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ABSTRACT 

We define an operational (transition system) semantics for the two most basic forms of Discrete Event 

Simulation (DES): event-based simulation (without objects) and object-event simulation. We show that 

under our operational semantics, DES models correspond to a certain form of abstract state machines 

(ASMs) such that the Future Event List (FEL) is part of the transition system state and the transition func-

tion is based on event routines. Unlike other formalisms proposed for DES (such as Petri Nets or DEVS), 

our ASM semantics takes all basic DES concepts (like event types and the FEL) into consideration and 

allows for expressive transition system states representing the objects, properties, relations and functions 

of the evolving possible worlds of a simulation run. As a direct formal semantics of DES, it provides a 

basis for comparing, and explaining design choices in, different DES approaches.  

1  INTRODUCTION 

The term Discrete Event Simulation (DES) has been established as an umbrella term subsuming various 

kinds of computer simulation approaches, all based on the general idea of modeling a discrete dynamic 

system by modeling its state as being composed of state variables, and modeling its dynamics by model-

ing the events that are responsible for its state changes. There is, however, no generally accepted defini-

tion of DES. Simulation textbooks, like (Banks et al. 2005), and tutorials, like (Ingals 2008), avoid defin-

ing the term “DES” in a precise way.  

Pegden (2010) characterizes the various forms of DES in terms of three paradigms (“worldviews”), 

which are discussed in Section 2. In this paper, we propose an operational semantics, based on the con-

cept of transition systems, for two of these paradigms: the event worldview (without objects) and the ob-

ject worldview (in the form of the object-event worldview). Because Pegden’s third paradigm (originally 

called “process worldview”, but better called processing network worldview, since it is not about a gen-

eral concept of processes, but about processing, or queueing, networks) can be viewed as a conservative 

extension of the object-event worldview, it is possible to extend our formal semantics, such that it pro-

vides a direct formal semantics of processing network simulations. 

According to our semantics, a DES model, together with an initial state, defines a (typically non-

deterministic) transition system corresponding to an abstract state machine (ASM) in the sense of 

Gurevich (1985). Despite their name, ASMs allow non-abstract transition systems with a rich state struc-

ture defined by a predicate logic language with predicates, function symbols and constant symbols, as 

explained by Reisig (2008). This implies that they also support state structures defined by object-oriented 

(OO) languages where object types and datatypes (classes) define unary predicates/relations and proper-

ties define binary relations and functions. 

Unlike classical formalisms proposed for DES, like Petri Nets (Jensen et al. 2007) or DEVS (Zeigler 

et al. 2000), which do not include events and an FEL as first-class citizens and do not consider states 

composed of objects, our ASM semantics of DES accounts for the basic DES concepts (such as events 
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and an FEL) and allows for “natural” transition system states representing the events, objects, properties, 

relations and functions of possible worlds (being ∑-structures) as interpretations of a predicate logical 

language (based on a signature ∑) in the sense of Tarski’s mathematical theory of truth (Tarski 1954). 

We also briefly argue that our ASM semantics of DES provides the basis for improving/extending the 

formalism and diagram language of Event Graphs by adding the concepts of (1) conditional branching 

through event rules and (2) objects as state components. 

2 DISCRETE EVENT SIMULATION PARADIGMS 

Pegden (2010) explains that the 50 year history of DES has been shaped by three fundamental paradigms: 

Markowitz, Hausner, and Karr (1962) pioneered the event worldview with SIMSCRIPT, Gordon (1961) 

pioneered the processing network worldview with GPSS, and Dahl and Nygaard (1967) pioneered the 

object worldview with Simula. Notice that we have changed Pegden’s original name “process worldview” 

to “processing network worldview” because this paradigm is not based on a general concept of processes, 

but rather on a special concept of processing processes where entities are subject to processing steps per-

formed at the nodes of a (queueing) network. 

We illustrate the proposed formal semantics of DES with the help of an example. We model a system 

of one or more service desks, each of them having its own queue, as a discrete event system characterized 

by the following narrative: 

 

1. Customers arrive at a service desk at random times. 

2. If there is no other customer in front of them, and the service desk is available, they are served 

immediately, otherwise they have to queue up in a waiting line. 

3. The duration of services varies, depending on the individual case.  

4. When a service is completed, the customer departs and the next customer is served, if there is still 

any customer in the queue. 

2.1 The Event Worldview 

According to Pegden (2010), the most fundamental DES paradigm is the event worldview, where the sys-

tem under investigation is viewed as a series of instantaneous events that change its state over time. The 

modeler “defines the events in the system and models the state changes that take place when those events 

occur”. More precisely, the modeler defines the types of events that cause state changes and/or follow-up 

events.  

Pegden also explains that in the event worldview,  

 

1. a simulation creates events that are supposed to occur in the future (called future events) 

2. future events are scheduled (using an event scheduling mechanism),  

3. time advances to the time of the next event (next-event time progression) 

4. the series of events corresponds to a sequence of state transitions of a transition system where the 

“transition logic” of each event type is specified in the form of a procedure definition. 

 

The “transition logic” procedures defined for all event types of an event-based simulation model are 

often called event routines. They can be expressed at an abstract level, e.g., using pseudo code as in 

(Pegden 2010), or in a simulation or programming language. In an object-oriented approach, it is natural 

to define an event routine as a method of the class defining the event type.  

Pegden does not make any attempt to clarify the philosophical nature of (types of) events and their 

“transition logic”. We have argued in (Guizzardi and Wagner 2013) that, philosophically, (1) all events 

have participants (objects that participate in them); (2) the combination of an event type and its “transi-

tion logic” procedure (or event routine) amounts to an event rule of the form ON event DO procedure, 

which captures the type of dispositions inherent in the participants of events of that type.  
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Event rules model the causal regularities of a discrete dynamic system by defining what happens 

when an event (of a certain type) occurs, or, more specifically, which state changes and which follow-up 

events are caused by an event of that type. Event rules can be expressed at an abstract level, e.g., using 

pseudo-code or process models as shown in (Wagner et al. 2016), or in a simulation or programming lan-

guage. For instance, Table 1 shows the two event rules defining the transition logic of a simple model of 

the service desk system, expressed in pseudo-code. 

Table 1: Event rule examples. 

Event rule name ON (event type) DO (event routine) 

rArr Arrival @ t 

SCHEDULE Arrival @ (t + recurrence()) 

INCREMENT queueLength 

IF queueLength = 1 

THEN SCHEDULE Departure @ (t + serviceDuration())  

rDep Departure @ t 

DECREMENT queueLength 

IF queueLength > 0 

THEN SCHEDULE Departure @ (t + serviceDuration())  

 

 The model is based on two types of events: Arrival and Departure (for simplicity, it abstracts away 

from the fact that both have a service desk as their participant). It has only one state variable: 

queueLength. Notice that both event routines invoke the function serviceDuration(), which implements a 

random variable modeling the variations in the duration of service activities. 

2.1 The Object-Event Worldview 

The event worldview is ontologically incomplete because the real world essentially consists of objects 

and events, as argued philosophically by Casati and Varzi (2015), and as implied by the object worldview 

pioneered by Dahl and Nygaard (1967) with their influential simulation programming language Simula. 

The main concepts of Simula are classes (with subtyping), objects and procedures, while events are only 

implicitly available in the form of procedure calls. 

 Combining the event and the object worldviews results in the object-event worldview, in which both 

objects and events are first-class citizens. We define a DES formalism for the object-event worldview in 

Section 4. 

2.2 The Processing Network Worldview 

In this DES paradigm, the system under investigation is described as a processing network where “passive 

entities flow through the system” (or, more precisely, work objects are routed through the network) and 

are subject to a series of processing steps performed at processing nodes through activities, possibly re-

quiring resources and inducing queues of work objects waiting for the availability of resources. This ap-

proach, mainly pioneered by GPSS, SIMAN and Arena, is still widely used today. 

The concepts of the processing network worldview can be defined on the basis of objects and events. 

It can therefore be considered as a conservative extension of the object-event worldview.  

3 A TRANSITION SYSTEM SEMANTICS FOR THE EVENT WORLDVIEW 

3.1 Basic Concepts 

The base concepts of the event worldview are: 

  

1. state variables, 
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2. event types,  

3. event expressions,  

4. event routines, 

5. future events lists (FEL). 

 

 A state variable is declared with a name and a range, which is a datatype defining its possible values.  

 An event type is defined in the form of a class: with a name, a set of property declarations and a set of 

method definitions, which together define the signature of the event type.  

 An event expression is a term E(x)@t where 

 

1. E is an event type,  

2. t is a parameter for the occurrence time of events, 

3. x is a (possibly empty) list of event parameters x1, x2, …, xn according to the signature of the event 

type E 

 

 For instance, Arrival@t is an event expression for describing Arrival events where the signature of 

the event type Arrival is empty, so there are no event parameters, and the parameter t denotes the arrival 

time (more precisely, the occurrence time of the Arrival event). An individual event of type E is a ground 

event expression, e = E(v)@i, where the event parameter list x and the occurrence time parameter t have 

been instantiated with a corresponding value list v and a specific time instant i. For instance, Arrival@1 is 

a ground event expression representing an individual Arrival event. 

An event routine is a procedure that essentially computes state changes and follow-up events, possi-

bly based on conditions on the current state. In practice, state changes are often directly performed by 

immediately updating the state variables concerned, and follow-up events are immediately scheduled by 

adding them to the FEL, as in the rules described in Table 1. For our formal semantics, we assume that an 

event routine is a pure function that computes state changes and follow-up events, but does not apply 

them, as in the rules described in Table 2. 

Table 2: Expressing event routines as pure functions that compute state changes and follow-up events. 

Event rule name ON (event expression) DO (event routine) 

rArr Arrival @ t 

E’ := { Arrival @ (t + recurrence())} 

Δ := { INCREMENT queueLength} 

IF queueLength = 0 

THEN E’ := E’  { Departure @ (t + serviceDuration())} 

RETURN  ⟨ Δ, E' ⟩ 

rDep Departure @ t 

E’ := {} 

Δ := { DECREMENT queueLength} 

IF queueLength > 1 

THEN E’ := E’  { Departure @ (t + serviceDuration())} 

RETURN  ⟨ Δ, E' ⟩  

 

 An event rule associates an event expression with an event routine F: 

ON E(x)@t DO F( t, x), 

where the event expression E(x)@t specifies the type E of events that trigger the rule, and F( t, x) is a 

function call expression for computing a set of state changes and a set of follow-up events, based on the 

event parameter values x, the event's occurrence time t and the current system state, which is accessed in 

the event routine F for testing conditions expressed in terms of state variables. 
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A Future Events List (FEL) is a set of ground event expressions partially ordered by their occurrence 

times, which represent future time instants either from a discrete or a continuous model of time. The par-

tial order implies the possibility of simultaneous events, as in the example { Departure@4, Arrival@4}. 

 A simulation state is a pair ⟨ S, FEL ⟩ consisting of a system state S and a future events list FEL. 

3.2 Exogenous Events 

The event type Arrival is an example of a type of exogenous events, which are not caused by any causal 

regularity of the system under investigation and, therefore, have to be modeled with a (typically stochas-

tic) recurrence function that allows to compute the time between two occurrences of events of that type. 

In simple DES approaches, and also in the pseudo-code of the Arrival event routine presented in (Pegden 

2010) and in our event rule tables, the event routine has to take care of creating the next event of an exog-

enous event type, but it is preferable if a discrete event simulator provides generic support for exogenous 

event types by means of a built-in mechanism that takes care of creating the next event whenever an event 

of that type is processed.  

3.3 Event-Based Simulation 

An event-based simulation (ES) model is a triple ⟨ SV, ET, R ⟩ where 

 

1. SV is a set of state variable declarations defining the structure of possible system states; 

2. ET is a set of event type definitions; 

3. R is a set of event rules expressed in terms of SV and ET. 

 

 We show how to express the example model of a simple service desk system as an ES model. The set 

of state variables is a singleton: 

 SV = { queueLength: NonNegativeInteger} 

There are two event types, both having an empty signature: 

 ET = { Arrival(), Departure()} 

And there are two event rules: 

 R = { rArr, rDep} 

which are defined as in Table 1 above. 

 Such a model, together with an initial state (specifying initial values for state variables and initial 

events), defines an ES system, which is a transition system where  

 

1. system states are defined by value assignments for the state variables, 

2. transitions are provided by event occurrences triggering event rules that change the simulation 

state through changing the system state (by changing the values of affected state variables) and 

the FEL (by adding follow-up events).  

 

 Whenever the transitions of an ES system involve computations based on random numbers (if the 

simulation model contains random variables), the transition system defined is non-deterministic. 

 For instance, assuming that the initial system state is S0 = {queueLength: 0}, and there is an initial 

event {Arrival@1}, then, as a consequence of applying rArr, there is a system state change {queueLength 

:= 1} and, assuming a random service time of 2 time units (as a sample from the underlying probability 

distribution function), a follow-up event Departure@3, which has to be scheduled along with the next 

Arrival event, say Arrival@3 (with a random inter-arrival time of 2), because Arrival is an exogenous 

event type (with a random recurrence). Consequently, the next system state is S1 = {queueLength: 1}. 
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 We need to distinguish between the system state, like S0 = {queueLength: 0}, which is the state of the 

simulated system, and the simulation state, which adds the FEL to the system state, like 

S0 = ⟨{ queueLength: 0}, { Arrival@1}⟩ 

S1 = ⟨{ queueLength: 1}, { Arrival@2, Departure@3}⟩ 

Doing one more step, the next transition is given by the next event Arrival@2 again triggering rArr, which 

leads to 

S2 = ⟨{ queueLength: 2}, { Departure@3, Arrival@4}⟩ 

 In this way, we get a succession of states S0 → S1 → S2 → … as a history of the transition system de-

fined by the ES model. 

3.4 Event Rules as Functions 

An event rule r = ON E(x)@t DO F( t, x) can be considered as a 2-step function that, in the first step, 

maps an event e = E(v)@i to a parameter-free state change function re = F( i, v), which maps a system 

state to a pair ⟨ Δ, E' ⟩ of system state changes Δ and follow-up events E'. When the parameters t and x of 

F( t, x) are replaced by the values i and v provided by a ground event expression E(v)@i, we also simply 

write Fi,v instead of  F( i, v) for the resulting parameter-free state change function. 

 We say that an event rule r is triggered by an event e when the event’s type is the same as the rule’s 

event type. When r is triggered by e, we can form the state change function re = Fi,v and apply it to a sys-

tem state S by mapping it to a set of system state changes Δ and a set of follow-up events E': 

re(S) = Fi,v(S) = ⟨ Δ, E' ⟩  

 We can illustrate this with the help of our running example. Consider the rule rArr defined in Table 1 

above triggered by the event Arrival@1 in state S0 = {queueLength: 0}. The resulting state change func-

tion F1 defined by the corresponding event routine from Table 1 maps S0 to the set of state changes Δ = { 

INCREMENT queueLength} and the set of follow-up events E' = {Departure@3}. We show how the pair 

⟨ Δ, E' ⟩ amounts to a transition of the simulation state in the next section. 

In ES, a system state change is an update of one or more state variables. Such an update is specified 

in the form of an assignment where the right-hand side is an expression that may involve state variables. 

For instance, the state change INCREMENT queueLength is equivalent to the assignment queueLength 

:= queueLength + 1. 

 In general, there may be situations, where we have several concurrent events, that is, there may be 

two or more events occurring at the same (next-event) time. Therefore, we need to explain how to apply a 

set of rules RE triggered by a set of events E, even if both sets are singletons in many cases.  

 The rule set R of an ES model can also be considered as a 2-step function that, in the first step, maps a 

set of events E to a state change function RE, which maps a system state to a pair ⟨ Δ, E' ⟩ of state changes 

Δ and follow-up events E'. 

 For a given set of events E and a rule set R, we can form the set of state change functions obtained 

from rules triggered by events from E: 

RE = { re : r ∈ R & e ∈ E & e triggers r} 

 Notice that the elements C of RE are parameter-free state change functions, which can be applied as a 

block, in parallel, to a system state S: 

RE(S) = ⟨ Δ, E' ⟩  
with 

Δ = ⋃ { ΔC : C ∈ RE & C(S) = ⟨ ΔC, E'C ⟩ } 

E' = ⋃ { E'C : C ∈ RE & C(S) = ⟨ ΔC, E'C ⟩ } 
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 Notice that when forming the union of all state changes brought about by applying rules from RE, and 

likewise when forming the union of all follow-up events created by applying rules from RE, the order of 

rule applications does not matter because they do not affect the applicability of each other, so any selec-

tion function for choosing rules from RE and applying them sequentially will do, and they could also be 

applied simultaneously if such a parallel computation is supported. 

 However, computing a set of state changes Δ raises the question if this set is, in some sense, con-

sistent. A simple, but too restrictive, notion of consistent state changes would require that if Δ contains 

two or more updates of the same state variable, all of them must be equivalent (effectively assigning the 

same value). A more liberal notion just requires that if Δ contains two or more updates of the same state 

variable, their collective application must result in the same value for it, no matter in which order they are 

applied.  

 If Δ contains inconsistent updates for a state variable, this may be a bug or a feature of the simulation 

model. If it is not a bug, a conflict resolution policy is needed. The simplest policy is ignoring, or discard-

ing, all inconsistent updates. Another common conflict resolution policy is based on assigning priorities 

to event rules. 

 Consider again our running example with a system state S = {queueLength: 1} and the set of next 

events N = {Arrival@4, Departure@4}. Then, RN consists of the two parameter-free change functions:  

 

1. F1: function () {Δ := { INCREMENT queueLength}; IF queueLength = 0 THEN  

   E' := { Departure @ (4 + serviceDuration())}; RETURN ⟨ Δ, E' ⟩ } 

2. F2: function () {Δ := { DECREMENT queueLength}; IF queueLength > 1 THEN  

   E' := { Departure @ (4 + serviceDuration())}; RETURN ⟨ Δ, E' ⟩} 

 

 No matter in which order we apply F1 and F2, forming the union of their state changes always results 

in Δ = {}, because the incrementation and decrementation of the variable queueLength neutralize each 

other, and forming the union of their follow-up events always results in E' = { Departure@(4+d)} where d 

is the random value returned by the serviceDuration function. 

3.5 A Set of Event Rules as a Transition Function 

We show that the event rule set R of an ES model ⟨ SV, ET, R ⟩ defines a transition function that maps a 

simulation state ⟨ S, FEL ⟩ to a successor state ⟨ S', FEL' ⟩ in 3 steps:  
 

1. R maps the set of next events N extracted from the FEL to a set RN of state change functions of 

rules triggered by one of the next events from N. 

2. RN maps the current system state S to a set of state changes Δ and a set of follow-up events E'. 

3. The pair ⟨ Δ, E' ⟩ amounts to a transition of the current simulation state ⟨ S, FEL ⟩ by applying the 

updates from Δ to S yielding S’ and by removing N from FEL and adding E'. 

 

 We have already explained how to obtain RN from R and how to apply RN to S for getting ⟨ Δ, E' ⟩ in 

the previous subsection, so we only need to provide more explanation for the last step: processing ⟨ Δ, E' ⟩ 
for obtaining the next simulation state ⟨ S', FEL' ⟩. 
 We use the symbol Upd for denoting an update operation that takes a system state S and a set of state 

changes Δ, and returns an updated system state Upd( S, Δ). When the system state consists of state varia-

bles, the update operation simply performs assignments. Using this operation, we can define the third step 

of the simulation state transition function with two sub-steps in the following way: 

 

a) S' = Upd( S, Δ) 

b) FEL' = FEL - N  E' 
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 This completes our definition of how the event rule set R of an ES model works as a transition func-

tion that computes the successor state of a simulation state: 

R(⟨ S, FEL ⟩) = ⟨ S', FEL' ⟩ 

 such that for a given initial simulation state S0 = ⟨ S0, FEL0 ⟩, we obtain a succession of states  

S0 → S1 → S2 → … 

 by iteratively applying R: 

Si+1 = R( Si) 

Consider again our running example. In simple cases we do not have more than one next event, so RN is a 

singleton and we do not have to apply more than one rule at a time. For instance, when 

S1 = ⟨{ queueLength: 1}, { Arrival@2, Departure@3}⟩ 

There is only one next event: Arrival@2, so we do not have to form a set of applicable rules, but can 

immediately apply the rule triggered by Arrival@2 for obtaining a set of system state changes and a set of 

follow-up events: 

rArr ( S1) = ⟨{ queueLength := 2}, { Arrival@4}⟩ 

 Now consider a simulation state where we have more than one next event, like the following one: 

S3 = ⟨{ queueLength: 1}, { Arrival@4, Departure@4}⟩ 

We obtain  

R( S3) = ⟨{ queueLength: 1}, { Arrival@5, Departure@6}⟩ 

 assuming a random inter-arrival time sample of 1 and a random service duration sample of 2.  

4 A TRANSITION SYSTEM SEMANTICS FOR THE OBJECT-EVENT WORLDVIEW 

The object-event worldview is obtained from the event worldview by replacing the definition of system 

states given by state variables with system states given by a set of objects of certain types. It is a con-

servative extension of the event worldview since the attributes of objects can be considered as state varia-

bles.  

4.1 Basic Concepts 

The base concepts of the object-event worldview are:  

 

1. object types, 

2. event types,  

3. event expressions,  

4. event routines, 

5. future events lists (FEL). 

 

Both object types and event types are defined in the form of classes: with a name, a set of properties 

and a set of methods, which together define their signature.  

A property declaration defines the property’s name and its range, which is either a datatype or an ob-

ject type. When the range of a property is a datatype, we call it an attribute; otherwise, when its range is 

an object type, we call it a reference property. We make the simplifying assumption that all properties are 

functional (single-valued), so they assign instances of their range to instances of their domain (the object 

type for which they are defined).   
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 Event expressions, event routines, event rules and the FEL are defined in the same way as in the event 

worldview. However, event routines now have to deal with a more complex system state structure defined 

by the set of object types of the object-event simulation model. 

4.2 Object-Event Simulation 

Object-Event Simulation (OES) is a DES paradigm based on the object-event worldview. An OES model 

is a triple ⟨ OT, ET, R ⟩ where 

 

1. OT is a set of object types defining the state structure of the system; 

2. ET is a set of event types; 

3. R is a set of event rules (expressed in terms of OT and ET) defining the dynamics of the system, 

such that R contains a rule for each event type in ET. 

 

 We show how to express our running example model of a service desk system in the form of an OES 

model. The set of object types contains just one element with one attribute: 

 OT = { ServiceDesk( queueLength: NonNegativeInteger) } 

The set of event types contains, as before, two event types, which now have a reference property for ref-

erencing the service desk that participates in the event (that is, the service desk where the event occurs): 

 ET = { Arrival( sd: ServiceDesk), Departure( sd: ServiceDesk)} 

And, as before, there are two event rules: 

 R = { rArr, rDep} 

which are defined as in Table 3 below. 

Table 3: Event routines using the classes ServiceDesk, Arrival and Departure. 

Rule name  ON (event expression) DO (event routine) 

rArr Arrival( sd) @ t 

E' := { Arrival( sd) @ (t + Arrival.recurrence())} 

Δ := { INCREMENT sd.queueLength} 

IF sd.queueLength = 0 

THEN E' := E'  { Departure @ (t + ServiceDesk.serviceDuration())} 

RETURN  ⟨ Δ, E' ⟩ 

rDep Departure( sd) @ t 

E' := {} 

Δ := { DECREMENT sd.queueLength} 

IF sd.queueLength > 1 

THEN E' := E'  { Departure @ (t + ServiceDesk.serviceDuration())} 

RETURN  ⟨ Δ, E' ⟩  

 

Compared to the event rules of the ES model defined in Table 2, there are three differences: 

 

1. The event expressions Arrival( sd)@t and Departure( sd)@t do not only have a parameter t for 

the occurrence time, but, in addition, a parameter sd for referencing the service desk object where 

the event occurs. This facilitates extensions of the simple model by adding further service desks. 

2. While the state variable queueLength is defined as a global variable in the ES model, it is defined 

as a an attribute (a variable associated with an object) in the OES model. This facilitates exten-

sions of the simple model by adding further service desks, each with its own queue. 

3. The functions recurrence() and serviceDuration() are now expressed as class-level (“static”) 

methods of the classes to which they logically belong, Arrival and ServiceDesk. 

770



Wagner 

 

 An OES model, together with an initial state (of initial objects and initial events), defines an OES 

system, which is a transition system where  

1. a system state is given by the union of all property-value slots of all objects; 

2. transitions are provided by event occurrences triggering event rules that change the simulation 

state through changing the system state (by changing the states of affected objects) and the FEL 

(by adding follow-up events).  

 

 For instance, assuming that the initial state is S0 = {queueLength: 0}, and there is an initial event {Ar-

rival@1}, then, as a consequence of applying rArr, there is a state change {queueLength := 1} and, assum-

ing a random service time sample of 2 time units, a follow-up event Departure@3, which has to be sched-

uled along with the next Arrival event, say Arrival@3 (with a random inter-arrival time sample of 2), 

because Arrival is an exogenous event type (with a random recurrence). Consequently, the next state is S1 

= {queueLength: 1}. 

5 ES AND OES SYSTEMS AS ABSTRACT STATE MACHINES 

We show in a sketchy manner that the simulation systems defined by ES models and OES models are 

special types of abstract state machines (ASMs) in the sense of Gurevich (1985). An elaborated formal 

treatment would require too much space and would not necessarily be more accessible to those readers 

that are not familiar with Tarski’s model theory (Tarski 1954). 

 ASMs are transition systems with ∑-structures (“models”) as states and sets of update rules as transi-

tions. According to Gurevich, they provide “a computation model that is more powerful and more univer-

sal than standard computation models”.  

 ASMs have been applied in computer science for formal specification in various domains such as 

hardware and software architectures, protocols, and programming languages (Börger and Stärk 2003). A 

good introduction to ASMs is provided by Reisig (2008). 

An ES model defines a signature ∑ in the following way: 

1. Its set of state variables defines a set of constant symbols. 

2. Its set of event types E in ET defines a set of unary predicates, and each property defined for an 

event type E defines a function from the population of E to the range of the property. 

 

An ES state consists of a value assignment for the set of state variables corresponding to an interpre-

tation of a set of constants by a ∑-structure, and a set of ground event expressions over ET as the value of 

the FEL corresponding to an interpretation of ET as a set of event types where each event type E in ET 

corresponds to a unary predicate that is interpreted by the set EI collecting all events e in FEL of type E, 

and each attribute a of E is interpreted as a function from  EI to the range of a defined by the pairs ⟨e, e.a⟩ 
where e.a denotes the value of a for e as defined by the ground event expression e. 

An OES model defines a signature ∑ in the following way: 

1. Its set of object types O in OT defines a set of unary predicates, and each property defined for an 

object type O defines a function from the population of O to the range of the property. 

2. Its set of event types E in ET defines a set of unary predicates, and each property defined for an 

event type E defines a function from the population of E to the range of the property. 

 

An OES state consists of populations for the object types in OT and a set of ground event expressions 

over ET as the value of the FEL, corresponding to populations for the event types in ET. As explained for 

event types above, each population of an object or event type T corresponds to an interpretation of T as a 

set of objects or events, and of T’s properties as functions. 

The set R of event rules of an (O)ES model corresponds to a set of update rules that can be applied 

simultaneously to a simulation state resulting in an ASM transition. 
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6 RELATED WORK 

There are three established formalisms for DES. Schruben (1983) has proposed to use Event Graphs as a 

diagram language (with an operational semantics) for specifying ES models. Zeigler et al. (2000) have 

proposed a number of formalisms for capturing various aspects of system simulation using the acronym 

DEVS. Jensen et al. (2007) define the graph formalism of Colored Petri Nets for simulating distributed 

and concurrent processes based on the concepts of places and transitions. 

 As can be seen in Table 4, which summarizes the basic terms/concepts of these formalisms and of our 

(O)ES ASM semantics, neither Petri Nets nor DEVS support objects (with properties, relations and func-

tions) and events (with an FEL and an event scheduling mechanism) as first class citizens. Rather, the 

basic DES concepts have to be mapped to (or interpreted as) suitable elements of these formalisms. For 

instance, event types are typically mapped to transitions in Petri nets and to input ports in DEVS. Thus, 

these computational formalisms only provide an indirect semantics for DES. 

 Only Event Graphs and our ES ASMs provide a direct semantics of basic DES without objects, and 

only our OES ASMs provide a direct semantics of basic DES with objects. 

As opposed to our ES ASM semantics, Event Graphs do not support expressing conditional state 

changes, but only conditional event scheduling. In general, however, event routines (within event rules) 

may specify conditional state changes, which would require a modification of Event Graphs. Our ES 

ASMs provide a formal basis for such an improvement of Event Graphs by adding conditional branching 

(e.g., in the visual form of BPMN gateways) and by moving state change annotations from event circles 

to (the end of) edges/arrows pointing to follow-up events. This has to be elaborated in future work. 

A further possible generalization of Event Graphs is based on our OES ASMs: adding the concept of 

objects such that conditions and state change expressions may to refer to the state of specific objects. This 

would harmonize the Event Graph formalism with object-oriented programming. 

Table 4: Comparing the basic terms/concepts of DES formalisms. 

Formalism Basic terms/concepts States 

(Colored) Petri Nets places, transitions, arcs markings with (colored) tokens 

DEVS states, time advance, internal transition func-

tion, outputs and output ports, output function, 

inputs and input ports, external transition func-

tion 

named black boxes, no state 

structure is considered (in ex-

amples, state variables are used)  

Event Graphs FEL, event type nodes with state change anno-

tations, (conditional) event scheduling edges 

sets of state variables 

(O)ES ASMs event types, event expressions, FEL, event 

routines/rules with state changes and event 

scheduling 

sets of state variables (or objects 

with property-value slots) 

7 CONCLUSIONS 

We have proposed a new formalization of discrete event simulation on the basis of abstract state ma-

chines, which are transition systems with highly expressive states in the form of ∑-structures. The pro-

posed formalization allows precise definitions of the two most basic forms of DES: (1) ES, which is 

based on the event worldview, and (2) OES, which is based on the object-event worldview. The terminol-

ogy and precisely defined concepts of our formalization provide a basis for comparing, and explaining 

design choices in, different DES approaches. 

A web-based implementation of OES is presented in (Wagner 2017a) and an introduction to infor-

mation and process modeling for OES is provided in (Wagner 2017b). 

In future work, we will show that our formalization allows defining abstract discrete event simulators, 

which are reference algorithms that define the captured form of DES in a computationally precise way.  

772



Wagner 

 

REFERENCES 

Banks, J., J.S. Carson, B.L. Nelson, and D.M Nicol. 2005. Discrete-Event System Simulation. Pearson 

Prentice Hall. 

Börger, E., and R. Stärk. 2003. Abstract State Machines - A Method for High-Level System Design and 

Analysis. Springer-Verlag. 

Casati, R., and A. Varzi. 2015. Events, In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, 

http://plato.stanford.edu/archives/win2015/entries/events/ 

Dahl, O.-J., and K. Nygaard. 1967. Simula 67. IFIP TC 2 Working Conference on Simulation Languages, 

Oslo. 

Gordon, G. 1961. “A General Purpose Systems Simulation Program.” In Proceedings of the Eastern Joint 

Computer Conference, Washington, D.C. 

Guizzardi, G., and G. Wagner. 2013. “Dispositions and Causal Laws as the Ontological Foundation of 

Transition Rules in Simulation Models.” In Proceedings of the 2013 Winter Simulation Conference, 

edited by R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, 1335–1346. Piscataway, New 

Jersey: IEEE.  

Gurevich, Y. 1985. “A New Thesis.” American Mathematical Society Abstracts, page 317, August 1985. 

Ingalls, R.G. 2008. “Introduction to Simulation”. In Proceedings of the 2008 Winter Simulation Confer-

ence, edited by S.J. Mason, R.R Hill, L. Monch, O. Rose, T. Jefferson and J. W. Fowler, 17–26. Pis-

cataway, New Jersey: IEEE. 

Jensen, K., L.M. Kristensen, and L. Wells. 2007. “Coloured Petri Nets and CPN Tools for Modelling and 

Validation of Concurrent Systems.” International Journal on Software Tools for Technology Transfer 

(STTT) 9(3/4): 213–254. 

Markowitz, H., B. Hausner, and H. Karr. 1962. SIMSCRIPT: A Simulation Programming Language. Eng-

lewood Cliffs, N. J.: Prentice Hall. 

Pegden, C.D. 2010. “Advanced Tutorial: Overview of Simulation World Views.” In Proceedings of the 

2010 Winter Simulation Conference, edited by B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan 

and E. Yucesan, 643−651. Piscataway, New Jersey: IEEE. 

Reisig, W. 2008. “Abstract State Machines for the Classroom.” In D. Bjorner and M.C. Henson (Eds.), 

Logics of Specification Languages, Springer-Verlag, 15–46. 

Schruben, L. 1983.“Simulation Modeling with Event Graphs.” Communications of the ACM 26:957-963. 

Tarski, A. 1954. “Contributions to the Theory of Models I”. Indagationes Mathematicae 16:572–581. 

Wagner, G. 2017a. “Sim4edu.com – Web-Based Simulation For Education.” In Proceedings of the 2017 

Winter Simulation Conference, edited by W.K.V. Chan, A. D'Ambrogio, G. Zacharewicz, N. Musta-

fee, G. Wainer and E. Page, to appear. Piscataway, New Jersey: IEEE. 

Wagner, G. 2017b. “Introduction to Information and Process Modeling for Simulation” In Proceedings of 

the 2017 Winter Simulation Conference, edited by W K.V. Chan, A. D'Ambrogio, G. Zacharewicz, N. 

Mustafee, G. Wainer and E. Page, to appear. Piscataway, New Jersey: IEEE. 

Zeigler, B.P., T.G. Kim and H. Praehofer. 2000. Theory of Modeling and Simulation. Academic Press, 

London.  

AUTHOR BIOGRAPHIES 

GERD WAGNER is Professor of Internet Technology in the Dept. of Informatics, Brandenburg Univer-

sity of Technology, Cottbus, Germany, and Adjunct Associate Professor in the Dep. of Modeling, Simula-

tion and Visualization Engineering, Old Dominion University, Norfolk, VA, USA. His research interests 

include modeling and simulation, foundational ontologies, knowledge representation and web engineer-

ing. His email address is G.Wagner@b-tu.de. 

 

773


