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ABSTRACT 

The energy and power consumed by computing applications have long been important concerns in mobile 
systems and have recently become of great interest in high performance and cloud computing. To date, 
only a limited amount of work has considered power consumption in parallel and distributed simulation 
systems. A variety of options to reduce power consumption in these systems are discussed, suggestive of 
directions for future research in this increasingly important area. 

1 INTRODUCTION 

Energy consumption has long been a major concern in mobile computing systems. Reduced energy 
consumption can lead to longer times between recharging and/or the ability to use smaller, lighter weight 
batteries. Executing parallel and distributed simulations on mobile computing platforms is an area of 
increasing interest in the context of symbiotic simulations (Fujimoto et al. 2002) or dynamic data-driven 
application systems (DDDAS) (Darema 2004). Such systems involve incorporating live data from 
instrumented systems into simulations in order to optimize the system and/or steer the measurement 
process. Trends such as edge computing are pushing computations away from centralized computing 
facilities into devices embedded in and interacting with the real world. Placing the simulations in close 
proximity to the physical system, e.g., within a sensor network, reduces or eliminates reliance on 
connectivity to the central command center, offers the potential for greater scalability, enables faster 
response time for latency-critical applications, and avoids privacy issues associated with storing data in a 
centralized facility. In situations such as these the simulation may need to operate on battery-operated 
mobile devices, so energy consumption becomes an important concern. 
 For example, distributed simulations can be used to create adaptive sensor networks to monitor 
dynamically changing physical systems. A collection of small, battery-operated unmanned aerial vehicles 
(UAVs) might be assigned the task of monitoring a physical system, e.g., tracking the flow of traffic in a 
city, monitoring the spread of a forest fire, or assessing the dispersion of a hazardous chemical plume 
following an accident (Fujimoto et al. 2007; Kamrani and Ayani 2007; Madey et al. 2012). Each UAV is 
equipped with sensors, an on-board computer, and wireless communications, and assigned to collect 
information in a certain geographical area. Collectively the team of UAVs may then execute a distributed 
simulation to project the future state of the system, e.g., to predict the evolution of the fire in order to 
determine how best to relocate the UAVs in order to continue monitoring its spread. 

In other contexts it may be more appropriate to utilize remote servers, e.g., computation resources 
available in the cloud, to execute the simulations. Here the sensor nodes are only used for data collection 
and aggregation. Indeed, this approach is more commonly used today. Use of remote servers may be 
preferable if the embedded computational resources are insufficient to complete the simulations in a 
timely fashion, the latency associated with communications to and from the remote servers is acceptable, 
and use of aggregated data feeds yields sufficiently accurate simulation results. Here, the power utilized 
for communication with battery-powered nodes as well as that consumed by the remote server systems, as 
discussed momentarily, may be of greater concern. 
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In high performance computing power consumption is a major impediment to achieving increased 
levels of performance due to limitations in dissipating heat from electronic circuits. It has been cited as a 
key hurdle in achieving exascale performance in supercomputers. The Thermal Design Power (TDP) is 
the amount of heat generated by a computer chip or component during normal operation for which the 
cooling system has been designed (Huck 2011). Power capping used in some systems places a maximum 
amount of power that can be consumed by a computer server. A typical goal for an HPC application 
might be to minimize execution time subject to staying within the specified power cap constraint. 

Further, power consumption in supercomputers and data centers used for cloud computing 
applications is a major operating expense. The U.S. Department of Energy has set a goal of 20 megawatts 
as the maximum power consumed by an exascale supercomputer. Electricity is a major cost in operating 
data centers. It is estimated that in total, data centers consumed approximately 70 billion kW-hours or 
about 1.8% of the total electricity consumption in the U.S. in 2014 (Shehabi et al. 2016). As such, 
reducing power consumption is increasing in importance for high performance and cloud computing 
applications.  

2 PARALLEL AND DISTRIBUTED SIMULATION 

We first review key concepts and algorithms in parallel and distributed simulation that will be utilized 
later. Further discussion of this topic can be found in (Fujimoto 2000). Parallel simulation is concerned 
with distributing the execution of a simulation program across the processors in a tightly coupled 
multiprocessor. The principle goal is usually to reduce execution time. Here, we are primarily concerned 
with discrete event simulations. Parallel execution is accomplished by partitioning the system being 
modeled into a set of physical processes, and modeling each physical process with a simulation program 
referred to as a logical process (LP). LPs communicate exclusively by exchanging timestamped events or 
messages. Each event/message contains a timestamp with a value in simulation time indicating when that 
event would occur in the physical system. Sending a message from one LP to another is equivalent to the 
sending LP scheduling a new event at the receiving LP. The state variables making up the simulation are 
partitioned among the LPs; no shared state among the LPs is allowed. The parallel simulator is often 
partitioned into two components – the simulation engine that manages the execution of the simulation and 
is independent of the particular simulation application being studied, and the simulation application that 
includes the model where all aspects related to the domain of application are represented. 

Distributed simulation typically refers to the execution of the simulation on a loosely coupled 
distributed computing platform such as processors interconnected by a local or wide area network. While 
scalability and performance is often a goal or requirement in distributed simulations, often a more 
compelling objective is to interconnect or federate separately developed simulators, thereby realizing 
great cost savings via software reuse compared to developing new simulation models. A key challenge is 
to allow separately developed simulators to interoperate and exchange data. Standards such as the High 
Level Architecture (IEEE Std 1516.3-2010 2010) and Distributed Interactive Simulation (IEEE Std 
1278.1-1995 1995) have been developed to facilitate interoperability. Middleware often referred to as 
Runtime Infrastructure (RTI) software implements services for simulations to exchange data, 
synchronize, and manage the execution of the distributed simulation. Like the simulation engine in a 
parallel simulator, RTI software is often independent of the simulation application being studied. 

Parallel and distributed simulations are different, but share many aspects in common. In the 
following, when the distinction is not important, we simply use the term “distributed simulation” to 
generically refer to both. 

2.1 Synchronization 

Parallel and distributed simulations that are used for system analysis (as opposed to training) utilize 
mechanisms to ensure that the parallel/distributed execution yields the same results as a sequential 
execution. In discrete event simulations this is accomplished by ensuring that the events processed within 
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each LP are processed in timestamp order. Provided events with the same timestamp are processed in the 
same order by the parallel/distributed and sequential simulation, ensuring each LP processes events in 
timestamp order is sufficient to ensure that the same results as a sequential simulation are produced. 

There are two major categories of synchronization algorithms used to ensure each LP processes 
events in timestamp order. The first, called conservative synchronization, ensures that each LP never 
processes an event until it can guarantee that it will not later receive an event containing a smaller 
timestamp. This can be accomplished by each LP determining a lower bound on timestamp (LBTS) of 
any message it might later receive. The earliest algorithms developed independently by Chandy and Misra 
(Chandy and Misra 1979) and Bryant (Bryant 1977) are known as the null message or 
Chandy/Misra/Bryant (CMB) algorithm. CMB has LPs send dummy or “null” messages to each other 
indicating a lower bound on the time stamp of any message it might send in the future. This lower bound 
is computed using the LP’s current simulation time, and the minimum amount of simulation time into the 
future that could be used to generate a new message. This latter value is referred to as the LP’s lookahead. 
Lookahead is a fundamental requirement of all conservative simulations, and a large lookahead value 
relative to the average amount of simulation time between events in an LP is usually required to achieve 
efficient execution. Second generation conservative algorithms also utilized the timestamp of the next 
unprocessed event within each LP to compute LBTS values. This can greatly improve the efficiency of 
the algorithm, but large lookahead values are still required. 

The other major approach is called optimistic synchronization. Jefferson’s Time Warp algorithm was 
the first, and remains the most well-known optimistic algorithm (Jefferson 1985). While conservative 
algorithms avoid synchronization errors, i.e., processing events within an LP out of timestamp order, 
optimistic algorithms use a detection and recover approach. An LP can easily detect when it has 
processed events out of timestamp order by simply comparing the timestamp of each incoming message 
with that of the last event it processed. The computations associated with events with timestamp larger 
than the incoming message must be rolled back. Rolling back an event involves restoring the state 
variables of an LP to that which existed prior to processing the event, and “unsending” any messages sent 
by the rolled back event. The latter is accomplished in Time Warp using a mechanism called anti-
messages that cancel previously sent messages. Anti-messages may cause additional rollbacks, leading to 
the possibility of rollback cascades where one rollback results in a second, or third, etc. Time Warp also 
requires the computation of a value called Global Virtual Time (GVT) which is a lower bound on the 
timestamp of future rollbacks. GVT is required to reclaim memory, e.g., snapshots of LP state variables 
needed because of the possibility of rollback, and to perform operations such as I/O that cannot be rolled 
back. A number of other optimistic synchronization algorithms were developed after Time Warp 
appeared, however, most rely on the basic mechanisms used by Time Warp described above. 

From the standpoint of power and energy consumption, synchronization is important because it 
represents overheads required by the distributed simulation, separate from the simulation application. The 
amount of power and energy required for synchronization can be a significant concern in parallel and 
distributed simulations. More will be said about this later. 

2.2 Data Distribution 

A second major function in distributed simulation concerns the distribution of information among the 
LPs or federates making up the simulation. Data distribution in parallel discrete event simulations is 
usually relatively straightforward because the parallel simulator is developed as a single unified body of 
code so the sending LP knows which other LP(s) should receive the messages it is sending. In federated 
distributed simulations this is not so straightforward because each federate is designed to be an 
autonomous simulator that can interoperate with other simulations that were developed separately from 
each other. When the state of a federate such as the position of a moving vehicle modeled by that federate 
changes, it is not immediately obvious which other simulators should receive a message notifying them of 
this update. The simulators modeling vehicles that can “see” the moving vehicle should receive 
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notification, however, the federate modeling the moving vehicle does not know which other federates are 
modeling these vehicles. Data distribution is typically accomplished by RTI software that matches the 
interests of each federate with information concerning the messages that are produced. In the High Level 
Architecture, for example, the data distribution management (DDM) services match data publishers with 
subscribers, and route messages to federates accordingly. Computations and communication are required 
to determine who is to receive what messages, and to maintain information necessary to determine 
receivers, translating into power consumption. 

3 DEFINITIONS AND TERMS 

Energy and power are two related, but distinct quantities. Energy is commonly defined as “the 
capacity for doing work” (Encyclopedia Britanica 2000), and here refers to the energy expended by the 
computing system to execute a distributed simulation. A joule corresponds to the energy required to move 
one coulomb of electric charge through an electric potential of one volt. Power refers to the amount of 
energy consumed per unit of time, with one watt referring to the expenditure of one joule of energy per 
second. Minimizing energy usage and power consumption are not the same thing (Unsal 2008). For 
example, decreasing the clock rate of the processor can lead to less power consumption. However, this 
will usually lead to longer execution times and can increase the total amount of energy needed to 
complete the computation. Energy or power may be much more important depending on the context in 
which the simulation is operating. Here, we are concerned with both power and energy consumption, but 
use the term “power” whenever the distinction between the two is not important. 

For computing platforms operating on batteries energy consumption is usually the principle concern. 
Batteries convert chemical energy from materials within the fuel cell into electricity. A battery has a fixed 
energy capacity that is defined as the amount of electrical charge the battery can deliver at its rated 
voltage, measured in amp-hours (Wikipedia 2017). Thus, the amount of energy consumed by a 
computation directly impacts the battery’s lifetime. Reducing power consumption is not helpful in 
addressing battery lifetime or size concerns if it does not result in a reduction of the total amount of 
energy consumed by the computation. 

Concerns regarding heat dissipation and electric power bills suggest that power may be a greater 
concern for parallel simulations rather than energy, per se. Certainly this is true if the objective is to meet 
a power cap constraint. Very often power is viewed as the main metric for parallel simulations, and 
energy for distributed simulations designed to prolong battery life. However, this is not always the case. 
For example, an area of increasing interest is micro-cluster servers composed of closely coupled power-
efficient processors, the same processors used in cellular phones, for instance, operating in energy 
constrained mobile platforms. As such, energy consumption for parallel simulation codes executing on 
these platforms may be of greater interest than power consumption. Similarly, in distributed simulations 
where part or all of the simulation executes on back-end cloud computing platforms or the concern is heat 
generated by the mobile device, power consumption may be of great concern. 

Power-aware and energy-aware systems are those where power or energy consumption is a principal 
design consideration. For example, power-aware systems may utilize techniques to change the system’s 
behavior based on the amount of power being consumed. Energy-aware systems may modify the 
operation of the system based on the amount of energy remaining in batteries, e.g., reducing data 
sampling rates or using lower precision computations. Battery operated devices are energy-constrained 
systems because they operate with a finite amount of available energy; thus a design goal might be to 
minimize the amount of energy utilized by the computation as a whole, subject to certain execution time 
and accuracy constraints. On the other hand, in power-constrained systems such as supercomputers and 
data centers the amount of available energy is effectively unlimited, but a design goal may be to minimize 
the amount of time required to complete the computation given a certain maximum level of power 
consumption, or alternatively to minimize power consumption, subject to certain execution time 
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constraints. In real-time systems a common goal is to minimize energy consumption while ensuring that 
certain deadlines are met by the computation. 

Finally, it should be noted that minimizing execution time does not necessarily result in minimal 
energy consumption, although the two are often closely correlated. Energy consumption is affected by 
many factors including the operation of the memory system, the number and complexity of computations 
performed by arithmetic circuits, and importantly, the amount of inter-processor communication that is 
required. A parallel or distributed computation that executes in a shorter amount of time may consume 
both more energy and more power if more communications are required. 

4 POWER CONSUMPTION IN DISTRIBUTED SIMULATIONS 

Power and energy consumption in distributed simulations must always consider other design goals such 
as execution time, meeting deadlines, throughput, model accuracy, and/or precision. This suggest taking 
an holistic view of the system as a whole. In order to characterize different approaches to realizing power-
efficient distributed simulations, we use the framework depicted in Figure 1. This framework is not unlike 
that described in (Benini and G. De Michela 2000), but has been adapted to apply to distributed 
simulations. The framework has two dimensions. The vertical axis corresponds to a view of the 
hardware/software stack used to implement the distributed simulation system. Specifically, we 
differentiate between (1) the simulation model layer where the application-specific simulation program is 
defined, (2) the simulation engine layer that includes distributed simulation middleware, and (3) the 
system layer that includes the operating system and hardware upon which the simulation engine and 
simulation model execute. The second, horizontal axis differentiates between the power consumed for (1) 
computation, (2) memory and storage, and (3) communications. Different techniques defined in the 
software stack will impact power consumption in different parts of the system. 

The simulation model layer includes the representation of the state of the system being modeled and 
the code for transforming this state from one time instant to the next. It includes those portions of the 
distributed simulation that are specific to the simulation application. Several design decisions in creating 
the simulation model can have a large impact on power consumption. Perhaps most importantly, the 
degree of detail at which the system is modeled in space (e.g., the level of aggregation) and time (e.g., the 
time step size) will impact the amount of memory required and memory access patterns as well as the 
amount of computation required to update the system state. The model detail and abstractions that are 
used will also impact the amount and frequency with which data must be communicated among the 
processes making up the distributed simulation. Decisions such as the precision at which data is 
represented and algorithms used to transform the state of the simulation model will similarly impact 
energy consumption. Techniques such as dead reckoning (DR) may be used to reduce the amount of 
communication required, and thus the amount of energy expended for communications, at the cost of 
increased computation to execute the DR models. Design of the distributed simulation model will require 

 
Figure 1. Framework of techniques for creating power efficient distributed simulations. 
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one to determine the minimal level of detail required to meet the accuracy and precision objectives of the 
simulation while also meeting runtime performance, memory, and power consumption constraints. 

The simulation engine layer includes distributed simulation software that does not depend on the 
system being modeled. It includes the synchronization algorithm as well as other functions such as event 
list processing and data distribution. Design decisions concerning the implementation of these services 
can have a significant impact on power consumption. Different approaches to implementing data 
distribution and logical process scheduling will impact power. Clustering messages for inter-processor 
communications can also be used to reduce power consumption. 

The systems layer includes the underlying hardware and operating system over which the distributed 
simulation executes. Low power operating systems focus on techniques such as light-weight 
implementation of essential services to reduce power consumption while meeting performance 
requirements and/or task completion deadlines (Cho et al. 2011; Quan and Hu 2001; Saewong and 
Rajkumar 2003). Many communication protocols are designed or optimized for low power operation. 
Power mode management techniques involve exploitation of different modes of operation for processors, 
memory, storage, and communication circuits (Bhatti et al. 2010; Hoeller et al. 2006; Niu and Quan 
2004). For example, such components can often be disabled or switched to power saving states. The 
simulation computation can be mapped to a minimal number of processors necessary to meet delay and 
throughput needs, and the remaining cores can be powered down to reduce power consumption. 
Similarly, communications circuits can be powered down between communications. These techniques 
come at a cost, of course, e.g., in terms of increased execution time or longer communication latency. 
Many processors provide dynamic voltage and frequency scaling (DVFS) where the processor voltage 
and clock frequency can be reduced to trade off power consumption and performance (Freeh et al. 2007; 
Ge et al. 2005; Hua and Qu 2003). 

There is a substantial literature in power aware design of embedded systems and a growing literature 
related to high performance computing. Most of this work focuses on the systems layer described above. 
Below we describe work specifically focused on power efficient distributed simulation. This includes 
both aspects unique to distributed simulations such as synchronization algorithms, as well as methods 
involving the application of general techniques such as power mode management to distributed 
simulations. The sections that follow discuss techniques within each of the three layers shown in Figure 1. 

5 HARDWARE: COMPUTATION, STORAGE, AND COMMUNICATION 

At the hardware level, power consumption for CMOS circuits is broken down into three main 
components – power resulting from the current needed to charge capacitive loads as signals change, short 
circuit current that occurs momentarily when a CMOS circuit switches, and power due to leakage current 
as indicated by the three terms below (Mudge 2001): 

   P = ACV2f + tAVIshort f + VIleak  
Here P indicates power consumed by the circuit, A indicates the activity of the circuit (not all circuits 

switch on each clock), C is the total capacitive load on the circuit, V is the supply voltage, f is the clock 
frequency, t indicates the time duration when the short circuit current flows, and Ishort and Ileak are the 
short circuit and leakage current, respectively. The first two terms form the dynamic power consumption 
component and result from the operation and switching of active circuits. The third forms a static power 
consumption component that results from the circuit simply being powered on. In CMOS circuits 
dynamic power consumption usually dominates, and for the voltages typically used the clock frequency is 
proportional to voltage. This suggests that power is roughly proportional to the clock frequency cubed. 

5.1 Dynamic Voltage and Frequency Scaling 

Dynamic Voltage and Frequency Scaling (DVFS) can be used to reduce dynamic power 
consumption. From the above discussion it is apparent that reducing the supply voltage V and the clock 
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frequency f is a way to significantly reduce the dynamic power consumption of the circuit. These 
techniques will reduce performance, however, leading to slower running programs. To a first order 
approximation, processor speed is proportional to f; more precisely execution time is equal to the number 
of machine instructions executed times the average number of clock cycles per instruction (CPI) times the 
clock cycle time, which is the reciprocal of f. Dynamic power consumption P as a function of processor 
speed s is generally assumed to be P(s) = sa for some a > 1; as suggested by the above discussion, a is 
often assumed to equal 3 leading to the well-known cube-root rule, i.e., P(s)=s3, or the speed is 
proportional to approximately the cubed root of power (Brooks et al. 2000). For example, reducing power 
consumption by 50% results in the processor speed declining by approximately 20%, or execution time 
increasing by approximately 25%. 

If the goal is to minimize power consumption with no additional constraints, then it is clear the best 
approach is to simply use the lowest frequency/voltage setting offered by the hardware, assuming static 
power consumption is negligible. A more interesting question is to select frequency/voltage settings to 
minimize power while meeting certain runtime performance goals. 

Another hardware approach to reducing power consumption is to use unconventional processing 
cores, e.g., GPUs, FPGA, or specialized hardware, which are generally more power efficient than general 
purpose cores. A third approach discussed in greater detail next is to use power management modes. This 
means powering down certain elements of the system to reduce power consumption, e.g., processing 
cores or communication circuits. This technique reduces both static and dynamic power consumption. 

5.2 Power Mode Management 

DVFS effectively reduces power consumption by reducing the frequency and voltage of the CPU at a cost 
of slower execution speed. Taken to the extreme, one could simply power down one or more processing 
cores to reduce power consumption. This approach is not limited to the processor. Power can be saved by 
powering down communication circuits when they are not needed. Hardware for power efficient 
execution often provides several modes of operation to support techniques such as this. Manipulating the 
operating mode of circuits to reduce power consumption while still maintaining acceptable performance 
is referred to as power mode management.  

Power mode management can be used, for instance to manage the execution of parallel simulations to 
operate within a power cap. Effective use of power mode management techniques requires an 
understanding of the relationship between execution time and power in order to achieve the best possible 
performance within the given power constraints. Power aware speed up (Ge and Cameron 2007) is 
defined as the ratio of the execution time of the system at the specified power level divided by the 
execution time at the lowest possible power level. An application with higher power-aware speedup is 
more sensitive to change in power levels. 
 One study of a parallel discrete event simulation of a telecommunication network is reported in 
(Fujimoto et al. 2017). An MPI-based parallel simulation of the NS3 network simulation package was 
used in this study. By disabling CPU cores the power consumption can be reduced at a cost of increased 
execution time. In addition the board used in this study included a Low Power Core in addition to 4 
general CPU cores. Two boards connected to a wired private LAN were used for the experiments. A 
series of experiments were completed to evaluate the impact of disabling cores on performance and power 
consumption. 
 These experiments indicated that utilizing a 5th core in this system, which require use of a second 
board, resulted in increased power consumption, but did not produce a corresponding reduction in 
execution time. As the number of cores was increased, performance only improved with the introduction 
of the 7th core, suggesting using 5 or 6 cores is not advisable from a power perspective. While these 
experiments are specific to a particular hardware platform and application, the measurements highlight 
the fact that one may make different choices in configuring their application if power consumption is 
considered as a cost. Further, these experiments indicated that the lower power core used approximately 
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82% as much power as the high power (general) core, but the simulation ran 3.5 times slower, 
significantly more than that suggested by the cube-root rule discussed earlier. 
 A system can conserve power and energy by restricting power consumed by other elements of the 
system as well. One such element of interest is the network. Networks are generally over-provisioned 
both in terms of bandwidth and availability. In addition to the off-board power consumption of the 
network, the on board network/LAN card could also be powered down or turned off to conserve power 
and energy consumed by the system. This approach is best suited for synchronous PDES programs that 
utilize global synchronization points, e.g., YAWNS, and perform communications in bursts rather than 
continuously throughout the computation. Increasing the time between communications to 16 seconds 
resulted in utilizing approximately 57% of the power compared to using the minimum sleep period of 20 
milliseconds (Fujimoto et al. 2017). However, one constraint in using this technique is the minimum 
period between communications. This is introduced by the hardware and/or software requirements of 
transitioning from one state to another. Some delay is required for the system to connect back to the LAN 
network. The total delay in this study was found to be on the order of 5 seconds. 

6 SIMULATION MODEL 

The simulation model layer includes the code specific to the application. Task graphs, widely used both in 
the distributed simulation and power consumption literature, are a useful representation of the distributed 
simulation computation. 

6.1 Task Graphs 

The computation within each logical process (LP) of a distributed simulation is a sequence of 
timestamped event computations, where each computation may (1) modify one or more state variables, 
and/or (2) schedule new events. Events within each LP must be processed in timestamp order. 

Task graphs are a natural approach to represent distributed simulations and have long been used for 
this purpose. Each event computation is referred to as a task, and is represented as a node in the graph. 
Let Ei,j represent the jth event in LP i where events within an LP are ordered according to timestamp. Arcs 
represent precedence relationships between tasks, i.e., an arc from event Ei,r to Ej,s indicates that the 
computation for Ei,r must be completed before the computation for Ej,s can begin.  

In a discrete event simulation a precedence relationship exists if: 
• Ei,r®Ei,r+1: a precedence relationship exists between successive events within the same LP, or 
• Ei,r®Ej,s if event computation Ei,r resulted in generating event Ej,s. 
The precedence relationship is transitive. Figure 2(a) shows a task graph for a discrete event 

simulation with each box representing an event computation; the event’s location on the horizontal and 
vertical axes indicate the event timestamp and the LP processing the event, respectively. For example, 
these events might correspond to arrivals of a vehicle at an intersection in a traffic simulation or a traffic 
signal change. Arcs between LPs indicate events scheduled by one LP to be processed by another. The 
values in each box indicate the event computation subscripts Ei,j as defined above.  

In a time-stepped simulation all of the event computations for one time step must be completed before 
the event computations in the next time step can begin. Figure 2(b) shows the precedence graph for a 
time-stepped simulation. 

Precedence graphs can be used to determine the parallelism and minimum execution time of 
distributed simulations (Berry and Jefferson 1985). They have also been used extensively to estimate 
power consumption of embedded computations, e.g., see (Brown et al. 1997; Dave et al. 1999; Kirovski 
and Potkonjak 1997). This is accomplished by mapping each task to the hardware responsible for 
completing the task and augmenting the task graph to specify the amount of energy required to complete 
the task. As such, task graphs are a useful way to model power consumption of distributed simulations. 
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For example, in Figure 
2(a) if we assume each 
event computation requires 
one unit of time and one 
unit of energy, it is easy to 
see that this task graph will 
require at least 8 units of 
time and 14 units of 
energy. Later, we will 
show how the task graph 
model can be used to 
analyze power 
consumption. 

Note that the above 
model does not consider the energy consumed for communications or other operations such as managing 
event lists or other data structures. These are accounted for in the simulation engine, as discussed later. 

6.2 Model Abstraction 

One of the principle means of controlling the amount of power consumed in the simulation model layer is 
the abstraction and level of detail used by the model. The impact of the modeling approach on the amount 
of computation and memory required is clear. Just as model resolution is a way of managing execution 
time, it also presents a means for managing the power consumed by the simulation. 
 For example, one empirical study compared the power consumed for two different models of vehicle 
traffic: a time-stepped cellular automata (CA) model and a queueing model (Neal et al. 2016). In this 
study the CA simulation models the micro level dynamics of traffic flow behavior (Nagel and 
Schreckenberg 1992). Each road segment is divided into cells. The state of each cell is either occupied or 
empty to indicate if a vehicle currently resides within the cell. The simulation executes in a time-stepped 
fashion where the state of each cell is updated each time step in accordance with rules for vehicle 
movement. In the queuing model simulation traffic lanes are represented using queues that hold vehicles 
occupying a lane. The model state includes information concerning vehicles, intersections, and road 
segments. An event-driven execution paradigm is used with the event list implemented using a binary 
heap. Event handlers implement new vehicle arrivals and vehicle departures, as well as events modeling 
operations within each intersection. The latter includes events for vehicles arriving at, entering, crossing 
and departing from the intersection. Other events model traffic signal change events. 

The models were configured to simulate a road segment in midtown Atlanta, and driven by 
measurement data of the same area. The cellular automata simulation required significantly more energy 
than the queueing model. This was attributed to the fact that the CA model required more computation to 
update each cell each time step. This more than compensated for the fact that the CA utilized simpler data 
structures. While these measurements pertain to a specific implementation of the simulation models, this 
example illustrates how the abstraction used in the model impacts power consumption and also highlights 
some of the issues one might consider during the development of power efficient simulation models.  

6.3 Dead Reckoning 

It is sometimes possible to reduce communication in a distributed simulation at the expense of increased 
computation. One example is the use of dead reckoning algorithms. Dead reckoning is a technique 
developed for real-time distributed simulations to reduce the amount of communications that are required 
(Lin and Schab 1994; Miller and Thorpe 1995; Saunders 1991). A local dead reckoning model computes 
the estimated position of entities, typically vehicles, modeled on other computers based on information 

 
Figure 2. Task graphs for distributed simulations. (a) event-driven 

simulation. (b) time-driven simulation. 
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reported previously by the vehicle, e.g., its position, direction of travel, speed and acceleration. When the 
current position of the remote entity is required, the dead reckoning model is used to estimate its location.  

The dead reckoning model’s prediction will become inaccurate if the vehicle’s motion deviates from 
that last reported, e.g., if it turns to a new direction or begins to accelerate or decelerate. To limit the 
resulting error, the processor simulating the vehicle also monitors the dead reckoning model, and if the 
difference between the dead reckoned position deviates from the actual position by more than a defined 
threshold, an update message is sent to update the remote dead reckoning models. 

Dead reckoning is an example of a technique that reduces inter-processor communications at the 
expense of increased computation. Because communication is relatively expensive in terms of power, it 
provides a technique to reduce power consumed by the distributed simulation. Further, if the amount of 
required communication can be reduced so that there is a significantly long delay between 
communications, the communications circuits can be switched off further reducing energy consumption. 
This approach is explored in (Shi et al. 2003) where an adaptive dead reckoning algorithm is proposed. 
More broadly, techniques such as dead reckoning provide a means for trading off computation and 
communications to reduce power consumption. 

7 SIMULATION ENGINE 

The simulation engine includes functionality such as LP scheduling, synchronization and data distribution 
to implement services required by the distributed simulation. We next highlight how LP scheduling can 
impact power consumption and discuss the power cost of conservative and optimistic synchronization as 
well as approaches to data distribution and communications. 

7.1 Logical Process Scheduling 

The mapping of the distributed simulation computation to processors can have a significant impact on 
power consumption. To illustrate this point, consider a distributed simulation represented as a task graph, 
as discussed earlier. Specifically, consider the discrete event simulation shown in Figure 2(a). Assume 
each event consumes one unit of energy and requires one unit of time to complete. 

Two executions of this task graph over time are shown in Figure 3. In Figure 3(a) each LP is mapped 
to a separate processor, and it is assumed that each event computation is performed as soon as its 

precedence constraints have been satisfied. For example, 
events E1,1, E3,1, and E4,1 are processed in the first unit of 
wall clock time, E1,2, E2,1, and E4,2 in the second, etc. The 
execution is completed in 8 time units, equal to the 
critical path execution time. An alternate execution of the 
same computation is shown in Figure 3(b) where LPs 1 
and 2 are mapped to processor 1 and LPs 3 and 4 are 
mapped to processor 2. Arcs showing the scheduling of 
events are omitted to simplify the diagram. This 
execution also achieves the minimum, critical path 
execution time. Here, we assume an idealized 
conservative synchronization algorithm that can identify 
when each event can be processed without violating 
precedence constraints. 

In a distributed simulation execution where battery 
life is the primary concern, we see that both executions 
consume a total of 14 units of energy, although it is 
noted that the two-processor execution requires less 
communication between processors, which will result in 
less energy consumption. 

 
Figure 3. Energy and power consumption 
for two mappings of LPs to processors. 
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In a parallel execution where the maximum amount of power that can be utilized by the computation 
is capped, an analysis of the maximum power consumed by the computation may be useful. The 
maximum power using 4 processors is 3 because the maximum number of events that are processed 
concurrently is 3. The maximum power consumption in the two-processor case is 2, suggesting that this 
mapping can reduce power without sacrificing execution time. While this is clearly a simplified 
representation of the computation, this example does demonstrate that the approach to mapping LPs to 
processors can impact the maximum power consumption of the computation. 

This simple analysis suggests that the mapping of processors to computing resources requires further 
consideration in evaluating power consumption for distributed simulations. This is an area that requires 
further research. Scheduling algorithms used in other areas, e.g., embedded systems, may be applicable 
here. A challenge for distributed simulations is, of course, the precedence relationships are in general not 
known prior to the computation, however, the task graphs provide a means to analyze the execution to 
derive first order bounds on power consumption. 

7.2 Conservative Synchronization 

As discussed earlier, distributed simulations require a synchronization algorithm to ensure the distributed 
execution yields the same results as a sequential execution. Because synchronization algorithms require a 
significant amount of inter-processor communication, one might expect a significant amount of energy 
will be required to ensure proper synchronization. 

One study compared the power consumed by the asynchronous Chandy/Misra/Bryant (CMB) null 
message algorithm (Bryant 1977; Chandy and Misra 1979) and the synchronous YAWNS (Nicol 1993) 
algorithm. The energy cost of these conservative synchronization algorithms has been studied in (Biswas 
and Fujimoto 2016a, b; Fujimoto and Biswas 2015) as the lookahead in the distributed simulation was 
varied. One conclusion from this study was that CMB and YAWNS exhibit different behaviors with 
respect to energy consumption. In CMB the energy consumed steadily decreased as the lookahead was 
increased, a behavior attributed to creating cycles of null messages, a phenomenon known as lookahead 
creep. On the other hand, YAWNS energy consumption remains at a relatively constant level for small to 
moderate lookahead values, but then steadily decreased with increased lookahead at relatively high 
lookahead values. This was attributed to the ability of YAWNS to immediately jump to the timestamp of 
the next unprocessed event if the simulation had low lookahead, circumventing the lookahead creep 
problem. When the lookahead is significantly larger than the simulation time between event, to a first 
order approximation YAWNS will behave more like a time stepped simulation, and process all events 
within a lookahead sized time step. In this mode of operation increasing the lookahead will result in an 
increase in the number of events that are processed before the next global synchronization operation, 
resulting in a reduction in energy proportional to the lookahead.  

Overall, these studies indicated that the synchronization algorithm can consume a significant amount 
of energy in executing the distributed simulation. Because the computations required to implement 
synchronization algorithms is usually minimal, energy consumption is driven largely by the amount of 
communication that is required. As such, the main challenge in creating power-efficient conservative 
synchronization algorithms is to minimize the number of messages without unnecessarily blocking LPs. 
Reducing the number of synchronization messages tends to also improve the performance of conservative 
synchronization algorithms, however, it remains to be seen if selecting the synchronization algorithm to 
minimize execution time also leads to one that minimizes energy. 

7.3 Optimistic Synchronization 

The power overhead associated with conservative synchronization largely concerns the messages that 
must be sent to ensure proper synchronization. In optimistic algorithms, the power overhead takes on a 
different form. There are several sources of power consumption. These include the power expended to (1) 
execute events that are later rolled back, (2) perform state saving tasks, (3) perform rollback 
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computations, (4) send, receive, and process anti-messages, and (5) compute GVT and other operations 
associated with fossil collection that are not present in a sequential execution. 
 There has been only a limited amount of work evaluating the power consumption of optimistic 
algorithms. One experiment found that the main overhead with respect to power consumption arose from 
processing events that were later rolled back (Fujimoto et al. 2017). These measurements also reported 
that the percentage of energy required for synchronization can be significant, as much as 40% in these 
measurements. These results suggest that the power overhead for Time Warp can be significant, and 
additional work to understand and optimize power in optimistic simulations is needed. 

7.4 Power Consumption for Communications 

Communication is a significant source of power consumption in distributed simulations. Sending 
messages generally requires much more power than receiving. One study reported that sending a stream 
of data from a cellular phone using 802.11 required approximately five times as much power as receiving 
(Fujimoto et al. 2017). 

One approach to reducing energy consumption is to aggregate messages in the data stream. If the 
simulation must send a stream of update messages, one could aggregate several messages into a single 
message, and send one larger message rather than a sequence of smaller messages. This approach, termed 
message aggregation, is commonly used in distributed systems in order to reduce communication 
overheads. Message aggregation comes at the cost of increasing latency as some messages must be held at 
the sender in a buffer while the data is being accumulated. A set of experiments was conducted to 
consider the impact of aggregation on energy consumption. One study of this issue showed that the power 
required to send a stream of messages could be reduced more than six-fold using message aggregation, 
though savings were reduced significantly if the message had to be partitioned across multiple packets in 
the communication network (Fujimoto et al. 2017). 

7.5 Dynamic Data Distribution Management 

Data Distribution Management (DDM) is a set of services defined in the High Level Architecture (HLA) 
standard (IEEE Std 1516.3-2010 2010) to disseminate information among the federates (simulators), 
based on dynamically changing information such as a vehicle’s location. DDM is based on an abstraction 
called the routing space, that is simply an N-dimensional coordinate system. Each message that is sent is 
associated with a rectangular update region. Each federate specifies a rectangular subscription region that 
indicates the portion of the routing space of interest to the federate. If the update region associated with a 
message overlaps a federate’s subscription region, the federate should receive a copy of the message. 

Several approaches to implementing the DDM services have been proposed. Perhaps the most direct 
is the region-based approach. A multicast group is defined for each publication region. Each federate 
simply joins those groups that correspond to publication regions that overlap with its subscription regions 
(Boukerche and Dzermajko 2001). A matching computation must be performed, often centrally, to 
determine overlaps between subscription and publication regions, in order to populate the multicast 
groups. This, of course, requires a certain amount of power to complete the matching computation. 
Whenever a publication (subscription) region changes, the new region must be compared against all other 
subscription (publication) regions to determine overlaps with the new region. By contrast, the grid-based 
implementation partitions the routing space into grid cells, and assigns a multicast group to each cell, 
circumventing most of the matching computations, but at the cost of sending additional, unnecessary 
messages to federates, thereby wasting power. Other hybrid approaches have been proposed, e.g., see 
(Boucherche and Roy 2002; Tan et al. 2000).  

Trade-offs between computation and communications in implementing several DDM approaches are 
described in (Fujimoto et al. 2017). It is clear that utilizing a grid structure greatly reduces the energy 
needed for computation, but at a cost of increased energy for communications. This energy cost can be 
significant. Hybrid and dynamic grid schemes were also found to reduce power. 
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8 CONCLUDING REMARKS 

Power is now a very important issue in many areas of computing, but has seen only limited attention by 
the modeling and simulation research community. Analysis and development of new techniques to 
improve power efficiency in distributed simulations is an open field, with many unresolved questions and 
problems. The space of techniques can be viewed in the context of the software stack, encompassing the 
simulation application, simulation engine or middleware, and the underlying system. Approaches impact 
power consumption in the processor, memory and storage system, and communications network. 

The first step in optimizing power in distributed simulations is to understand the relationship among 
modeling approaches, synchronization and data distribution algorithms, hardware techniques, simulation 
accuracy and reliability, and power consumption. Fundamental understandings will enable the 
development and evaluation of new techniques to reduce power, subject to traditional modeling 
objectives. In some cases, approaches can build upon other work in parallel and distributed computing in 
general. Other efforts will need to focus on aspects specific to distributed simulations. 

Work in power consumption in parallel and distributed simulations is in its infancy. There is very 
little work to date concerning the development of new energy efficient approaches in key areas such as 
synchronization and data distribution. As such, power-efficient parallel and distributed simulation is an 
area with many open research questions. 
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