingly. Fig. 3 shows the cumulative distribution function (CDF) of the job wait time of
different scheduling algorithms on the three target machines. The plot on the right is zoomed-in top-left
corner of the plot on the left.

This experiment shows that our scheduler simulator is able to handle large job traces and can obtain
meaningful performance results of different scheduling algorithms using large-scale models of parallel
systems. A detailed study to compare various job scheduling algorithms is planned for future work.

3.3 Evaluating Task Mapping

We conducted two experiments to test the task mapping algorithms. We chose the target machine as Cielo,
which is a 96-rack Cray XE6 system at the Los Alamos National Laboratory (LANL). The machine has a
16 x 12 x 24 Gemini interconnection network, where two compute nodes are connected with each router
and each compute node has 16 cores. The entire cluster has 147,456 cores in total.

We used a simple application that performs an all-reduce operation (of 128-byte data in size) among
all MPI processes. We varied the job size for 1K, 2K, 4K, and 8K processes and measured the average
hop count for the all-reduce operation for different configurations.

In the first experiment, we test the effect of Cartesian splitting on performance. As described earlier,
Cartesian split can be an effective technique to improve application performance on torus interconnection
networks. The torus topology is divided into smaller boxes (for 3D torus) and the compute nodes are
ordered by the boxes. In the experiment, we tested four Cartesian splitting box sizes: 1 x 1 x1,2x1x 2,
2x2x2,and 4 x 3 x 4. Fig. 4 shows the average number of hops vary for different job sizes and for
different Cartesian box dimensions. The runtime varies as well, but not as significantly, and there is no
evidence for a strong correlation between the number of hops and the runtime.

In the second experiment, we test the effect of virtual partitioning. Here we vary the number of virtual
partitions from 1 to 8, doubling each time. Fig. 5 shows the results in the average number of hops and the
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corresponding runtime for different job sizes and for different partitions. In general, the runtime improves
with higher partitions.

3.4 Application Performance under Runtime Conditions

Jobs running concurrently share network resources and may interfere with one another if congestion occurs
in some part of the interconnection network. We design an experiment to evaluate the performance of a
target application under different runtime conditions. The target application is mixed with the other jobs
which we call background applications. This is achieved by inserting the job with the target application
at random points in the job trace. The target application will eventually be scheduled along with other
background applications on the target machine. The job scheduling and resource provisioning algorithms
will determine the exact resources used to run the target application and the other applications. Depending
on the job placement, it is possible that significant traffic from all applications may cause contentions for
the available network bandwidth and therefore impact their performance.

To measure the influence of runtime conditions on application performance we designed an experiment
that exposes an application to different runtime conditions with various degree of network congestion.
Fig 6 shows predicted runtime for an application performing MPI even—-odd rank communication among
1024 ranks. The system was configured with a torus interconnect with 9,216 compute nodes. We vary
the number of jobs running the same application from 1 to 9. We use random job placement. The result
shows that the application experiences 2.5x slowdown under heavily congested network conditions, which
underlines the importance of system runtime conditions in predicting application performance.

The next experiment was designed to measure the stress on the network resulted from running a job
at different system runtime state. For this experiment, we chose a target application running with 2,048
ranks, where each process performs point-to-point communication with its neighbors in a 3D arrangement;
the application is called stencil-3d. In this experiment, we randomly insert 10 stencil-3d jobs into a
set of 300 jobs from the ANL Intrepid workload trace log. The background jobs were chosen randomly
between two simple applications: an application performing an all-reduce operation and an application
performing a stencil-2d operation. We chose to use five different Cartesian splitting strategies for
task mapping. We measured the “hop-bytes” of the target application. The hop-bytes of a message is the
product of the number of hops taken by the message and the number of bytes carried by the message. The
hop-bytes of an application is the sum of hop-bytes of all messages transmitted by the application. Fig. 7
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shows the cumulative distribution in total hop bytes among the 10 runs of the target application; they vary
significantly. This demonstrates that the state of the system and task mapping can significantly influence
the application behavior.

The last experiment tries to assess the parallel performance of our scheduler simulator. As mentioned
earlier, the simulator is built using PPT in Python; the simulator supports parallel discrete-event simulation
using MPI. In this experiment we measure the simulation runtime of mpi_allreduce with 1 KB data
for 8K ranks on Cielo (one on each node) with different virtual partitions (1, 4, and 16). We conducted the
experiment on a workstation equipped with two 8-core Intel Xeon E5-2450 processors (at 2.1 GHz clock
frequency) and 48 GB of shared memory. Fig. 8 shows the result of running the simulation with various
number of MPI processes (cores). The result shows a speedup as much as 6.5x on 16 cores. Extended
performance studies are warranted and planned for future investigation.

4 CONCLUSION

In this paper we propose a simulator for scheduling parallel workloads and model application placements on
large-scale high-performance computing platforms. Our preliminary experiments show that the application
performance can vary significantly for various job scheduling and task mapping algorithms, as well as the
runtime conditions of the target platform. The proposed simulator is unique in that it incorporates full-scale
models for parallel applications and parallel architectures.

In the next step, we plan to carefully study different job scheduling and task mapping solutions,
including various backfilling algorithms. Some of the available placement policies such as random and
round-robin are somewhat independent of underlying interconnection networks. As dragonfly and fat-tree
based interconnection networks become more common in newer system design, we would like to focus
more on the newer architectures, design and evaluate various advanced dynamic job scheduling and job
placement strategies.

As the HPC community is advancing toward exascale, better solutions are needed to improve both system
utilization and application performance. To a large extent, better scheduling and placement algorithms
depends on the accurate prediction of application performance and overall system state. Machine learning
techniques has been used to predict application behavior and we are investigating various methods to help
predict the runtime state of the HPC systems. We plan to extend our job scheduler simulator to incorporate
these advanced methods for large-scale performance evaluation studies.
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