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ABSTRACT 

Simulation models often have many input factors, and determining which ones have a significant impact 
on performance measures (responses) of interest can be a difficult task. The common approach of 
changing one factor at a time is statistically inefficient and, more importantly, is very often just incorrect, 
because for many models factors interact to impact on the responses. In this tutorial we present an 
introduction to design of experiments specifically for simulation modeling, whose major goal is to 
determine the important factors often with the least amount of simulating. We discuss classical 
experimental designs such as full factorial, fractional factorial, and central composite followed by a 
presentation on Latin hypercube designs, which are designed for the complex, nonlinear responses 
typically associated with simulation models. 

1 INTRODUCTION 

In this tutorial we discuss the use of statistical experimental design techniques when the “experiment” is 
the execution of a computer simulation model. In experimental-design terminology, the input parameters 
and structural assumptions composing a model are called factors, and output performance measures are 
called responses. Factors can be quantitative or qualitative (also called categorical). Quantitative factors 
naturally assume numerical values (e.g., the number of machines in a workstation), while qualitative 
factors represent structural assumptions that are not naturally quantified (e.g., a queue discipline that can 
be first-in, first-out or shortest-job first). 
 The major goal of experimental design in simulation is to determine which factors have the greatest 
effect on a response, and often to do so with the least amount of simulating. This is called factor 
screening and is typically performed using 2k  factorial designs or 2k p−  fractional factorial designs, which 
are discussed in Sections 2 and 3, respectively. 

After we learn which factors are important and how they impact on the response, we are often 
interested in developing a metamodel (a simple model of the simulation model) based on the significant 
factors. Metamodels, which are discussed in Section 4, are used for the following purposes: 

• Gain further insight into how changing a factor impacts on the response. 
• Predict the model response for system configurations that were not simulated, since the setup or 

execution time for the model might be large, or because answers are needed in real time. 
• Find that combination of input-factor values that optimizes (i.e., maximizes or minimizes) a 

response. 

Metamodels are usually given in the form of a low-order polynomial regression equation.  
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 Finally, in Section 5 we discuss the potential dangers of using experimental designs or analyses that 
were designed for physical experiments (e.g., analysis of a manufacturing process) in the context of 
simulation modeling. This paper is based on Chapter 12 of Law (2015) and on a three-day short course on 
the same topic that the author has given since 2007. A general reference on design and analysis of 
experiments is Montgomery (2013). Papers and books that discuss experimental design in the context of 
discrete-event simulation include Ankenman et al. (2010), Barton (2013), Kleijnen (2015), Kleijnen et al. 
(2005), and Sanchez and Wan (2015).   

2 2k  FACTORIAL DESIGNS 

Suppose that there are ( 2)k k ≥  factors and we want to get an initial estimate of how each factor affects 
the response. We might also want to determine if the factors interact with each other, i.e., whether the 
effect of one factor on the response depends on the levels of the others. One way to measure the effect of 
a particular factor would be to fix the levels of the other 1k − factors at some set of values and make 
simulation runs at each of two levels of the factor of interest to see how the response reacts to changes in 
this single factor. The whole process is then repeated to examine each of the other factors, one at a time. 
This strategy, which is called the one-factor-at-a-time (OFAT) approach, is quite inefficient in terms of 
the number of simulation runs needed to obtain a specified precision (see Montgomery 2013). More 
importantly, it does not allow us to measure any interactions; indeed, it assumes that there are no 
interactions, which is often not the case in simulation applications. 

Example 1. Suppose that we have two factors A and B. Let the baseline levels of these two factors be 
 and A B− − . Also,  and A B+ +  be proposed levels for these factors. Then the OFAT method would 

specify simulating the following three combinations of A and B: 
 

,  (baseline)A B− −  
,  (change )A B A+ −  
, (change )A B B− +  

 
resulting in the responses ( , ), ( , ),  and ( , ).R A B R A B R A B− − + − − +  Then the effect on the response of 
changing factor A from  to A A− + would be computed as  
 

 ( , ) ( , )R A B R A B+ − − −−   (1) 
 
However, this calculation is based only on factor B being at its B−  level. It could be, though, that the 
effect on the response of changing factor A would be quite different if factor B were at its B+  level 
(i.e., if the factors interact); see Example 3 for a numerical example. (A similar discussion applies to 
factor B.) 
 If we had also simulated the combination ,A B+ +  resulting in the response ( , ),R A B+ +  then the 
effect on the response of changing factor A could also be computed as 
 

 ( , ) ( , )R A B R A B+ + − +−   (2) 
 

However, this last calculation would not actually be possible under the OFAT strategy, since ,A B+ +

would have not been simulated. For 22  factorial designs, which will be discussed next, the average of 
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the differences given by expressions (1) and (2) will be used to estimate the effect on the response of 
moving factor A from its A−  level to its A+  level. 

 A much more economical strategy for determining the effects of factors on the response with which 
we can also measure interactions, called a 2k factorial design, requires that we choose just two levels for 
each factor and then calls for simulation runs at each of the 2k possible factor-level combinations, which 
are called design points. We associate a minus sign with one level of a factor and a plus sign with the 
other. The levels, which should be chosen in consultation with subject-matter experts, should be far 
enough  apart that we would expect to see a difference in the response, but not so separated that 
nonsensical combinations are obtained. Because we are using only two levels for each factor, we assume 
that the response is approximately linear (or at least monotonic) over the range of the factor. (If the 
response is nonmonotonic over the range, then we might be misled into thinking that the factor has no 
effect on the response.) We will discuss a method for testing the linearity assumption in Section 4. 
 The form of a 2k factorial design can be compactly represented in tabular form, as in Table 1 for 

3.k =  The variable iR  for 1, 2, , 8i =   is the value of the response when running the simulation with 
the ith combination of the factor levels. For example, 4R  is the response resulting from running the 
simulation with factors 1 and 2 at their respective “+” levels and factor 3  at its “-” level. We shall see 
later that writing down  this array, called the design matrix, facilitates calculation of the factor effects and 
interactions. 

Table 1: Design matrix for a 32 factorial design. 

Factor combination 
(design point) 

Factor 1 Factor 2 Factor 3 Response 

1 - - - 1R   
2 + - - 2R  
3 - + - 3R  
4 + + - 4R  
5 - - + 5R  
6 + - + 6R   
7 - + + 7R   
8 + + + 8R   

 
 The main effect of factor j, denoted by ,je  is the difference between the average response when factor 

j is at its “+” level and the average response when it is at its “-” level. For the 32  design of Table 1, the 
main effect of factor 1 is thus 
 

2 4 6 8 1 3 5 7
1 4 4

R R R R R R R Re + + + + + +
= −  

 
which can be rewritten as 
 

1 2 3 4 5 6 7 8
1 4

R R R R R R R Re − + − + − + − +
=  
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Thus, to compute 1,e we simply apply the signs in the “Factor 1” column of Table 1 to the corresponding 
' ,iR s  add them up and divide by 4. A geometric interpretation of main effects is given on page 243 in 

Montgomery (2013). 
 The main effects measure the average change in the response due to a change in an individual factor.  
It could be, though, that the effect of factor 1j  depends in some way on the level of some other factor 2 ,j  
in which case the factors are said to interact. A measure of the interaction, denoted by 

1 2
,j je  is the 

difference between the average response when factors 1j  and 2j  are at the same (both “+” or both “-”) 
level and the average response when they are at opposite levels. It is also called the 1 2j j×  interaction. 
For the 32 design, the 1 2×  interaction effect is given by 
 

1 4 5 8 2 3 6 7
12 4 4

R R R R R R R Re + + + + + +
= −  

 
which can be rewritten as  
 

1 2 3 4 5 6 7 8
12 4

R R R R R R R Re − − + + − − +
=  

 
Thus, if we create a new column labeled  “1 2× ” of eight signs by “multiplying” the ith sign in the 
“Factor 1” column by the ith sign in the “Factor 2” column (the product of like signs  is a “+” and the 
product of opposite signs is a “-”), we get a column of signs that gives us precisely the signs of the 'iR s
used to form 12;e  as with main effects the divisor is 4. 
 Although its interpretation becomes more difficult, we can also define the three-way interaction, 123,e  
as follows: 
 

1 2 3 4 5 6 7 8
123 4

R R R R R R R Re − + + − + − − +
=  

 
This expression for 123e  is obtained by multiplying the ith signs from the columns for factors 1, 2, and 3 
in Table 1, applying them to the 'iR s and summing, and then dividing by 4. 
 If  two- or three-way interactions appear to be present for a 32  factorial design, then the main effect 
of each factor involved in such a significant interaction cannot be interpreted as simply the effect in 
general of moving that factor from its “-” level to its “+” level, since the magnitude and possibly the sign 
of the change in the response depend on the level of at least one other factor. 

Example 2. Customers arrive to a company and want to buy a product. Suppose that the interarrival 
times of customers are exponentially distributed with mean 0.1 month. The demand size of an arriving 
customer is 1, 2, 3, or 4 items with respective probabilities 1/6, 1/3, 1/3, and 1/6. The company uses 
an ( , )s S  inventory policy to decide when and how much to order from its supplier, where s is the 
reorder point and S is the target amount. In particular, let iI  be the inventory level at the beginning 
of the ith month, where iI  can be positive, zero, or negative. If ,iI s<  then the company will order 

iZ S I= −  items and incur an ordering cost of ,iO K iZ= +   where K = $32 is the setup cost and i = 
$3 is the incremental cost per item ordered. If ,iI s≥  then no order is placed and the company incurs 
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no ordering cost. The delivery lag, which is the time from when the company places an order with its 
supplier until it actually arrives, is assumed to be uniformly distributed between 0.5 and 1 month. 
 If the demand size for a particular customer is greater than the current inventory level, then the 
shortage is backlogged and satisfied by future orders. (In this case, the new inventory level is the old 
inventory level minus the demand size, resulting in a negative inventory level.) 
 The company also incurs a holding cost, ,iH  in month i that is $1 times the average number in 
items physically in inventory (nonnegative) in month i. The holding cost includes such things as 
warehouse rental, insurance, taxes, etc. There is also a shortage cost, ,iS  in month i that is $5 times 
the average shortage level (nonnegative) in month i. The shortage cost includes the extra record 
keeping when a backlog exists, as well as loss of customers’ goodwill. Then the total cost, ,iC  of 
operating the inventory system in month i is given by 
 

i i i iC O H S= + +  
 
The response of interest is the average total cost per month over a 120-month planning horizon, and 
the initial inventory level is assumed to be 60. 
 For the sake of experimental design, it is convenient to reparameterize the inventory model 
slightly in terms of the ordering policy. Specifically, we will now take the factors to be the reorder 
point s and the difference .d S s= −   (Clearly, ,S s d= +  so the two parameterizations are 
equivalent.) The “low” and “high” values we chose for these new factors are given in the coding 
chart in Table 2. (If we had used s and S in the coding chart, then we would have obtained 
nonsensical inventory policies such as (20,10).)   

Table 2: Coding chart for s and d in the inventory model. 

Factor - + 
s 20 60 
d 10 50 

 
 We simulated each of the four design points, and the relevant design matrix and corresponding 
response values are given in Table 3, together with an extra column of signs to be applied in 
computing the s d×  interaction. Each iR  is the average cost from a single 120-month replication. 
The main effects are 

 
144.16 144.50 119.99 147.00 13.68

2se − + − +
= =

 
 

and 
 

144.16 144.50 119.99 147.00 10.84
2de − − + +

= = −
 

 
and the s d×  interaction effect is 

 
144.16 144.50 119.99 147.00 13.34

2sde − − +
= =
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Thus, the average effect of raising s from 20 to 60 was to increase the monthly cost by 13.68, and 
raising d from 10 to 50 decreased the monthly cost by an average of 10.84. Therefore, it appears that 
the smaller value of s and the larger value of d would be preferable, since lower monthly costs are 
desired. Since the s d×  interaction is positive, there is further indication that lower costs are observed 
by  setting s and d at opposite levels.  However, if  this  interaction is  present in  a  significant  way (a 

Table 3: Design matrix and simulation results for the 22  factorial design on s and d, inventory model. 

Factor combination 
(design point) 

s d s d×  Response 

1 - - + 144.16 
2 + - - 144.50 
3 - + - 119.99 
4 + + + 147.00 

 
      question addressed in Example 3 below), then the effect that s has on the response depends on the  
      level of d, and vice versa. 
 Since the 'iR s  are random variables, the observed effects are random also. To determine whether the 
effects are “real,” as opposed to being explainable by sampling fluctuation, we must determine if the 
effects are statistically significant.  This is often addressed in the experimental-design literature by 
performing an analysis of variance (see Montgomery 2013), which assumes that the response has the 
same population variance for each design point. However, as we will see in Example 3, this is usually not 
a good assumption in simulation modeling. We will, therefore, take the simple approach of replicating the 
whole design n times to obtain n independent and identically distributed (IID) values of each effect. These 
values can then be used to construct confidence intervals for the expected effects. For example, let i

je  be 
the observed main effect of factor j on replication i, for 1,2, , .i n=   Let 
 

1( )

n
i
j

i
j

e
e n

n
==
∑

 
and 

2

2 1

( )
( )

1

n
i
j j

i
j

e e n
S n

n
=

 − 
=

−

∑
 

 
Then an (approximate) 100(1 )α− percent confidence interval for the expected main effect ( )jE e  is given 
by  

2
1,1 /2( ) ( ) /j n je n t S n nα− −±

 
 
where 1,1 /2nt α− −  is the upper 1 / 2α−  critical point for a t distribution with 1n −  degrees of freedom.  If 
the confidence interval for ( )jE e  does not contain 0, we conclude that the effect is statistically  
significant; otherwise, we have no statistical evidence that it is actually present. We can construct a 
confidence interval for an expected interaction effect in a similar manner. We must also keep in mind that 
statistical significance of an effect does not necessarily imply that its magnitude is practically significant 
(i.e., large enough to make a tangible difference). 
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Example 3. We replicated the entire 22  factorial design of the inventory model in Example 2 n = 10 
times, and Table 4 gives the sample mean and variance of the responses across the 10 replications for  

Table 4: Sample means and variances of the responses for the inventory model. 

Design point Sample mean Sample variance 
20, 10s d= =  135.71 22.24 
60, 10s d= =  143.94 2.26 
20, 50s d= =  119.45 15.07 
60, 50s d= =  148.17 1.60 

 

each of the four design points. Note that the largest and smallest sample variances differ by a factor of 
approximately 14. Based on  the 10 IID values  of each of  the three  effects that  we obtained, Table 5 
gives 95 percent confidence intervals for ( ), ( ),  and ( ).s d sdE e E e E e  All effects appear to be real since 
their confidence intervals do not contain zero. If we could interpret the main effects literally, we 
would expect the average cost per month to increase by 18.47 when we move s from 20 to 60, and to 
decrease by 6.02 when we move d from 10 to 50.  However, since there is a significant interaction 
between s and d, these main effects actually provide a limited amount of information. 

Table 5: 95 percent confidence intervals for the expected effects, inventory model. 

Expected effect 95 percent confidence interval 

( )sE e  18.47 2.33±  
( )dE e  6.02 2.23− ±  
( )sdE e  10.25 2.60±  

 
 In Figure 1 we give an interaction plot for s and d, where the presence of an interaction is 
indicated by the nonparallel lines (see Equation (8)). In particular, when 10,d =  moving s from 20 to 
60 increases the average cost by 8.23 (see Table 4).  However, when 50,d = moving s from 20 to 60 
increases the average cost by 28.72.  Note that the OFAT approach would give 8.23 as the increase in 
average cost resulting from moving s from 20 to 60, whereas we got 18.47 from the 22  factorial 
design. 
 We conclude from Figure 1 that both s and d have a significant effect on the average cost per 
month. However, the actual numerical change in the average cost due to changing s depends on the 
level of d, and vice versa; this will be discussed further in Section 4. 
 It should be mentioned that a factor can be important even if the magnitude of its main effect is 
small, since it might have a significant interaction with another factor (see pages 647-648 in Law 
2015). 

3 2k p−  FRACTIONAL FACTORIAL DESIGNS 

It is clear that 2k  factorial designs may become unaffordable if k is large. For example, k = 11 factors 
would require 112 2048=  design points. 
 Fractional factorial designs provide a way to get good estimates of the main effects and perhaps two-
factor interactions at a fraction of the computational effort required by a full 2k  factorial design. Basically, 
a 2k p−  fractional  factorial  design  is  constructed by choosing a certain subset (of size 2k p− ) of all the 2k   
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Figure 1: Interaction plot for factors s and d, inventory model. 

possible design points and then running the simulation for only these chosen points. Since only 1 / 2 p  of 
the possible 2k   factor combinations are actually run, we  sometimes speak of a “half fraction” if 1,p =  a 
“quarter fraction” if 2,p =  and so on. Clearly, we would like p to be large from a computational viewpoint, 
but a larger p may also result in less information from the experiment, as one might expect. 
 Consider again the k = 11 factor example above. If we are willing to assume that three-way and 
higher-way interactions are negligible, then we could use what is called a resolution V fractional factorial 
design (see page 650 in Law 2015) requiring only 128 design points to get “clear” estimates of main 
effects and two-way interactions  
 Unfortunately, for some simulation models there are, in fact, significant three-way and four-way 
interactions, and fractional factorial designs give biased estimates of two-way interactions and even main 
effects, limiting their usefulness. 

4 METAMODELS AND RESPONSE SURFACES  

We discuss metamodeling using the inventory model of Examples 2 and 3, where all effects were found 
to be statistically significant. Let E[R(s, d)] denote the expected average cost per month for particular 
values of the reorder point, s, and the difference, d. Then in a 22  factorial design, we are in fact assuming 
that E[R(s, d)] can be represented by the following regression model (see chapter 10 in Montgomery 
2013): 
 

  0[ ( , )] β β β β= + + +s s d d sd s dE R s d x x x x  (3) 
 
where 0 , , ,  and s d sdβ β β β  are coefficients, and  and s dx x  are coded variables for the factors that we now 
define. In particular, let  and s d  be the average values of s and d (called the natural variables for the 
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factors) in Table 2; that is, 40 and 30.= =s d  Also, let  and ∆ ∆s d  be the differences between the “-” 
and “+” levels for s and d, respectively, so that 40 and 40.∆ = ∆ =s d  Then the coded variables for s and d 
are defined by  

 2( ) 40
20

− −
= =

∆s
s s sx

s
  (4) 

and 

 2( ) 30
20

− −
= =

∆d
d d dx

d
  (5) 

   
Note that Equation (4) maps 20=s  into 1= −sx  and 60=s  into 1.= +sx  Similarly, (5) maps 10=d  
into 1= −dx  and 50=d  into 1.= +dx  Coded variables are commonly used in experimental design 
because the effect on the response of a change in a factor is always measured relative to the range -1 to +1. 
 Suppose that (10), (10),  and (10)s d sde e e  are the effect estimates from the n = 10 independent 
replications of Example 3. Also, let (10)FR  be the average response over the four factorial (denoted by F) 
design points and over the 10 replications.  Then least-squares estimators (see pages 280-282 in 
Montgomery 2013) are given by  
 

 0
(10) (10) (10)ˆ ˆ ˆ ˆ(10), , ,  
2 2 2

s d sd
F s d sd

e e eRβ β β β= = = =   (6) 

 
The reason that a regression coefficient (other than 0β̂ ) is one-half of the effect estimate is that a 
regression coefficient measures the effect of a unit change in x on the mean E[R(s, d)], while the effect 
estimate is based on a two-unit change (from -1 to +1). 

Substituting the estimated coefficients from Equation (6) into the model (3), we obtained the 
following fitted regression model in the coded variables  and s dx x : 

 
 ˆ ( , ) 136.819 9.237 3.009 5.123= + − +s d s dR s d x x x x   (7) 
 
Note that the coefficients 9.237, -3.009, and 5.123 are, in fact, one-half of the effect estimates in Table 5 
(up to roundoff). Putting  and s dx x  as given by (4) and (5) into the model given by (7), we get the 
following equivalent regression model in the natural variables s and d: 
 
 ˆ ( , ) 138.226 0.078 0.663 0.013= + − +R s d s d sd   (8) 
 
Equation (8) is a model of how the simulation transforms the input parameters s and d into the output 
response ˆ( , ),R s d  and it is called a metamodel (i.e., a model of the simulation model). We plot ˆ ( , )R s d  as 
given by (8) in Figure 2; this plot was made using the Design-Expert experimental design software (see 
Stat-Ease 2017). This plot, which is called a response surface, is a “twisted plane” because of the 
interaction term in (8). Note that if the coefficient of sd in (8) were 0, then the effect of s on the response 
would not depend on d, and vice versa; i.e., there would be no interaction between s and d. 
 The metamodel (8) could be regarded as a proxy for the full simulation model’s response surface; all 
we would need is a pocket calculator or spreadsheet to evaluate it for any (s, d) pair of interest. We must 
remember, though, that (8)  is just an approximation to  the actual simulation  and may thus  be 
inaccurate,  especially  far  from  the values  of  s  and  d  that  provided  the  data  on which it is based. A  
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Figure 2: Response-surface plot from the 22  factorial design, inventory model. 

 
metamodel, after all, is itself a model, and as such may or may not be valid relative to the simulation 
model. 
 The regression model given by Equation (3) assumes that the response is a linear function in the 
coded variables. However, in some cases the simulation model’s response might be better represented by 
the following quadratic (or second-order) regression model: 
 
 2 2

0[ ( , )] β β β β β β= + + + + +s s d d sd s d ss s dd dE R s d x x x x x x   (9) 
 
To determine whether the model given by (3) is a good approximation to the simulation model’s response 
surface or whether the second-order model given by (9) is necessary, we made n = 10 independent 
replications of the simulation at the center point (denoted by C), 0 and 0= =s dx x  (or, equivalently, s = 
40 and d = 30), and we obtained an average response of (10) 122.95.CR =  Substituting 0 and 0= =s dx x  
into (7) gives (10) 136.82,FR =  which is the predicted average response for the model at the center point.  
Thus, we get a difference of (10) (10) 13.87,F CR R− = which turns out to statistically significant (see 
pages 661-662 in Law 2015 for additional details). Thus, it appears that quadratic (or higher-order) 
curvature is present and the second-order model given by Equation (9) should be considered. 
 Unfortunately, we cannot uniquely estimate the six required coefficients in (9) because we have only 
collected data from five independent design points (i.e., four from the  factorial design and one at the 
center point). Therefore,  we  will  augment  our  five  existing points with four axial points. The resulting  
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Figure 3: Face-centered central composite design for k = 2. 

design, called a face-centered central composite design (CCD) and shown in Figure 3, will be used to fit 
the second-order model. We made n = 10 independent replications for each of the four axial points. From 
the data for all nine design points, we obtained the following fitted second-order model in the coded 
variables: 
 
 2 2ˆ ( , ) 122.803 9.518 1.959 4.627 8.869 5.205s d s d s dR s d x x x x x x= + − + + +   (10) 
 
The equivalent second-order model in the natural variables is 

  
 2 2ˆ ( , ) 167.771 1.645 1.341 0.012 0.022 0.013R s d s d sd s d= − − + + +   (11) 
  
Substituting 0 and 0= =s dx x into (10), we get 122.80, which is very close to the average simulation 
response, (10) 122.95,CR =  at the center point. In Figure 4 we give the  response-surface plot 
corresponding to (11), and in Figure 5 we give a contour plot of the response surface, where all (s, d) 
points along a particular contour line would give approximately the same average-response value. 
 In order to validate the quadratic model given by (11), and to compare it more definitively to the first-
order model with interaction term given by (8), we considered  the four new  design points  (50, 20), (50, 
40), (30, 20), and (30, 40). We made n = 10 independent replications of the simulation at each of these 
design points and the corresponding average responses are given in Table 6, along with the predicted 
average responses for each of the two metamodels. Also, given in the table for each design point and each 
metamodel is the percentage error in the predicted average response relative to the average simulation 
response. For example, for design point (50, 20), the average simulation response was 134.50 while the 
quadratic metamodel predicts that the average response will be 130.90, which represents a percentage 
error of 2.68 percent. It is clear from the table that the second-order metamodel given by (11) provides 
better predictions than does the first-order metamodel with interaction term given by (8), at least for the 
four new design points considered. Moreover, since the second-model appears to give “valid” predictions, 
we could now use it to predict the average response for other design points within our area of 
experimentation. 
 The Design-Expert software, which we have used to make many of our plots, employs a nonlinear 
programming  algorithm (i.e., the Nelder-Mead simplex method) to try  to  find  the factor levels that give  
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Figure 4: Response-surface plot of the second-order metamodel from the central composite design, 
inventory model. 

the minimum (or maximum) response for a fitted metamodel. For the inventory model, we used Design-
Expert to find the values of s and d that minimize the average response ˆ( , )R s d  given by the metamodel 
(11), subject to the constraints 20 60 and 10 50.s d≤ ≤ ≤ ≤  Design-Expert’s optimization algorithm 
found the “optimal” factor levels to be s = 27 and d = 40, and the corresponding minimum average cost 
was $119.18 (see Figure 5). 
 If the response surface for a simulation model is “complex” in the interior of the experimental region 
(e.g., has nonmonotonic behavior), then a CCD may lead to a metamodel with poor predictive 
capabilities, because it only dictates sampling at the center point there. In this case we might consider the 
use of a Latin hypercube design, whose goal is to spread the design points “uniformly” throughout the 
experimental region. They require the factors to be continuous variables or discrete variables with 
potentially a large number of different levels. 
 In a Latin hypercube design (LHD) the design matrix has m rows and k columns, where m is the 
desired number of design points (levels for each factor). For a particular column (factor), the m levels are 
equally spaced between the lower and upper endpoints of the factor’s range. Then each column is 
randomly permuted independently of every other column (see section 12.4.3 in Law 2015 for additional 
details). A rule of thumb for choosing the number of design points is 10 .m k=   
 For the inventory model discussed above, we used the JMP statistical package (see SAS 2017) to 
generate a LHD with 10(2) 20m = = design points in the experimental area defined by 
20 60 and 10 50,s d≤ ≤ ≤ ≤  and the resulting design points are shown in Figure 6. We made n = 10 
independent replications of the simulation at each of the 20 design points and obtained the following 
fitted quadratic metamodel in the natural variables: 
 
                                2 2ˆ ( , ) 141.197 0.834 0.774 0.006 0.016 0.009R s d s d sd s d= − − + + +   (12) 
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Figure 5: Contour plot of the second-order metamodel from the central composite design, inventory 
model. 

 We used the metamodel given by (12) to predict the average response at the each of the four design 
points given in Table 6 and we obtained values of 133.82, 134.51, 122.23, and 120.66, respectively, 
corresponding to metamodel errors of 0.51, 0.33, 0.28, and 0.79 percent. This is an average error of 0.48 
percent across the four design points, whereas the average errors for the metamodels given by (11) and (8) 
were 1.79 and 7.20 percent, respectively. 
 Note that for some simulation models, the quality of the predictions provided by a LHD will be 
dramatically better than those given by a CCD (see page 678 in Law 2015). A LHD will also require 
fewer design points than a CCD for 6.≥k  For example, in the case of k = 10 a LHD requires 100 = 
10(10) design points whereas a CCD requires 101045 2 2(10) 1= + +  design points. 

Table 6: Comparison of the metamodels given by Equations (8) and (11) for four new design points, 
inventory model. 

Design point Average simulation 
response 

Predicted average response 
from (8) and percentage error 

Predicted average response 
from (11) and percentage error 

(50, 20) 134.50 141.66 (5.32%) 130.90 (2.68%) 

(50, 40) 134.97 141.21 (4.62%) 131.26 (2.75%) 

(30, 20) 121.89 134.99 (10.75%) 123.70 (1.48%) 

(30, 40) 119.71 129.42 (8.11%) 119.43 (0.23%) 
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                     Figure 6: Latin hypercube design with m = 20 for the inventory model.   

5 CONCLUSIONS AND SUMMARY 

Design of experiments is a computationally efficient methodology for determining which model factors 
have an important impact on a response, taking into account interactions that may occur between factors. 
Note that in practice simulation models will typically have multiple responses, as illustrated in, for 
example,  Sanchez et al. (2012). Metamodels based on the important factors may then be developed and 
are useful for predicting the model response for factor configurations that were not actually simulated, or 
because answers are needed in real time. 
 However, experimental designs and analyses developed for physical experiments are often blithely 
applied to simulation experiments, resulting in the following potential pitfalls:  

• Two-level factorial and fractional factorial designs may produce misleading results, since 
simulation responses are often nonmonotonic functions of the factor levels. 

• Fractional factorial designs may give significantly biased estimates of main effects and two-factor 
interactions because of the presence of large three-factor and even four-factor interactions for 
some simulation models. 

• Analysis of variance, which is typically used to determine the statistical significance of factor 
effects, assumes constant variances and normally distributed error terms (differences between 
observed and predicted average responses), which are generally not valid assumptions for 
simulation models. 

• Metamodels based on CCDs may provide poor predictions for simulation models with “complex” 
response surfaces. For some models Latin hypercube designs will give much better predictions. 

• In physical experiments, there is a strong emphasis on designs that require a “small” number of 
design points. However, this need not be the case for many simulation models, because of 
computer speeds, multi-core processors, and cloud computing. 
 

 Note that some simulation analysts might forego factor screening using a two-level design (e.g., 2k ) 
and move immediately to constructing a metamodel where each factor is simulated at three or more 
levels.   
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