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ABSTRACT 

The IEEE 1516-2010 - High Level Architecture (HLA) for distributed simulation is growing in a variety 
of application domains due to its capabilities to enable the interoperability and reusability of distributed 
simulation components. However, the development of simulation models based on the HLA standard 
remains a challenging task that requires a considerable effort in terms of both time and cost. This paper 
provides an introduction tutorial on developing HLA-based simulations using the HLA Development Kit 
(DKF) framework. The tutorial guides developers through the necessary steps for defining and creating an 
HLA-based simulation, and explains how the HLA elements can be easily managed by using the DKF’s 
services. The effectiveness of the DKF is proven by its concrete exploitation in the context of the 
Simulation Exploration Experience (SEE), a project led by NASA and which involves as partners several 
U.S. and European Institutions. 

1 INTRODUCTION 

In many areas of science and engineering, Modeling and Simulation (M&S) represents a pillar supporting 
the acquisition of knowledge so as to understand, predict and optimize the behavior of systems on which 
to perform experiments and theoretical analyses (Bocciarelli et al. 2014, Falcone et al. 2017). M&S 
represents an indispensable problem-solving methodology for the solution of many real-world problems. 
It can be considered as the ability to artificially reproduce, essentially by using the computer, the 
characteristics of a real process or system so as to describe, analyze and predict its behavior in presence of 
events subsequent to the imposition of conditions by the user (Falcone and Garro 2015) It is a very 
powerful analysis technique, used in many scientific and technological domains in which it is difficult or 
impossible to physically reproduce in the laboratory the whole system and the conditions to be analyzed 
(Fujimoto 2000). 

By using M&S methods, tools and techniques, it is possible to reproduce the structure and behavior of 
systems over the time so as to observe and analyze them (Banks 1998). The use of M&S techniques offer 
many advantages, such as the possibility to study the behavior of a system without physically building it, 
and the evaluation and comparison of different design choices, policies, and operating procedures through 
experiments in a controlled (virtual) environment (Falcone et al 2016, Fujimoto 2000). Despite the above 
sketched advantages, M&S has important disadvantages many of those related to the significant efforts 
required for producing a full-fledged simulation model and analyzing simulation results. Moreover, it is 
often hard to reuse already available simulation models; indeed, there is a lack of mechanisms to make 
interoperable simulation models built on different simulation platforms and a scarce support to enable 
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their execution on distributed infrastructures. Due to the increasing complexity of simulation systems, a 
Distributed Simulation (DS) approach has been introduced (Fujimoto 2000).  

Distributed simulation refers to technologies that enable the execution of a simulation program on 
distributed computer systems containing multiple components such as processors that are geographically 
distributed and connected by a communication network. Initial research on distributed simulation has 
been conducted in the military domain where the main objective was on how to achieve model reuse via 
interoperation of heterogeneous simulation components.  

The U.S. Department of Defence (DoD) made huge investments in the distributed simulation domain 
and played a key role in the developing of standards to facilitate interoperability of distributed simulation 
modules over a computer network. IEEE 1516-2010 - High Level Architecture is a well-known and 
accepted standard that provides a distributed infrastructure in which each simulation unit runs on an 
independent computer (in general, geographically distributed) and communicates with the others in a 
common simulation scenario (IEEE Std. 1516-2010). HLA was developed by the DoD Modeling and 
Simulation Coordination Office (M&S CO) in the period 1995-1996 (Modeling and Simulation 
Coordination Office 2017), as a general architecture to facilitate the integration of distributed simulation 
models within a common simulation environment. Although it was initially developed for purely military 
applications, it has been widely used in non-military industries for its many advantages related to the 
interoperability and reusability of distributed simulation components. In the HLA standard a distributed 
simulation is called a Federation and it is composed of several HLA simulation entities, each called a 
Federate, which interact among them by using a Run-Time Infrastructure (RTI) that provides standard 
protocols and services to manage the communications and data exchange among Federates. Each 
Federation has a Federation Object Model (FOM) that is created in accordance with the Object Model 
Template (OMT) defined by the standard (IEEE Std. 1516-2010, Kuhl et al. 1999). A FOM contains 
specifications of Object classes (objects are instances – or entities – of object classes that have attributes 
that can be updated), Interaction classes (a message sent among objects that has parameters) and Data 
types (the technical specifications and semantics of attributes and parameters).  

Building complex and large distributed simulations, especially those based on the HLA standard, is 
usually a challenging task and requires considerable development experience in distributed systems, 
simulation, middleware, and software programming (Bocciarelli et al. 2015, Möller et al. 2016). The main 
issues are that the design and development of HLA Federates are generally complex and resource-
intensive not only because of the complexity of the IEEE 1516 family standards, but also due to the lack 
of proper documentations and ready-to-use examples (Falcone et al. 2017, Möller et al. 2016). Moreover, 
developers have to spend a considerable effort to handle common HLA functionalities, such as the control 
of the simulation time; the synchronization process among Federates; the publish, subscribe and update of 
Object class and Interaction class elements along with related coders and decoders; the management of 
RTI callbacks and associated exceptions. As a result, they cannot fully focus on the specific aspects of 
their own simulation components (the HLA Federates). 

Over the years, several research efforts focused their attention on the creation of software solutions to 
easing the development of HLA-based simulations mainly aiming at providing an integrated toolchain for 
creating and simulating complex systems. For MATLAB/Simulink users, different packages and 
toolboxes are available for implementing HLA simulators such as the Forwardsim HLA Toolbox for 
MATLAB (Forwardsim 2017), which provides a user interface that allows developers to fully design and 
customize their HLA Federates. Another tool that enables developers to effectively manage the structure 
and assets of an HLA Federate starting from a FOM file is the PITCH Developer Studio (Pitch 
Technologies 2017). This software allows programmers to add HLA or DIS functionalities quickly and 
easily to their simulators through a module that generates C++ or Java code starting from the structure of 
the HLA Federate. Other HLA tool that allows developer to easily build and test an HLA Federate is the 
HlaListener (HLAListener 2017). It was developed by the University of Alberta (Canada) and provides a 
simple Graphic User Interface (GUI) with all the common IEEE 1516-2010 functionalities such as: 
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connect/disconnect to/from an RTI, send/receive InteractionClass and ObjectClass updates and the 
definition of Synchronization Points. A domain-specific HLA software framework was created by the 
Danish Maritime Institute (DMI) with the aim to simplify the development of real-time simulators in the 
military domain (Villimann 1999). It defines a range of real-time simulation concepts to support 
functionalities available at DMI with an HLA environment. FEDEF is another domain-specific 
framework developed by the Defence R&D Canada – Atlantic that defines a set of APIs to support both 
the DMSO 1.3 and IEEE HLA 1516-2000 standards. It also provides different capabilities to simplify 
many programming tasks that are normally required when developing a Federate in the military domain 
(Van Spengen 2010). In this context, the tutorial presents the HLA Development Kit software Framework 
(DKF) along with a step-by-step example on how to design, develop and run a complete HLA distributed 
simulation by using its functionalities. The DKF is a general-purpose, domain-independent framework, 
fully implemented in the Java language and released under the open source policy Lesser GNU Public 
License (LGPL), which facilitates the development of HLA Federates (Falcone et al. 2017, Falcone et al. 
2015, IEEE Std. 1516-2010). The DKF allows developers to focus on the specific aspects of their own 
Federates rather than dealing with the common HLA aspects such as the management of the simulation 
time; the connection/disconnection on/from the HLA RTI; the publish, subscribe and updating of 
ObjectClass and InteractionClass elements (Falcone et al. 2015, Garro et al. 2015, IEEE Std. 1516-2010). 
The DKF has been designed and developed in the context of the research activities carried out within the 
SMASH-Lab (System Modeling And Simulation Hub - Laboratory) of the University of Calabria (Italy) 
working in cooperation with the Software, Robotics, and Simulation Division (ER) of the NASA’s 
Lyndon B. Johnson Space Center (JSC) in Houston (Texas, USA) (National Aeronautics and Space 
Administration 2017). It has been successfully experimented in the Simulation Exploration Experience 
(SEE) project since the 2015 edition (Simulation Exploration Experience 2017). The SEE project, which 
has been organized, since 2011, by SISO in collaboration with NASA and other research and industrial 
partners, aims at providing undergraduate and postgraduate students with practical experience of 
participation in international projects related to M&S and, especially, to the HLA standard and compliant 
tools. In the 2017 edition, the Universities of Calabria (Italy), Bordeaux (France), Brunel (London, UK), 
Genoa (Italy), the Faculdade de Engenharia de Sorocaba, FACENS (Brazil) and the team of the Bulgarian 
Modeling and Simulation Association (Bulgaria) developed their SEE-Federates by using the Kit 
(Falcone and Garro 2016b, Falcone et al. 2015, Taylor et al. 2014 ). 

The rest of the tutorial is organized as follows. Section 2 presents the HLA Development Kit 
framework with particular focus on the architecture, main services provided and on a domain-specific 
extension, called SEE HLA Starter Kit (SEE-SKF), defined in the context of the SEE project. In Section 3, 
a step-by-step example on how to develop a HLA Federate from scratch by using the functionalities 
provided by the DKF is exemplified in the context of the SEE project. Some considerations coming from 
the use of the DKF and its domain-specific extension (SEE-SKF) in the SEE project are presented in 
Section 4. Finally, conclusions are presented in Section 5. 

2 THE HLA DEVELOPMENT KIT FRAMEWORK 

The development of HLA distributed simulation is quite a complex task and there are few training 
resources for developers (Falcone et al. 2014, Falcone et al. 2015). The HLA Development Kit Framework 
(DKF) allows to easily conceptualize, define and build an HLA distributed simulation (Falcone et al. 
2017). Developers can focus on domain-specific aspects of a simulation module since, the common HLA 
functionalities, which are generic across domain, are managed by the core components of the DKF. 

The HLA Development Kit Framework does not represent another implementation of the HLA 
standard (IEEE Std. 1516-2010) but it is a software framework placed on the available HLA/RTI 
implementations such as, Pitch RTI (Pitch Technologies 2017) and VT MÄK (MÄK VR-Forces 2017) 
that provides an additional layer of abstraction suitable to hide the complexity of the standard and 
facilitate the development of HLA Federates. The Kit comes with the software framework, called DKF 
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that provides all the services needed to develop HLA Federates; technical documentation that describes 
the architecture of the DKF along with its services; user guide to support developers in the use of the kit; 
a set of reference examples of HLA Federates created through the use of the DKF; and, some video-
tutorials that show how to create both the structure and the behavior of an HLA Federate. In the next 
Subsections, the main objectives and benefits arising from its use are presented along with the 
architecture and services provided. Moreover, the SEE HLA Starter Kit (SEE-SKF) that is a domain-
specific extension of the DKF is also introduced. 

2.1 Objectives and expected benefits 

The HLA Development Kit Framework (DKF) combines the objectives and benefits of the available 
HLA/RTI implementations with a new layer of functionalities exposed through a set of APIs (Application 
programming interfaces) making easier the design and develop of HLA Federations (Falcone et al. 2017). 
In this section, some benefits and drawbacks of DKF are presented. 

The main benefit is that the DKF allows developers to operate under the paradigm “write one and run 
anywhere”. Since the DKF is fully compliant with the IEEE 1516-2010 specifications (IEEE Std. 1516-
2010), it is platform-independent and can be used with different HLA RTI implementations such as, Pitch 
RTI and VT MÄK. This characteristic gives developers the ability to concentrate on the problem and 
related behavior of their HLA distributed simulations without worrying on which platform the simulations 
will be executed. Another aspect to be highlighted concerns the learning curve that is an important 
concept that graphically combines the relationship between the increase of learning and the experience 
(Falcone et al 2016). The DKF allows programmers to reduce the HLA learning curve through a 
homogeneous set of APIs that hide the complexity of the standard. 

Coming from the previous aspect, the use of the DKF leads to a significant reduction of the 
development time (both for full-fledged and Dummy/Tester HLA Federates) and overall costs. The code 
created by using the DKF is generally more compact and much easier to maintain and test compared with 
the same one produced through the use of other frameworks or tools (Falcone et al. 2017). Moreover, the 
reliability of a HLA Federate increases because the core functionalities such as the management of its 
structure and life cycle are managed directly by the DKF core components (see Subsections 2.2 and 2.3). 
Despite the above sketched benefits, the DKF has some drawbacks. In particular, the DKF supports 
partially the SyncronizationPoint mechanism, while does not provide support to event-based simulation 
execution and Data Distribution Management (DDM). These features, according to the DKF development 
roadmap (Falcone et al. 2017), will be added in the next release. 

The following subsections are devoted to present both the architectural and behavioral aspects of the 
DKF also with reference to its SEE-specific extension (the SEE-SKF: SEE HLA Starter Kit Framework). 

2.2 Architecture 
As shown in Figure 1, the architecture of a DKF-based Federation is composed of two main layers: the 
Federates Level and Core Level. 

Federates Level. It contains the application-specific services, which in turn use the services offered 
by the lower levels, to provide developers an environment to design and develop HLA Federates. A 
Federate can interact with both the DKF and the HLA RTI by using their APIs. 

Core Level. It represents the core of the architecture and provides a set of APIs that are used to 
develop and manage a HLA Federate. This level is composed of two parts: (i) the DKF, which offers a set 
of domain-independent services that are used by programmers to access the DKF capabilities (see 
Subsection 2.3); and (ii) the HLA RTI, which represents the RTI implementation that host the Federation 
execution. Developer can choose at run-time the appropriate RTI implementation that fits their needs such 
as, Pitch RTI and VT MÄK without recompiling the simulation code. In the following Subsection, the 
DKF services with their UML Class diagrams are described in detail. 
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Figure 1: Architecture of a HLA Federation based on the DKF. 

2.3 Services and Functionalities 

As showed in Figure 1, the DKF layer provides a collection of function modules and services that are 
independent both of application domains and HLA RTI implementations. Each service offers some Java 
classes and interfaces that implement/define specific functionalities. 

The Logging Service provides functionalities useful to both track down any problems and errors that 
occurred during the DKF use, and understand how the DKF core modules work. Also, this service logs 
messages and information coming from HLA Federates running in a Federation execution. Each of them 
uses the logging service API to interact with the logging modules so as to store information messages in 
the logstream. The Logging Service writes, at regular time intervals, the logstream into the dkftrace.log 
file. The structure of the Logging Service is shown in Figure 2 by using a UML Class Diagram. 

 

 
Figure 2: UML Class diagram of the Logging Service. 

The Model Service offers functionalities to facilitate publishing, subscribing and data updating of 
both ObjectClass and InteractionClass instances (IEEE Std. 1516-2010). To manage ObjectModels 
(ObjectClass and InteractionClass), the DKF framework defines a set of Java annotations, each of which 
covers and handles a specific concept defined in the HLA Object Model Specification document (IEEE 
Std. 1516-2010). These annotations, which are applicable to a piece of the program code so as to guide 
the core components of the DKF in managing ObjectModels, are used by programmers to create an 
ObjectModel instance compatible with the kit. In particular, two annotation classes have been defined: 
@ObjectClass and @InteractionClass. The first one is defined in the Object module and provides 
attributes for the definition of ObjectClass instances, whereas the second annotation class is specified in 
the Interaction module and offers concepts to define and handle InteractionClass instances. These two 
classes are used at runtime by the Parser module to examine the structure of an ObjectModel instance. 
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The main Java classes and interfaces of the Model Service are shown in Figure 3 by using a UML 
Class Diagram. 

 

 
Figure 3: UML Class diagram of the Model Service. 

The Configuration Service offers a set of services that manage the configuration parameters, which 
are provided through a *.json file, make them consistent and use them to configure dynamically the other 
DKF services. Two kinds of parameters are managed by the Configuration Service: Federation and 
Federate parameters. The Federation parameters are used to properly load, configure and execute a HLA 
distributed simulation (HLA Federation); they include the name of the Federation Execution, the RTI 
connection details (e.g., IP address, listening port, etc.) along with data related to the simulation time (e.g. 
HLA time regulating, HLA time constrained and simulation ephoc). The Federate parameters represent 
the information related to the simulation module (HLA Federate) and include information such as, the 
type (FederateType) and name (FederateName) of the Federate that are used by the DKF Core Service to 
configure the Federate and its Federate Ambassador (IEEE Std. 1516-2010). Figure 4 shows the main 
Java classes and interfaces of the Configuration Service through a UML Class Diagram. 

 

 
Figure 4: UML Class diagram of the Configuration Service. 

The Core Service represents the kernel of the DKF and offers a set of low level functionalities to 
manage a HLA Federate with its HLA Federate Ambassador (IEEE Std. 1516-2010). Figure 5 shows the 
main classes. 

The DKFAbstractFederate class manages the life cycle of a HLA Federate. It offers functionalities to 
configure and connect/disconnect a HLA Federate to/from a HLA Federation execution. In particular, the 
DKFAbstractFederate class provides a concrete HLA Federate with the management of its life cycle 
(FLCM), as a consequence, developers have only to define the specific behavior of its HLA Federate 
(through the proactive and reactive states, see Figure 6). Thanks to the FLCM a developer can spend 
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more time to improve its simulation module without worrying about low-level implementation details 
since the DKF manages them. 

 

 
Figure 5: UML Class diagram of the Core Service. 

The ExecutionThread class handles the execution of a HLA Federate in the simulation environment, 
whereas the DKFAbstractFederateAmbassador class implements the methods that are called by the RTI 
for interacting with the Federate (RTI callback methods) along with the NullFederateAmbassador 
interface, which is used by a Federate to access the RTI services. With reference to the life cycle of a 
HLA Federate provided by the DKFAbstractFederate, in  it is shown through a UML statechart diagram. 

 

 
Figure 6: UML statechart diagram of a HLA Federate’s life cycle. 

Specifically, in the load configuration state, the DKF loads the configuration parameters from a .json 
file. A transition to the startup state happens if the configuration parameters are valid and during the state 
transition a connection to the Federation execution platform is performed. If the configuration parameters 
are invalid a state transition to the shutdown state is performed. In this latter state, all the resources 
engaged by the DKF framework are de-allocated and the lifecycle terminates. In the startup state, the core 
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components of the DKF check the connection status. If the connection is not established the lifecycle ends 
with a transition to the shutdown state. Otherwise, a transition to the initialization state is performed; in 
this state, the Federate could perform additional operation for exchanging initialization objects before 
entering the running state, as an example, the Federate could publish and subscribe some information 
(e.g. Object and/or Interactions). After that, the DKF activates the time management thread and a 
transition to the running state is performed. The running state is composed of two sub-states operating in 
an AND-decomposition modality. The proactive behavior sub-state deals with the pro-active part of the 
Federate behavior through three states: (i) Waiting for TAG: the DKFAbstarctFederate waits for the TAG 
(Time Advance Grant) Callback from the RTI. When the callback is received a transition to the proactive 
state is performed; (ii) proactive state: the logical time is updated, the behavior of the specific Federate 
defined by the developers are executed, and then a transition to the make TAR request state is performed; 
(iii) make TAR (Time Advance Request) request: the DKFAbstractFederateAmbassador requests to RTI 
the grant for the next logical time. The reactive behavior sub-state deals with the re-active part of the 
behavior of the Federate: upon reception of RTI callbacks related to subscribed elements in the Callback 
listener, a transition to the reactive state is performed where the received information is handled through 
the execution of the reactive behavior of the specific Federate defined in the reactive composite state.  

If unexpected events or exceptions occur during the life cycle, the execution flow of the Federate’ 
behavior stops running and a transition to the exception handling state is performed. This latter state is 
responsible for managing the event/exception; if it is correctly handled, the running state is entered at the 
history state meaning that the execution flow is resumed where it last left off, otherwise a transition to the 
shutdown state is performed and, during the state transition, the HLA Federate is disconnected from the 
RTI. Figure 7 shows the structure of the Utility Service through a UML Class Diagram. This service 
provides support functionalities to the simulation components (HLA Federates) using the framework. 

 

 
Figure 7: UML Class diagram of the Utility Service. 

The FOMDataInspector class handles FOM (Federation Object Model) modules (IEEE Std. 1516-
2010) with their attributes and defines functionalities to automatically generate a java object 
representation of the FOM modules. TimeUtility class offers mechanisms for time standard conversions 
whereas, the SystemUtility class provides a method to check the status of the MSWindows Firewall. 

Finally, the Coder/Decoder Service defines all the standard HLA functionalities for coding and 
decoding both ObjectClass and InteractionClass instances during the phases of publication and updating. 
(IEEE Std. 1516-2010). Its UML Class Diagram is shown in Figure 8. 

The generic Coder interface defines three methods that must be implemented by a subclass that 
inherits from it, but the provided interface does not dictate how the subclass implements these required 
methods. This aspect provides flexibility on the developers’ side that may implement the Coder interface 
defining the required methods in different ways. 
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Figure 8: UML Class diagram of the Coder/Decoder Service. 

For the sake of clarity, the coder/decoder classes related to a specific HLA data type have been 
grouped in a single UML Class element. Specifically, the HLAInterger16/32/64BECoder represents the 
three classes: HLAInterger16BECoder, HLAInterger32BECoder and HLAInterger64BECoder that 
manage the coding and decoding of an HLAIntegerBE attribute (Falcone et al. 2017, IEEE Std. 1516-
2010). In the same way, the HLAInterger16/32/64LECoder characterizes the HLAInterger16LECoder, 
HLAInterger32LECoder and HLAInterger64LECoder classes for handling a HLAIntegerLE attribute 
(Falcone et al. 2017, IEEE Std. 1516-2010). Analogous consideration can be done for the rest of the 
classes showed in Figure 8. 

2.4 Domain-Specific Extensions: The SEE HLA Starter Kit 

To encourage the use of the HLA Development Kit by the scientific community, a domain-specific 
extension of it, named the SEE HLA Starter Kit (SEE-SKF), has been created (Falcone et al. 2015, 
Falcone et al. 2017, Garro et al. 2015). 

The SEE-SKF aims at easing the development of space systems in the context of the Simulation 
Exploration Experience (SEE) project (Simulation Exploration Experience 2017) by providing a software 
framework, called the SEE-SKF, with related documentation, user guide and reference examples. 
Specifically, the SEE-SKF combines the benefits coming from the DKF with high fidelity models and 
algorithms needed for defining space systems that are as accurate and robust as those provided by existing 
commercial and government software. The SEE-SKF is fully implemented in the Java programming 
language and offers a consistent set of functionalities for defining, developing and running complex HLA 
simulation systems in space such as, time scales, reference frames, planets, orbital parameters and 
propagation, physical entities and attitude (Garro et al. 2015, Möller 2016). The SEE-SKF characteristics 
(as an example, the possibility to easily implementation SEE Dummy and Tester Federates) aim not only 
at reducing the development efforts but also at improving the reliability of HLA Federates and thus 
reducing the problems arising during the final integration and testing phases of the SEE project 
(Simulation Exploration Experience 2017). Furthermore, it prove how, starting from a domain-
independent core of the DKF, defined for supporting the development of general-purpose HLA 
Federations, it is possible to easily add and/or integrate application-specific extensions for supporting the 
development of domain-specific HLA Federations (Falcone and Garro 2016a). 
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3 HOW TO DEVELOP A FEDERATE USING THE DKF 

This section provides a simple and quick introduction to the DKF and its domain-specific extension (the 
SEE-SKF) by walking through the creation of a simple HLA Federate that simulates a Lander module. 
The lander represents a spacecraft that descends and comes to rest on the surface of an astronomical body. 
During the landing phase, the lander may use either parachutes to slow down and to maintain a low 
terminal velocity or small landing rockets, which are fired just before impact to reduce the impact 
velocity. The equations that regulate the vertical motion of the lander during the landing operation are 
defined in (Garro and Falcone 2015). Once developers are done with this section, they will have a general 
knowledge of how to create and run a simple HLA Federate through the use of the DKF/SEE-SKF 
framework. To develop an HLA Federate, the following software and resources are needed: (i) a Java 
Integrated Development Environment (IDE) such us Eclipse (Eclipse Foundation 2017) and NetBeans 
(NetBeans 2017); (ii) a Java Development Kit (JDK) version 1.7.0 or above; (iii) an HLA/RTI 
implementation, such us Pitch RTI and VT MÄK; and finally, (iv) the DKF/SEE-SKF framework. 

The first step in the developing process of the Lander Federate is to build a Java project in the IDE 
environment and create the HLA ObjectClass classes with their attributes and coders (as specified in the 
FOM) by using the annotation mechanism provided by the DKF (Falcone et al. 2017). It is possible to use 
the set of basic coder or simply define new coders by implementing the Coder<T> interface (see Figure 
8). The code snippet below shows the Lander class (HLA ObjectClass). 
 

@ObjectClass(name = "HLAobjectRoot.Lander") 
public class Lander { 
 
 @Attribute(name = "name", coder = HLAunicodeStringCoder.class) 
 private String name = null; 
 @Attribute(name = "velocity", coder = Vector3Coder.class) 
 private double[] velocity= null; 
 @Attribute(name = "attitude", coder = AttitudeCoder.class) 
 private double[] attitude= null; 
 @Attribute(name = "acceleration", coder = Vector3Coder.class) 
 private double[] acceleration= null; 
 @Attribute(name = "position", coder = Vector3Coder.class) 
 private double[] position= null; 
 
 public Lander(){} 
 // getter and setter methods (not shown) 
} 

 
In order to be processed by the DKF core components, an ObjectClass class must be defined 

according to the JavaBeans API specifications (Oracle 2017) and it must use the provided Java annotation 
classes (see Section 2.3). The main characteristics that distinguish a JavaBean from other Java classes are: 
(i) a JavaBean provides a default, no-argument constructor; (ii) it should be serializable and implement 
the Serializable interface, but this characteristic is not necessary for the DKF; (iii) it may have a number 
of properties which can be read or write; and finally, (iv) it may have a get and set method for each 
attribute. The DKF comes with four main Java annotation classes that are used by the DKF core services 
at runtime to inspect and manage the structure of an object. The @ObjectClass and @Attribute classes are 
used for managing HLA ObjectClass instances, whereas the @InteractionClass and @Parameters classes 
for handling HLA IntercationClass objects (Falcone et al. 2017, IEEE Std. 1516-2010). These classes 
enable a developer to specify metadata information related to a given object both at class and field level. 
In particular, the @ObjectClass and @InteractionClass are class-level annotations contain all the HLA 
metadata information such as name, sharing and semantic used to build a whole object at runtime. The 
@Attribute and @Parameter classes are field-level annotations applied to a java attribute for specifying 
finer-grained HLA information such as name, coder and semantic that are used to publish, subscribe and 
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update the corresponding HLA attribute or parameter, respectively (Falcone et al. 2017, IEEE Std. 1516-
2010). For example, with reference to the code above reported, the value of the name field matches the 
name of the corresponding HLA attribute in the FOM module whereas, the coder field defines the 
specific class to code/decode the attribute. 

As second step, the LanderFederate class that specifies the behavior of the Lander model has to be 
created. It is required to extend the DKFAbstractFederate abstract class and implement two methods 
according to the Federate life cycle that is provided and completely managed by the DKF core 
components (see Figure 6). More in detail, a developer has to define the doAction() method for specifying 
the pro-active part of the behavior of the Federate that is executed between a TAG and a TAR (IEEE Std. 
1516-2010); and the update(Observable ob, Object arg) method that represents the re-active part of the 
Federate’s behavior, i.e. how to handle the RTI callbacks about the interactions/objects that the Federate 
has subscribed. 

 
public class LanderFederate extends DKFAbstractFederate implements Observer { 
 private Lander lander = null; 
 
 public LanderFederate (DKFAbstractFederateAmbassador fedamb) { 
  super(fedamb); 
  this.lander = new Lander("Lander", FrameType.MoonCentricFixed, new  
  Position (100, 200, 300)); 
 } 
 public void configureAndStart(Configuration conf) throws Exception { 
  // 1. configure the DKF framework 
  super.configure(conf); 
  // 2. Connect on RTI 
  super.connectOnRTI("crcHost="+conf.getCrcHost()+ 
          "\ncrcPort="+conf.getCrcPort()); 
  // 3. join the SEE Federation execution 
  super.joinIntoFederationExecution(); 
  // 4. Subscribe the Subject to receive HLA/RTI callbacks 
  super.subscribeSubject(this); 
  // 5. publish the lander object 
  super.publishElement(lander, lander.getName()); 
  // 6. Execution-loop 
  super.startExecution(); 
 } 
 @Override 
 protected void doAction() throws Exception { 
  lander.step(); 
  super.updateElement(lander); 
 } 
 @Override 
 public void update(Observable arg0, Object arg1) { 
  System.out.println(arg1); 
 } 
} 

 
The third phase of the developing process of the Lander Federate consists in implementing its 

Federate Ambassador as defined in the HLA standard (IEEE Std. 1516-2010). To define and build the 
LanderFederateAmbassador class, it is necessary that it extends the core functionalities provided by the 
DKFAbstractFederateAmbassador class. Generally, since no specific implementation is required, the 
child class has only to define its constructor which in turn calls the parent one; in this way, all the typical 
Ambassador’s features are provided and managed by the DKF core services. The code snippet below 
shows the LanderFederateAmbassador class. 

 
public class LanderFederateAmbassador extends DKFAbstractFederateAmbassador { 
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 public LanderFederateAmbassador(){ 
  super(); 
 } 
} 

 
Finally, as last step, the Main class needs to be created. This class manages the setup of the HLA 

simulation infrastructure by reading a .json configuration file (see Figure 4) that contains all the 
parameters necessary to create and manage the HLA Federation execution and the LanderFederate with 
its LanderFederateAmbassador. The code snippet below reports the Main class. 

 
public class Main { 
 private static final File conf = new File("config/conf.json"); 
 public static void main(String[] args) throws Exception { 
  LanderFederate fed = new LanderFederate(new LanderFederateAmbassador()); 
  // start execution 
  federate.configureAndStart(new ConfigurationFactory(). 
          importConfiguration(conf)); 
 } 
} 

 
Below the .json configuration file with all the parameters. 
 
{ 
  "asynchronousDelivery" : true, 
  "crcHost" : "localhost", 
  "crcPort" : 8989, 
  "federateName" : "Lander", 
  "federateType" : "Spacecraft", 
  "federationName" : "Simulation Execution Platform", 
  "fomDirectory" : "C:\fom_mudules", 
  "realtime" : false, 
  "simulationEphoc" : "2015-04-12T20:00:00.000Z", 
  "timeConstrained" : true, 
  "timeRegulating" : false 
} 

4 CONSIDERATION FROM THE USE OF THE DKF/SEE-DKF IN THE SEE PROJECT 

The DKF and its domain-specific extension for the SEE project, the SEE-SKF, was used by a team of 
Universities across the world to develop a Federation within the SEE project first time in the SEE 2015. 
Brunel University has participated in SEE projects since 2013 developing Federates using different 
simulation software such as SIMUL8 and REPAST, and fully programmed in Java (Taylor et al. 2014). 
Pitch and MÄK RTI implementations were used for the HLA interface. The project was undertaken by 
undergraduate Computer Science students as part of their final year project supported by PhD candidates 
and research staff. Admittedly, it presented a big challenge for the students having to familiarize 
themselves with domain-specific and distributed simulation technologies. Developing a Federate involves 
the development of the simulation model and creation of the Federate and Federate Ambassador classes 
for RTI interfacing. Also, the FOM and SOM XML schemas should be created. In the first two SEE events 
the development was done manually, whereas in the 2015 edition the DKF was used. The experiences of 
creating the Federate for SEE with and without the DKF and a summary comparison is listed in Table 1. 

The Federate was an agent-based mining simulation that simulates one or more small excavators 
working across the lunar surface. The Federate was developed in REPAST implementing the following 
scenario. Within the Federation, the simulation was designed to interact with the astronaut Federate and 
Unmanned Aerial Vehicle (UAV) Federate developed by different Institutions. It also interacts with the 
visualization Federate provided by NASA. The UAV Federate moved over the area to be mined and takes 
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magnetometer readings. These update a map of the area and show the coordinates of areas of interest. The 
excavator systematically works across its area and digs out regolith materials from the surveyed points of 
interest. Once the excavator is full it returns the materials to its origin point and deposits them there for 
the astronaut to pick up. The excavator then returns to its excavation task. For the distributed simulation, 
the agent-based simulation needs to be able to receive the Cartesian coordinates of the target location 
from the UAV (UAVx, UAVy) and to send the Cartesian coordinates of its own current location to other 
Federates that need to coordinate with it (EXCx, EXCy) (including the visualization Federate that shows 
the entire scenario during the execution of the SEE distributed simulation). 

Table 1: Comparison in building DKF and no-DKF based Federate. 

 Without DKF With DKF 

Object/Attribute declaration Manually declared in 
Federate Class Annotated in Object Class 

Interaction/Parameter 
declaration 

Manually declared in 
Federate Class Annotated in Interaction Class 

Attribute/Parameter update Manually for each element Collectively for each Object/ 
Interaction 

Data Types Coders Explicitly stated in FOM Using DKF coder package 

Time advance Scheduled and managed in 
Repast 

Managed by HLA/RTI via 
DKF 

 
In HLA, each Federate must declare the published/subscribed Objects and their attributes and 

Interactions and their parameters. These attributes and parameters are then updated during the Federation 
execution. Without the DKF, these attributes and parameters should be manually declared in the Federate 
Class one-by-one and then manually update each element during runtime. With the DKF, using the 
provided Java annotations, these published/subscribed classes are annotated as @ObjectClass or 
@InteractionClass accordingly. Also, the elements are annotated as @Attributes or @Parameters in their 
respective classes. Another consideration when developing a distributed simulation is the data types and 
how they are encoded. These should be explicitly stated in the FOM, individually for each 
published/subscribed element data type. The DKF provides a coder package and the specific coder can be 
added where the element is annotated (see Section 2.3). Another difference is the time advance 
management in the Federate. Without the DKF, the REPAST Federate uses the scheduler provided by the 
simulator to manage TAR and TAG actions, while via the DKF the time advance is managed by the RTI. 

5 CONCLUSIONS 

This paper provided a tutorial on developing HLA federates using the DKF. The framework and its 
architecture has been explained in detail as well as its services and functionalities. The tutorial guides the 
reader through the necessary steps for a federate creation and explains how the HLA elements are 
declared using annotations. Finally, a comparison on developing HLA federates with and without the 
DKF is represented through experiences on developing federates for the SEE project. 
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