
Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D'Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

INTRODUCTION TO INFORMATION AND PROCESS MODELING FOR SIMULATION

Gerd Wagner

Brandenburg University of Technology
Department of Informatics

P. O. Box 101344
03013 Cottbus, GERMANY

ABSTRACT

In simulation engineering, a system model mainly consists of an information model and a process model.
In the fields of Information Systems and Software Engineering (IS/SE) there are widely used standards
such as the Class Diagrams of the Unified Modeling Language (UML) for making information models,
and the Business Process Modeling Notation (BPMN) for making process models. This tutorial presents a
general approach how to use UML class diagrams and BPMN process diagrams at all three levels of mod-
el-driven simulation engineering: for making conceptual simulation models, for making platform-
independent simulation design models, and for making platform-specific, executable simulation models.
In our approach, object and event types are modeled as stereotyped classes and random variables are
modeled as stereotyped operations constrained to comply with a specific probability distribution, while
event rules/routines are modeled both as BPMN patterns and in pseudo-code.

1 INTRODUCTION

The term simulation engineering denotes the scientific engineering discipline concerned with the devel-
opment of computer simulations, which are a special class of software applications. Since a running com-
puter simulation is a particular kind of software system, we may consider simulation engineering as a
special case of software engineering.
 In a panel discussion on conceptual simulation modeling (Zee et al. 2010), the participants agreed that
there is a lack of “standards, on procedures, notation, and model qualities”. On the other hand, there is no
such lack in the field of Information Systems and Software Engineering (IS/SE) where widely used stand-
ards such as the Unified Modeling Language (UML) and the Business Process Modeling Notation
(BPMN) and various modeling methodologies and model quality assurance methods have been estab-
lished.

The standard view in the simulation literature (see, e.g., Himmelspach 2009) is that a simulation mod-
el can be expressed either in a general purpose programming language or in a specialized simulation lan-
guage. This means that the term ‘model’ in simulation model typically refers to a low-level computer pro-
gram and not to a model expressed in a higher-level diagrammatic modeling language. In a modeling and
simulation project, despite the fact that ‘modeling’ is part of the discipline’s name, often no model in the
sense of a conceptual model or a design model is made, but rather the modeler jumps from her mental
model to its implementation in some target technology platform. Clearly, as in IS/SE, making conceptual
models and design models would be important for several reasons: as opposed to a low-level computer
program, a high-level model would be more comprehensible and easier to communicate, share, reuse,
maintain and evolve, while it could still be used for obtaining platform-specific implementation code,
possibly with the help of model transformations and code generation.

Due to their great expressivity and their wide adoption as modeling standards, UML and BPMN seem
to be the best choices for making information and process models in a model-based simulation engineer-

520978-1-5386-3428-8/17/$31.00 ©2017 IEEE

Wagner

ing approach. However, since they have not been specifically designed for this purpose, we may have to
restrict, modify and extend them in a suitable way.

Several authors, e.g. Wagner et al. (2009) and Onggo and Karpat (2011), have proposed to use BPMN
for discrete event simulation modeling and for agent-based modeling. However, process modeling in gen-
eral is much less understood than information modeling, and there are no guidelines and no best practices
how to use BPMN for simulation modeling.

In this tutorial, we provide short introductions to model-driven engineering, to information modeling
with UML class diagrams, and to process modeling with BPMN diagrams, and then show how to use our
general model-based simulation engineering approach for developing a simulation of an inventory man-
agement system. In our approach, object and event types are modeled as stereotyped classes that can be
implemented with any object-oriented programming language or simulation library/framework. Random
variables are modeled as stereotyped operations constrained to comply with a specific probability distri-
bution, and event rules/routines are modeled both as BPMN patterns and in pseudo-code.

An extended version of this tutorial is available as (Wagner 2017).

2 WHAT IS DISCRETE EVENT SIMULATION?

The term Discrete Event Simulation (DES) has been established as an umbrella term subsuming various
kinds of computer simulation approaches, all based on the general idea of modeling entities/objects and
events. In the DES literature, it is often stated that DES is based on the concept of “entities flowing
through the system” (more precisely, through a “queueing network”). E.g., this is the paradigm of an en-
tire class of simulation software in the tradition of GPSS (Gordon 1961) and SIMAN/Arena (Pegden and
Davis 1992). However, this paradigm characterizes a special (yet important) class of DES only, it does
not apply to all discrete dynamic systems.

In Ontology, which is the philosophical study of what there is, the following fundamental distinctions
are made:

 there are entities (also called individuals) and entity types (called ‘universals’ in philosophy);

 there are three fundamental categories of entities:

1. objects,
2. tropes, which are existentially dependent entities such as the qualities and dispositions of ob-

jects and their relationships with each other, and
3. events.

These ontological distinctions are discussed, e.g., in Guizzardi and Wagner (2010, 2013).
While the concept of an event is often limited to instantaneous events in the area of DES, the general

concept of an event, as discussed in philosophy and in many fields of computer science, includes compo-
site events and events with non-zero duration.

A discrete event system (or discrete dynamic system) consists of

 objects (of various types),
 events (of various types),
 dispositions of objects triggered by events,

such that the states of objects may be changed by events occurring at times from a discrete set of time
points, according to the dispositions of the objects triggered by the events.

For modeling a discrete event system as a state transition system, we have to describe its

1. object types, e.g., in the form of classes of an object-oriented language;
2. event types, e.g., in the form of classes of an object-oriented language;
3. causal regularities (disposition types) e.g., in the form of event rules.

521

Wagner

Any discrete event simulation (DES) formalism has one or more language elements allowing to speci-
fy, at least implicitly, event rules that allow representing causal regularities. These rules specify for any
event type, the state changes of objects and the follow-up events caused by the occurrence of an event of
that type, thus defining the dynamics of the transition system. Unfortunately, this is often obscured by the
standard definitions of DES that are repeatedly presented in simulation textbooks and tutorials. It is com-
mon to call the different computational paradigms, on which simulation languages and systems are based,
“worldviews”.

According to Pegden (2010), a simulation modeling worldview provides “a framework for defining a
system in sufficient detail that it can be executed to simulate the behavior of the system”. It “must pre-
cisely define the dynamic state transitions that occur over time”. Pegden continues saying that “Over the
50 year history of simulation there has been three distinct world views in use: event, process, and ob-
jects”:

Event worldview: The system is viewed as a series of instantaneous events that change the state of the
system over time. The modeler defines the events in the system and models the state changes that take
place when those events occur. According to Pegden, the event worldview is the most fundamental
worldview since the other worldviews also use events, at least implicitly.

Processing network worldview: The system under investigation is described as a processing network
where “entities flow through the system” (or, more precisely, work objects are routed through the net-
work) and are subject to a series of processing steps performed at processing nodes through processing
activities, possibly requiring resources and inducing queues of work objects waiting for the availability of
resources (processing networks have been called “queueing networks” in Operations Research). This ap-
proach allows high-level modeling with semi-visual languages and is therefore the most widely used DES
approach nowadays, in particular in manufacturing industries and service industries. Simulation platforms
based on this worldview may or may not support object-oriented modeling and programming.

Object worldview: The system is modeled by describing the objects that make up the system. The sys-
tem behavior emerges from the “interaction” of these objects.

All three worldviews, and especially the process and object worldviews, which dominate today’s
simulation landscape, lack important conceptual elements. The event worldview does not support model-
ing objects with their (categorical and dispositional) properties. The process worldview neither supports
modeling events nor objects. And the object worldview, while it supports modeling objects with their
categorical properties, does not support modeling events. None of the three worldviews does support
modeling the dispositional properties of objects with a full-fledged explicit concept of event rules.

The event worldview and the object worldview can be combined in approaches that support both ob-
jects and events as first-class citizens. This seems highly desirable because (1) objects (and classes) are a
must-have in today’s state-of-the-art modeling and programming, and (2) a general concept of events is
fundamental in DES, as demonstrated by the classical event worldview. We use the term object-event
worldview for any DES approach combining object-oriented (OO) modeling and programming with a
general concept of events.

3 MODEL-DRIVEN ENGINEERING

Model-Driven Engineering (MDE), also called model-driven development, is a well-established paradigm
in IS/SE, see, e.g., the Model-Driven Architecture proposal of the Object Management Group (MDA
2012). Since simulation engineering can be viewed as a special case of software engineering, it is natural
to apply the ideas of MDE also to simulation engineering. There have been several proposals of using an
MDE approach in Modeling and Simulation (M&S), see, e.g., the overview given in Cetinkaya and Ver-
braeck (2011).

In MDE, there is a clear distinction between three kinds of models as engineering artifacts resulting
from corresponding activities in the analysis, design and implementation phases:

1. domain models (also called conceptual models),

522

Wagner

2. platform-independent design models,
3. platform-specific implementation models.

Domain models are solution-independent descriptions of a problem domain produced in the analysis
phase of a software engineering project. We follow the IS/SE usage of the term ‘conceptual model’ as a
synonym of ‘domain model’. However, in the M&S literature there are diverging proposals how to define
the term ‘conceptual model’, see, e.g., (Guizzardi & Wagner 2012) and (Robinson 2013). A domain mod-
el may include both descriptions of the domain’s state structure (in conceptual information models) and
descriptions of its processes (in conceptual process models). They are solution-independent, or ‘computa-
tion-independent’, in the sense that they are not concerned with making any system design choices or
with other computational issues. Rather, they focus on the perspective and language of the subject matter
experts for the domain under consideration.

In the design phase, first a platform-independent design model, as a general computational solution, is
developed on the basis of the domain model. The same domain model can potentially be used to produce
a number of (even radically) different design models. Then, by taking into consideration a number of im-
plementation issues ranging from architectural styles, nonfunctional quality criteria to be maximized (e.g.,
performance, adaptability) and target technology platforms, one or more platform-specific implementa-
tion models are derived from the design model. These one-to-many relationships between conceptual
models, design models and implementation models are illustrated in Figure 1.

Figure 1: From a conceptual model to design models to implementation models.

In the implementation phase, an implementation model is coded in the programming language of the
target platform. Finally, after testing and debugging, the implemented solution is then deployed in a target
environment.

A model for a software (or information) system, which may be called a ‘software system model’,
does not consist of just one model diagram including all viewpoints or aspects of the system to be devel-
oped (or to be documented). Rather it consists of a set of models, one (or more) for each viewpoint. The
two most important viewpoints, crosscutting all three modeling levels: domain, design and implementa-
tion, are

1. information modeling, which is concerned with the state structure of the domain;
2. process modeling, which is concerned with the dynamics of the domain.

In the computer science field of database engineering, which is only concerned with information
modeling, domain information models have been called ‘conceptual models’, information design models
have been called ‘logical design models’, and database implementation models have been called ‘physical
design models’. In the sequel, we call information implementation models data models or class models.
So, from a given information design model, we may derive an SQL data model, a Java class model and a
C# class model.

523

Wagner

Examples of widely used languages for information modeling are Entity Relationship (ER) Diagrams
and UML Class Diagrams. Since the latter subsume the former, we prefer using UML class diagrams for
making all kinds of information models, including SQL database models. Examples of widely used lan-
guages for process modeling are (Colored) Petri Nets, UML Sequence Diagrams, UML Activity Diagrams
and the BPMN. Notice that there is more agreement on the right concepts for information modeling than
for process modeling, as indicated by the much larger number of different process modeling languages.
We claim that this reflects a lower degree of understanding the nature of events and processes compared
to understanding objects and their relationships.

Some modeling languages, such as UML Class Diagrams and BPMN, can be used on all three model-
ing levels in the form of tailored variants. Other languages have been designed for being used on one or
two of these three levels only. E.g. Petri Nets cannot be used for conceptual process modeling, since they
lack the required expressivity.

We illustrate the distinction between the three modeling levels with an example in Figure 2 below. In
a simple conceptual information model of people, expressed as a UML class diagram, we require that any
person has exactly one mother and one father, expressed by corresponding binary many-to-one associa-
tions, while we represent the associations mother and father with corresponding reference properties in
the object-oriented (OO) design model. Also, we may not care about the datatypes of attributes in the
conceptual model, while we do care about them in the design model, where we use platform-independent
datatype names (such as Decimal), and in the Java implementation model, where we use Java-specific
datatypes (such as java.math.BigDecimal). Finally, in the Java implementation model, we add get and
set methods for all attributes, and we specify the visibility private (symbolically -) for attributes and pub-
lic (symbolically +) for methods.

Model-driven simulation engineering is based on the same kinds of models as model-driven software
engineering: going from a domain model via a design model to an implementation model for the simula-
tion platform of choice (or to several implementation models if there are several target simulation plat-
forms). The specific concerns of simulation engineering, like, e.g., the concern to capture certain parts of
the overall system dynamics with the help of random variables, do not affect the applicability of MDE
principles. However, they define requirements for the modeling languages to be used.

Figure 2: From a conceptual information model via a design model to OO and C++ class models.

4 INFORMATION MODELING WITH UML CLASS DIAGRAMS

Conceptual information modeling is mainly concerned with describing the relevant entity types of a do-
main and the relationships between them, while information design and implementation modeling is con-
cerned with describing the logical (or platform-independent) and platform-specific data structures (called
classes) for designing and implementing a software system or simulation. The most important kinds of

524

Wagner

relationships between entity types to be described in an information model are associations, which are
called ‘relationship types’ in ER modeling, and subtype/supertype relationships, which are called ‘gener-
alizations’ in UML. In addition, one may model various kinds of part-whole relationships between differ-
ent kinds of aggregate types and component types, but this is a more advanced topic and cannot be cov-
ered in this introductory tutorial.

As explained in the Introduction, we are using the visual modeling language of UML Class Diagrams
for information modeling. In this language, an entity type is described with a name, and possibly with a
list of properties and operations, in the form of a class rectangle with one, two or three compartments,
depending on the presence of properties and operations. Integrity constraints, which are conditions that
must be satisfied by the instances of a type, can be expressed in special ways when defining properties or
they can be explicitly attached to an entity type in the form of an invariant box.

An association between two entity types is expressed as a connection line between the two class rec-
tangles representing the entity types. The connection line is annotated with multiplicity expressions at
both ends. A multiplicity expression has the form m..n where m is a non-negative natural number denot-
ing the minimum cardinality, and n is a positive natural number (or the special symbol * standing for un-
bounded) denoting the maximum cardinality, of the sets of associated entities. Typically, a multiplicity
expression states an integrity constraint. For instance, the multiplicity expression 1..3 means that there are
at least 1 and most 3 associated entities. However, the special multiplicity expression 0..* (also expressed
as *) means that there is no constraint since the minimum cardinality is zero and the maximum cardinality
is unbounded.

A subtype relationship between two entity types is expressed by an arrow with a large arrowhead, as
in the example model shown in Figure 3 below, where the entity type Customer is a subtype of the entity
type Person. Generally speaking, when A is a subtype of B, this means (1) that A inherits all properties
(and other features) from B, and (2) that all instances of A are also instances of B.

E.g., the model shown in Figure 3 below describes the entity types Person, Customer and Ser-
viceQueue, and states that

1. Customer is a subtype of Person (and, hence, inherits the property name);
2. there is a many-to-one association between Customer and ServiceQueue, or, more precisely, a ser-

vice queue (as an entity of type ServiceQueue) is associated with any number of entities of type Cus-
tomer, while a customer may be waiting in at most one service queue;

Figure 3: Describing the entity types Person, Customer and ServiceQueue.

UML allows defining special categories (called ‘stereotypes’) of modeling elements. For instance, for
distinguishing between object types and event types as two different categories of entity types we can
define corresponding stereotypes of UML classes («object type» and «event type») and use them for cate-
gorizing classes in class models, as shown in the model of Figure 4 below, which also describes the event
type GetInLine. An event of that type involves exactly one customer who gets in line at exactly one ser-
vice queue (we also say the customer and the service queue participate in the event, or: they are its partic-
ipants).

Another example of using UML’s stereotype mechanism is the designation of an operation as a func-
tion that implements a random variable in the diagram of Figure 5, where the operation stereotype «rv»
indicates that an operation is categorized as representing a random variable.

525

Wagner

 The models shown in Figure 3 and 4 are solution-independent conceptual models, which often do not
contain attributes, or if they contain attributes, their range (datatype) is typically not specified. Any such
conceptual model can be refined into a solution-specific, but platform-independent, design model contain-
ing full attribute definitions.

Figure 4: Distinguishing between object types and event types as two different categories of entity types.

The UML also allows defining various types of constraints, which help to capture the semantics of a
problem domain. The model shown in Figure 5 contains examples of a property constraint and of an oper-
ation constraint. These types of constraints can be expressed within curly braces appended to a property
or operation declaration. The keyword “id” in the declaration of the property serviceDeskNo expresses an
ID constraint stating that the property is a standard identifier, or primary key, attribute. The expression
Exp(0.5) in the declaration of the random variable operation serviceDuration denotes the constraint that
the operation must implement the exponential probability distribution with event rate 0.5.

Figure 5: An object type with a property constraint and an operation constraint.

For a short introduction to UML Class Diagrams, the reader is referred to Ambler (2010). A good
overview of the most recent version of UML (2.5) is provided by www.uml-diagrams.org/uml-25-
diagrams.html

5 PROCESS MODELING WITH BPMN

The Business Process Modeling Notation (BPMN) is an activity-based graphical modeling language for
defining business processes following the flow-chart metaphor. In 2011, the Object Management Group
(OMG) has released version 2.0 of BPMN with a semi-formal token flow semantics.

The most important elements of a BPMN process model are listed in Table 1 below.
Ontologically, BPMN activities are special event types. However, the subsumption of activities under

events is not supported by the semantics of BPMN. It is one of the issues that require further improve-
ments of BPMN. Another severe issue of the official BPMN (token flow) semantics is its limitation to
case handling processes. Each start event represents a new case and starts a new process for handling this
case in isolation from other cases. This semantics disallows, for instance, to model processes where sev-
eral cases are handled in parallel and interact in some way, e.g., by competing for resources. Consequent-
ly, this semantics is inadequate for capturing the overall process of a business system with many actors
performing tasks related to many cases with various interdependencies, in parallel. We do therefore not
adopt the official BPMN semantics, but just the visual syntax of BPMN and large parts of the informal

526

Wagner

semantics of its elements. Defining a more general semantics for BPMN that is adequate for simulation
modeling is still an open research issue.

Due to these issues, it is not clear at present how to best use BPMN, and how to adapt its syntax and
semantics, for simulation modeling. Our proposal how to use BPMN for simulation modeling is therefore
rather experimental and still needs to be evaluated and improved. But we claim that despite these issues,
using BPMN as a basis for developing a process simulation modeling approach is the best choice of a
modeling language we can make, considering the alternatives, which are either not well-defined (Flow
Charts, “Logic Flow Diagrams”) or not sufficiently expressive (Petri Nets, UML State Transition Dia-
grams, UML Activity Diagrams), and which are therefore all inferior compared to BPMN.

Table 1: Basic elements of BPMN.

Name of
element

Meaning Visual symbol(s)

Event

Something that “happens” during the course of a process, affecting
the process flow.
A Start Event is drawn as a circle with a thin border line, while an Intermediate
Event has a double border line and an End Event has a thick border line.

Activity
(Task, Sub-

Process)

Work that is performed within a process.
A Task is an atomic Activity, while a Sub-Process is a composite Activity. A Sub-
Process can be either in a collapsed or in an expanded view. The latter shows its
internal process structure.

Gateway

For controlling how a process flows.
A single Gateway could have multiple input and multiple output flows. The plain
gateway symbol denotes an Exclusive OR-Split (if there are 2 or more output flows)
or an Exclusive OR-Join (if there are 2 or more input flows). A gateway with a plus
symbol denotes an AND-Split (if there are 2 or more output flows) or an AND-Join
(if there are 2 or more input flows).

Sequence
Flow

Defines the temporal order of Events, Activities, and Gateways.

Pool
Represents an agent role (like 'Buyer' or 'Seller') or a specific in-
stance of such a role (like 'Amazon.com'').

Message
Flow

Represents a message exchange communication link between two
Pools. It’s an option to render the message type with a message icon.

For an introductory BPMN tutorial, the reader is referred to (Camunda). A good modeling tool, with

the advantages of an online solution, is the Signavio Process Editor, which is free for academic use
(www.signavio.com/bpm-academic-initiative).

6 EXAMPLE: MODELING AN INVENTORY MANAGEMENT SYSTEM

There are two examples of systems, which are paradigmatic for DES (and operations research): service
desks and inventory management. Neither of them has yet been presented with elaborate information and
process models in simulation tutorials and textbooks. In this section, we use the example of inventory
management (see http://sim4edu.com/sims/1/description.html for an elaborate service desk model).

We consider a simple case of inventory management: a shop selling one product type (e.g., one model
of TVs), only, such that its in-house inventory only consists of items of that type. On each business day,
customers come to the shop and place their orders. If the ordered product quantity is in stock, the custom-
er pays her order and the ordered products are handed out to her. Otherwise, the order may still be partial-
ly fulfilled, if there are still some items in stock, else the customer has to leave the shop without any item.
If an order quantity is greater than the current stock level, the difference counts as a lost sale.

527

Wagner

When the stock quantity falls below the reorder point, a replenishment order is sent to the vendor for
restocking the inventory, and the ordered quantity is delivered a few days later.

The purpose of the simulation is to compute the percentage of lost sales, which is an important perfor-
mance indicator.

6.1 Information Modeling

How should we start the information modeling process? Should we first model object types and then
event types, or the other way around? Here, the right order is dictated by existential dependencies. Since
events existentially depend on the objects that participate in them (this is an ontological pattern that is
fundamental for DES), we first model object types, together with their associations, and then add event
types on top of them.

6.1.1 Making a Solution-Independent Conceptual Information Model in Three Steps

We can extract the following candidates for object types from the problem description above by identify-
ing and analyzing the domain-specific noun phrases: shops (for being more precise, we also say single
product shops), products (= items), inventories, customers, customer orders, replenishment orders, and
vendors. Since noun phrases may also denote events (or event types), we need to take another look at our
list and drop those noun phrases. We recognize that customer orders and replenishment orders denote
messages or communication events, and not ordinary objects. This leaves us with the five object types
described in the diagram shown in Figure 6 below.

Figure 6: Our first version conceptual information model, describing object types, only.

Notice that we have also modeled the following associations between these five object types:

1. The (named) many-to-many association customers-order-from- shops.
2. The (un-named) one-to-one association shops-have-products.
3. The (un-named) one-to-one association shops-have-inventories.
4. The (named) many-to-one association shops-order-from-vendors.

The second association is one-to-one because we are assuming that our shops sell only a single prod-
uct, while the third association is one-to-one because we assume that our shops have only one inventory
for their single product.

We have also added some attributes to the object types, such as a name attribute for customers,
shops, products and vendors, and a reorder point as well as a stock quantity attribute for inventories.
Some of these attributes can be found in the problem description (such as reorder point), while others
have to be inferred by commonsense reasoning (such as target inventory for the quantity to which the
inventory is to be restocked).

In the next step, we add event types. We have already identified customer orders and replenishment
orders as two potentially relevant event types mentioned as noun phrases in the problem description. We
can try to extract the other potentially relevant event types from the text, typically by considering the verb
phrases, such as “pay order”, “hand out product”, and “deliver”. For getting the names of our event types,

528

Wagner

we nominalize these verb phrases. So we get customer payments, product handovers and deliveries. Fi-
nally, even if this is not mentioned in the business description above, we know, using common sense, that
a delivery by the vendor leads to a corresponding payment by the shop, so we also need a payments event
type.

So we add these six event types to our model, together with their participation associations with in-
volved object types, now distinguishing class rectangles that denote event types from those denoting ob-
ject types with the help of UML stereotypes, as shown in Figure 7 below. Notice that a participation asso-
ciation between an object type and an event type is typically one-to-many, since an event of that type has
typically exactly one participating object of that type, and, vice versa, an object of that type typically par-
ticipates in many events of that type.

Figure 7: The complete conceptual information model.

Notice that, for brevity, we omitted the event types for the shop declining a customer order and the
customer leaving the shop. Even so, the model may seem quite large for a problem like inventory man-
agement. However, in a conceptual model, we describe a complete system including all object and event
types that are relevant for understanding its dynamics.

Typically, in a simulation design model we would make several simplifications allowed by our re-
search questions, and, for instance, abstract away from the object types products and inventories. But in a
conceptual model of the system under investigation, we include all relevant entity types, independently of
the simplifications we may later make in the solution design and implementation. This approach results in
a conceptual model that can be re-used in other simulation projects (with different research questions).

6.1.2 Making a Solution-Specific and Platform-Independent Information Design Model

We now derive an information design model from the solution-independent conceptual information model
shown in Figure 7 above. Our design model is solution-specific because it is a computational design for
the following specific simulation research question: compute the percentage of lost sales (as the differ-
ence between the total number of ordered items and the total number of sold items divided by the total
number of ordered items). It is platform-independent in the sense that it does not use any modeling ele-
ment that is specific for a particular platform, such as a Java datatype.

In the first step, we take a decision about which object types and event types defined in the conceptual
model can be dropped in the solution design model. The goal is to keep only those entity types in the
model, which are needed for being able to answer the research question. One opportunity for simplifica-
tion is to drop products and inventories because our assumptions imply that there is only one product and
only one inventory, so we can leave them implicit and allocate their relevant attributes to the Single-
ProductShop class. As this class name indicates, in the design model, we follow a widely used naming
convention: the name of a class is a capitalized singular noun phrase in mixed case.

529

Wagner

Further analysis shows that we can drop the event types (customer and vendor) payments, since we
don’t need any payment data, and also product handovers, since we don’t care about the point-of-sales
logistics. This leaves us with three potentially relevant object types: customers, single product shops and
vendors, and with three potentially relevant event types: customer orders, replenishment orders and de-
liveries.

There is still room for further simplification. Since for computing the percentage of lost sales we
don’t need the order quantities of individual orders, but only the total number of ordered items. It’s suffi-
cient to model an aggregate of customer orders like, for instance, the daily demand. Consequently, we
don’t need to consider individual customers and therefore can drop the object type customers, and we use
the aggregate event type DailyDemand instead of customer orders. Since we don’t need any vendor in-
formation, we can also drop the object type vendors. Finally, since we can now assume that replenishment
orders are placed when a DailyDemand event has occurred, implying that any replenishment order event
temporally coincides with a DailyDemand event, we can also drop the event type replenishment orders.

Thus, the simplifications of our first design modeling step lead to a model as shown in Figure 8.

Figure 8: The initial information design model with attributes and associations (Step 1).

Notice that the two associations model the participation of the shop in both DailyDemand and Deliv-
ery events, and the association end names shop and receiver represent the reference properties DailyDe-
mand::shop and Delivery::receiver. These reference properties allow to access the properties and invoke
the methods of a shop from an event, which is essential for the event routine of each event type. Thus, the
ontological pattern of objects participating in events and the implied software pattern of object reference
properties in event types are the basis for defining event routines (and rules) in event types.

In the next step (step 2), we distinguish between two kinds of event types: exogenous event types and
caused event types, and we also define for all attributes a platform-independent datatype as their range,
using specific datatypes (such as PositiveInteger, instead of plain Integer, for the quantity of a
delivery), as shown in Figure 9.

Figure 9: Adding the range of attributes and random variables (Step 2).

While exogenous events of a certain type occur again and again with some (typically random) recur-
rence, caused events occur at times that result from the internal causation dynamics of the simulation
model. So, for any event type adopted from the conceptual model, we choose one of these two categories,
and for any exogenous event type, we add a recurrence operation that is responsible for computing the
time until the next event occurs. In our example, the recurrence of DailyDemand events is 1 (“each day”).

530

Wagner

In our example model, shown in Figure 9 above, we define DailyDemand as an exogenous event type
with a recurrence of 1, implying that an event of this type occurs on each day, while we define Delivery as
a caused event type.

6.1.3 Deriving an OO Design Model from the Information Design Model

An OO design model is a type of model that is in-between the platform-independent information design
model and the platform-specific (e.g., Java, JavaScript, AnyLogic or Netlogo) class models for OO pro-
gramming platforms.

In an OO target language, there would normally be two predefined abstract foundation classes, called
oBJECT and eVENT in the model below, each with a set of generic properties and methods, implementing
the two stereotypes «object type» and «event type». These two classes are shown with their name in ital-
ics in Figure 10 below, indicating that they are abstract, which implies that they cannot have direct in-
stances.

Figure 10: The OO class model.

Notice that our OO class model does no longer contain the two explicit associations, which have been
replaced with the reference properties DailyDemand::shop and Delivery::receiver. This is the way asso-
ciations are implemented in OO programs.

The abstract onEvent operation in the eVENT class refers to the event routines triggered by events.
These event routines are defined by the onEvent methods of the subclasses DailyDemand and Delivery.
Notice that for handling the exogenous events of type DailyDemand, we have added a static createNextE-
vent method in DailyDemand for creating the next DailyDemand event, whenever a DailyDemand event
has occurred.

6.1.4 Deriving Platform-Specific Models and Code

Finally, we may either make platform-specific (e.g., Java, JavaScript, AnyLogic or Netlogo) class models
and then code them, or directly code the OO class model in the chosen target language by applying the
same patterns as we would for making the platform-specific class model. In a platform-specific model, we
use the specific elements of the chosen platform, such as Java-specific datatypes in the case of the Java
platform. For instance, the event class DailyDemand can be implemented in the JavaScript simulation
platform ΩΕ provided by sim4edu.com with the following code:

var DailyDemand = new cLASS({
 Name: "DailyDemand",
 supertypeName: "eVENT",
 properties: {
 "shop": {range: "SingleProductShop"},

531

Wagner

 "quantity": {range: "PositiveInteger", label:"Quantity"}
 },
 methods: {
 "onEvent": function () {...}
 }
});

6.2 Process Modeling

We show a conceptual process model and a process design model for our inventory management case,
both in the form of BPMN process diagrams.

6.2.1 Making a Conceptual Process Model

Figure 11: A conceptual process model (where Vendor is omitted for a lack of space).

In the conceptual process model shown in Figure 11, we model the two actors Customer and Single Prod-
uct Shop, together with their interactions in the style of a business process model. For an elaborate expla-
nation of this model see (Wagner 2017).

6.2.2 Making a Process Design Model

A process design model does not describe the process of the real world system under investigation, but
defines a computational design of the simulation process by describing all event rules of the model to be
designed. Consequently, the BPMN tasks of the process design model represent computational (simula-

532

Wagner

tor) actions, and not the actions of real-world actors. Since our design for the given research question in-
cludes only two event types, DailyDemand and Delivery, we only need to model two event rules. For a
lack of space, we can only show one of them, the DailyDemand event rule, in the BPMN diagram shown
in Fig. 12. Notice that event rules can also be modeled textually, in an event rule table, by using pseudo-
code, as shown in (Wagner 2017).

Figure 12: A design model for the DailyDemand event rule.

7 CONCLUSIONS

UML class diagrams and BPMN process diagrams allow making visual simulation models that can be
coded with any simulation platform supporting objects and events. While using UML and BPMN is not
yet common in modeling and simulation, both languages are well-established in information systems and
software engineering.

REFERENCES

Ambler, S.W. 2010. UML 2 Class Diagrams. http://www.agilemodeling.com/artifacts/classDiagram.htm
Banks, J. Carson, J.S. Nelson, B.L. and Nicol, D.M. 2005. Discrete-Event System Simulation. Pearson

Prentice Hall.
Cetinkaya, D., and A. Verbraeck. 2011. “Metamodeling and Model Transformations in Modeling and

Simulation”. In Proceedings of the 2011 Winter Simulation Conference, edited by S. Jain, R.R.
Creasey J. Himmelspach, K. P. White, and M. Fu, 3048−3058. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers, Inc.

Gordon, G. 1961. “A general purpose systems simulation program”. In Proceedings of the Eastern Joint
Computer Conference, Washington, D.C.

Guizzardi, G., and G. Wagner. 2010. “Using the Unified Foundational Ontology (UFO) as a Foundation
for General Conceptual Modeling Languages”. In Poli R., M . Healy and A. Kameas (Eds.), Theory
and Applications of Ontology: Computer Applications., 175−196.

Guizzardi, G., and G. Wagner. 2012. “Tutorial: Conceptual Simulation Modeling with Onto-UML”. In
Proceedings of the 2012 Winter Simulation Conference, edited by C. Laroque, J. Himmelspach, R.

533

Wagner

Pasupathy, O. Rose, and A.M. Uhrmacher, 52−66. Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc.

Guizzardi, G., and G. Wagner. 2013. “Dispositions and Causal Laws as the Ontological Foundation of
Transition Rules in Simulation Models”. In Proceedings of the 2013 Winter Simulation Conference,
edited by R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, 1335–1346. Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers, Inc. http://informs-
sim.org/wsc13papers/includes/files/117.pdf

Himmelspach, J. 2009. “Toward a Collection of Principles, Techniques and Elements of Modeling and
Simulation Software”. In Proc. of the 2009 International Conference on Advances in System Simula-
tion. IEEE Computer Society, 56–61.

Camunda. “BPMN 2.0 Tutorial”. https://camunda.org/bpmn/tutorial.
Onggo, B. S. S., and O. Karpat. 2011. “Agent-Based Conceptual Model Representation Using BPMN”. In

Proceedings of the 2011 Winter Simulation Conference, edited by S. Jain, R.R. Creasey J. Himmel-
spach, K. P. White, and M. Fu, 671−682. Piscataway, New Jersey: Institute of Electrical and Elec-
tronics Engineers, Inc.

Pegden, C.D. and D.A. Davis. 1992. “Arena: a SIMAN/Cinema-Based Hierarchical Modeling System”.
In Proceedings of the 1992 Winter Simulation Conference, edited by J.J. Swain, D. Goldsman, R.C.
Crain, and J.R. Wilson, 390–399. Piscataway, New Jersey: Institute of Electrical and Electronics En-
gineers, Inc.

Pegden, C.D. 2010. “Advanced Tutorial: Overview of Simulation World Views”. In Proceedings of the
2010 Winter Simulation Conference, edited by B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan,
and E. Yücesan, 643−651. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,
Inc.

Robinson, S. 2013. “Conceptual Modeling for Simulation”. In Proceedings of the 2013 Winter Simulation
Conference, edited by R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, 377-388. Pisca-
taway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Wagner, G., O. Nicolae, and J. Werner. 2009. “Extending Discrete Event Simulation by Adding an Activ-
ity Concept for Business Process Modeling and Simulation”. In Proceedings of the 2009 Winter Sim-
ulation Conference, edited by M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin and R. G. Ingalls,
2951-2962. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Wagner, G. 2017. “Information and Process Modeling for Simulation”. Journal of Simulation Engineer-
ing, 1:1. Available from: http://JSimE.org.

Zee, D.-J. van der et al. 2010. “Panel Discussion: Education on Conceptual Modeling for Simulation –
Challenging the Art”. In Proceedings of the 2010 Winter Simulation Conference, edited by B. Johans-
son, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, 290−304. Piscataway, New Jersey: Insti-
tute of Electrical and Electronics Engineers, Inc.

AUTHOR BIOGRAPHY

GERD WAGNER is Professor of Internet Technology at Brandenburg University of Technology, Cott-
bus, Germany. His research interests include (agent-based) modeling and simulation, foundational ontol-
ogies, knowledge representation and web engineering. His email address is G.Wagner@b-tu.de.

534

